
Whether Android Applications Broadcast Your Private

information: A Naive Bayesian-based Analysis

Approach

Li Lin1,2,3 , Jian NI1,2,3, Xinya Mao1,2,3,Jianbiao Zhang1,2,3
1College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2Beijing Key Laboratory of Trusted Computing, Beijing 100124, China
3National Engineering Laboratory for Classified Information Security Protection, Beijing 100124, China

 linli_2009@bjut.edu.cn, {17801028290, 13089397966}@163.com, zjb@bjut.edu.cn

Abstract—With the rapid development of android smart terminals,

android applications are exhibiting explosive growth. However,

there remains a challenging issue facing android system, a

malicious application may broadcast user’s private information.

In this paper, we propose a Naive Bayesian-based approach for

analyzing private information leakage under the android

broadcast mechanism, which calls BRbysA. Firstly, broadcast

actions registered in manifest.xml are picked up statically by

keyword matching technique. Secondly, with the Xposed

framework, the broadcast actions specified at run time are

discovered by hooking broadcast callback onReceive() function.

Combining the above two ways, we can capture all real-time

broadcast actions in an android application. Thirdly, we adopt

Naive Bayesian learning algorithm, all broadcast actions which

involved in users’ privacy leakage are analyzed and classified.

Finally, we evaluate the proposed approach by using the dataset

from Drebin and Google Play.

Keywords- Android broadcast; private information leakage;

keyword matching; hook; Naive Bayesian

I. INTRODUCTION

Nowadays more attention has been paid to individual privacy

information protection in android platform [1]. There are

different security capabilities in android custom ROM [2]. It

leads to the potential loopholes and vulnerabilities in android

system [3]. For example, a loophole in BlackPhone has been

discovered to allow an attacker to decrypt users’ encrypted

information [4]. There has occurred a new malware through

Google Play Store to inject malicious codes for collecting the

user's bank and credit card information [5]. Consequently, it is

of great importance to underpin trusted android market by

malicious applications analysis approach, which can accurately

and efficiently detect APKs that reveal users’ private

information.

Existing methods are mainly divided into two categories:

static detection and dynamic monitoring. Static detection

methods involve in the analysis of signature information and

permission information. However it is difficult to find the

privacy disclosure from android broadcast mechanism by

analyzing permission information. Dynamic detection methods

like MonkeyRunner and HIPS can achieve malicious behavior

detection with higher detection accuracy, but it also suffer from

low code coverage and longtime consumption. In fact, android

system may broadcast users’ private information [6]. If a

malicious program can accept system broadcast, it can obtain

users’ private information by calling onReceive() method.

To solve these problems, this paper proposes a Naive

Bayesian-based approach called BRbysA for analyzing private

information leakage under the android broadcast mechanism.

Firstly, broadcast actions registered in the manifest.xml are

picked up statically by exploiting keyword matching technique.

Secondly, referencing Xposed framework, the broadcast actions

specified at running time are discovered by hooking broadcast

callback onReceive() function. Combining the above two ways,

we can capture all real-time broadcast actions in an android

application. Thirdly, adopting Naive Bayesian-based learning

algorithm, all broadcast actions involved in users’ privacy

leakage are analyzed and classified. To our knowledge, we are

the first one to introduce the machine learning-based method to

analyze android broadcast receiver. Furthermore, based on the

above analysis, the probability of each broadcast actions

appeared in malicious programs is calculated to determine

whether the application discloses users’ private information

Based on Drebin dataset proposed by Daniel et al [7] and

Google Play application set, we have test the effectiveness of

the proposed method successfully. We summed up several

kinds of broadcast actions that really exist the risk of leaking

users’ private information.
The rest of the paper is organized as follows. Section II

presents related work. Section III gives the problem description.
Section IV introduces the proposed method in detail. Section V
presents our experimental results. Section VI concludes this
paper and shows some possible future work.

II. RELATED WORK

In the aspect of android malware detection, there are two

schemes: static detection and dynamic monitoring. Static

detection methods [8] mainly concern the analysis of signature

information, permission information of APKs. Dynamic

DOI reference number: 10.18293/SEKE2018-208

mailto:linli_2009@bjut.edu.cn
mailto:zjb@bjut.edu.cn

detection methods [9], [10], [11] can trigger the malicious

behavior of malicious programs by running android

applications. Common dynamic testing tools include Monkey,

MonkeyRunner, TaintDroid, droidBox and so on [12].

Most of current malicious applications detection researches

focus on the analysis of permissions and malicious APIs. There

was a little work on investigating android broadcast mechanism.

Fadi Mohsen et al. [6] have developed a tool broadcastViewer,

which can be used to view android system broadcast actions that

has been installed on your phone. However, the work detects

broadcast actions only from the perspective of static analysis

and cannot detect the behavior of broadcast receiver when the

actual operations are triggered by the application. In addition,

Erika Chin et al. [13] proposed ComDroid to analyze android

inter-process communication risk. Di Tian et al. [14] analyzed

the characteristics of Broadcast Receiver vulnerability and

developed a broadcast receiver vulnerability detection system

called BRVD. Noam Kogan et al. [15] present an anti-pirate

revocation scheme for broadcast encryption systems. The above

three work have mentioned that broadcast message may be with

user's private information in broadcast transmission and inter-

application communication. But they also didn’t analyze all

broadcast actions systematically. It may lead to miss some

broadcast actions that reveal users' private information.

III. PROBLEM DESCRIPTION

Users download a wide variety of APKs from third-party

application market in order to meet their daily commerce and

communication needs [16]. An android system consists of four

components: BroadcastReceiver, Activity, Service, and

Content provider. BroadcastReceiver is used to receive

broadcast declared in Manifest.xml file. At this time,

BroadcastReceiver also can call its onReceive() method to

perform certain operations. Interaction between

BroadcastReceiver and android system is shown in Fig. 1. The

broadcast information may contain users’ private information.

A malicious program can perform android broadcast callback

function by customizing onReceive() method. For example, if a

malicious program has registered SMS BroadcastReceiver, it

can receive SMS messages and access the information through

intent.getExtras() method. In this paper, our objective is to

provide a sound method for detecting and analyzing malicious

android APKs, which use broadcast to steal user privacy.
Android
System

Broadcast
Receiver

issue system broadcast notification

regiser system broadcast

Monitor system broadcast

occur specific system events

receive system broadcast, callback
onReceive() method

Figure 1. Interaction between broadcast receiver and android system

IV. DESIGN OF BRBYSA

As shown in Fig.2, the BRbysA method is divided into three
parts: broadcast action static collection, broadcast action
dynamic discover and Naive Bayesian-based privacy leakage
analysis. It must combine static and dynamic methods to collect
broadcast action, because the existing dynamic technologies do
not monitor all broadcast actions in the APK’s manifest.xml.
Moreover, exploiting Naive Bayesian-based learning algorithm,
we can determine whether there exist the risk of leaking users'
privacy through broadcast action information in an APK.

APKs

Broadcast actions collection

 Decompiling APKs based on

APKTool

 Counting broadcast actions
based on keyword matching

 Extracting actions from
manifest.xml file

Installing Xposed
Framework

Hijacking Dalvik virtual
machine

Controling Zygote
process

...

Recording initial
broadcast action array

Calculating appearance
probability of each

broadcast action in APKs

Counting the
occurrences of broadcast

action

Broadcast actions analysis

Summarizing the kinds of
broadcast actions that
may leak user private

information

...

Broadcast
user private
inFormation

OR not?

S
ta

tic co
lle

tio
n

D
y

n
a

m
ic d

isco
v

e
ry

N
a

iv
e

 B
a

y
e

sia
n

-b
a

se
d

 a
n

a
ly

sis

Figure 2.The principle of BRbysA

A. Statically collecting broadcast action

In general, self-defined BroadcastReceiver is specified by
receiver label. A particular broadcast action can be specified by
intent-filter label and received by BroadcastReceiver. In
BRbysA, broadcast actions in APK’s manifest.xml file are

collected using keyword matching algorithm in Table I.

TABLE I. KEYWORD MATCHING-BASED BROADCAST ACTION

EXTRACTION ALGORITHM

Input: APK package under test
Output: broadcast action set
Begin：

1. Decompile APK source file based on APKTool.

2. Extract the manifest.xml file of APK into a specific directory.
3. Read the manifest.xml using FileReader and BufferdReader.

4. Split the manifest.xml across blank, store elements into String array.
5. Create broadcast actions set, to compare with String array

while (bufferdReader.readLine() != null) {

String[] words = line.split(" ");
for (String word : words) {

if (word.equals(“SMS_RECEIVED”))

{arrayList.add(“SMS_RECEIVED”)}
}

}

6. If the broadcast action equals the array element, then add it to the
result set.

End.

B. Dynamically discovering broadcast action

To obtain broadcast actions specified at run time, this paper

proposes a hook-based dynamic monitoring scheme to observe

the actual state of broadcast callback onReceive() method. The

hook operation for broadcast registration API is carried out

based on Xposed framework. BRbysA states the

XposedInstaller entrance class in the configuration file

assets/xposed_init. The algorithm is shown in Table II.

TABLE II. BROADCAST ACTION DYNAMICAL DISCOVERY ALGORITHM

BASED ON XPOSED FRAMEWORK

Input: APK package under test

 Output: broadcast action set

 Begin:

1. Android cellphone install Xposed framework, then configure Xposed
framework in project’s manifest.xml.

2. Import XposedBridgeApi-54.jar into project as library file, the stating

XposedInstaller entry class in the assets/xposed.init file.
3. Main class Module implements IXposedHookLoadPackage Interface,

override handleLoadpackage(LoadPackageParam lpparam) method.

4. Assign the hooked package name、method name and param type,

across XposedHelpers.findAndHookMethod().

5. When the specific package is loaded, the system will call

findAndHookMethod(), and then call beforeHookedMethod and
afterHookedMethod.

6. Get broadcast action through ((Intent)param.arg[1]).getAction to,

then storage it into broadcast action array.
End.

C. Naive Bayesian-based privacy leakage analysis

Based on the above methods, all real-time broadcast actions

can be captured in an APK. Next, a naive Bayesian machine

learning algorithm is introduced to classify broadcast actions.

Let X0 be normal program, X1 be malicious program, Ci

represents broadcast action bai appearing in an APK, then the

formula P(Ci|Xi) = P(Xi |Ci) * P(Ci)/P(Xi) (1) indicates the

occurrence probability of broadcast action bai when the APK is

normal or malicious. The algorithm is shown in Table III.

TABLE III. NAIVE BAYESIAN-BASED PRIVACY LEAKAGE ANALYSIS

ALGORITHM

Input: Broadcast action set outputted by the above methods

Output: the conditional probability of occurrence of each broadcast action

when an APK is malicious
Begin:

1． Construct an array ActionArrays[], each element of ActionArrays[] is

from the broadcast action set outputted by the above methods.

2． Array ClassVec[] stores APKs’ classification, where '0' indicates

normal program, '1' indicates malicious program. The array

ArraySingle is used to store the occurrence number of unreplicated
broadcast action . The initial elements of ArraySingle are set all '0'.

3． For any broadcast action bai, count the number of malicious APKs

from ActionArrays under the premise of bai occurrence, which is
denoted by Ni1, count the total number of all APKs from ArraySingle

under the premise of bai occurrence, which is denoted by Ni2.

Calculate P(X1|Ci) through Ni1 divided by N i2.

4． For any APK, calculate P(X1), the probability that APK is malicious.

5． For any broadcast action bai, count the number of bai in ArraySingle

Ni3; Count the total number of all broadcast action in ActionArrays
Ni4. Calculate P(Ci) through Ni3 divided by Ni4.

6． For any broadcast action bai, calculate P(Ci|X1) by Formula (1).

7． For different broadcast actions in an APK, count the average value of

P(Ci|X1) and find a suitable threshold. Determine whether an APK

will reveal user private information by judging if the above average
value exceeds the selected threshold or not.

End.

V. EXPERIMENT EVALUATION

A. Experiment environment

We have implemented and deployed BRbysA on Android

version 4.4. The total kinds of broadcast actions is 136. The

Xposed Framework version used in BRbysA is No.54. We

randomly choose 1000 regular APKs from the Google Play and

download 1000 malicious APKs from Drebin dataset as

experimental samples.

B. Static collection and dynamic discovery effectiveness

Using the algorithms in Table I and II, we have counted the

number of all broadcast actions in the 2000 APKs. Due to

limited space, here we only release statistic data. As shown in

Table IV, only 31 in 136 kinds of broadcast actions appears in

the 2000 APKs, the others don’t appear. PA represents the

average value of conditional probability for broadcast actions

occurring under the premise of malicious APK. The result

shows that the first five have higher frequency than 0.3.

TABLE IV. THE NUMBER OF ALL BROADCAST ACTIONS IN THE SAMPLE.

Broadcast action Num. PA

android.provider.Telephony.SMS_RECEIVED 300 0.4507

android.net.conn.CONNECTIVITY_CHANGE 243 0.4105

android.net.wifi.NETWORK_IDS_CHANGED 156 0.3954

android.intent.action.PHONE_STATE 113 0.3522
android.intent.action.NEW_OUTGOING_CALL 84 0.3013

Intent.ACTION_LOCALE_CHANGED 53 0.2652

Intent.ACTION_REBOOT 22 0.1024

android.hardware.action.NEW_PICTURE 7 0.0202

android.hardware.action.NEW_VIDEO 4 0.0106

android.intent.action.CAMERA_BUTTON 2 0.0103
android.intent.action.DATA_SMS_RECEIVED 2 0.0096

android.intent.action.FETCH_VOICEMAIL 2 0.0043

android.intent.action.NEW_VOICEMAIL 1 0.0043

android.intent.action.PROVIDER_CHANGED 1 0

android.intent.action.PROXY_CHANGE 1 0
android.intent.action.SCREEN_ON 1 0

android.intent.action.SCREEN_OFF 1 0.0043

android.media.VIBRATE_SETTING_CHANGED 1 0.0043

android.net.nsd.STATE_CHANGED 1 0

android.net.wifi.STATE_CHANGE 1 0

android.nfc.action.ADAPTER_STATE_CHANGED 1 0
android.provider.Telephony.SMS_RECEIVED 1 0.0043

android.intent.action.WALLPAPER_CHANGED 1 0

android.media.AUDIO_BECOMING_NOISY 1 0

android.intent.action.PACKAGE_FIRST_LAUNCH 1 0.0043

android.intent.action.MEDIA_SCANNER_SCAN_FIL 1 0.0043

android.intent.action.INPUT_METHOD_CHANGED 1 0
android.intent.action.BATTERY_LOW 1 0

android.intent.action.BATTERY_CHANGED 1 0

android.bluetooth.device.action.UUID 1 0.0043

android.bluetooth.devicepicker.action.LAUNCH 1 0.0043

C. Malicious APKs detection accuracy

Next, we use the above samples to test malicious APK

detection accuracy of BRbysA. As shown in Fig. 3, the

horizontal axis represents probability value ranges, the vertical

axis represents the number of APKs that PA falls in a certain

probability value range. In the experiment, 0.3 is selected as a

threshold. As shown in Fig. 3, the number of APKs whose PA

is greater than 0.3 is 123+141 + 26 = 290. That means, 290

malicious APKs can be detected by BRbysA. Meanwhile, the

number of APKs registered broadcast actions in 1000 malicious

APKs is counted as 310. Considering the most extreme situation,

all malicious APKs registered broadcast actions exist the risk of

leaking users’ private information. Thus the malicious APKs

detection rate of BRbysA is 290/310=93.548%. The result

shows that BRbysA can achieve good malicious APKs detection.

Figure 3.Different probability value range vs the number of APKs whose

ProA falls in a corresponding probability value range.

Finally, we compare BRbysA with Manilyzer [17]. In the

experiment, we randomly select 100 APKs from the above 310

malicious APKs registered broadcast actions and select 100

APKs from the above 1000 regular APKs. BRbysA and

Manilyzer are implemented to analyze the selected 200 APKs.

As shown in Fig. 4, the horizontal axis represents different

rounds and the vertical axis represents the number of detected

malicious APKs under different malicious APKs detection

methods. The result shows that BRbysA can work better than

Manilyzer at malware detection rate in most cases.

Figure 4. Different rounds vs the number of detected malicious APKs under

different malicious APKs detection methods.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes BRbysA to analyze private information
leakage under android broadcast mechanism. The highlights of
this paper are as follows. Firstly, combining static collection and
dynamic discovery, all real-time broadcast actions in an APK
can be captured. Secondly, adopting Naive Bayesian learning
algorithm, all broadcast actions involved in users’ privacy
leakage can be analyzed and classified. Finally, we have
evaluated BRbysA using the dataset from Drebin and Google
Play, which illustrate there are several kinds of broadcast actions
that really exist the risk of leaking users’ private information.

However, the problem of threshold selection is not covered
in this paper. With the change of sample size, we have found that
different thresholds may make different decisions. This is
desirable to develop some data mining approaches to increase
the malware detection accuracy in the set of more malwares.
Furthermore, our ongoing research will test the time and load
overhead performance of the proposed approach.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation of China (No. 61502017), the Scientific Research
Common Program of Beijing Municipal Commission of
Education (KM201710005024).

REFERENCES

[1] Zhang. W, Li.X, Xiong.N and Vasilakos. A. V, “Android platform-based
individual privacy information protection system,” Personal and
Ubiquitous Computing, Vol. 20, no. 6, pp. 875-884, 2016.

[2] Xu. M, Song. C,Ji. Y, Shih. M, Lu. K, Zheng C, et al, “Toward
Engineering a Secure Android Ecosystem: A Survey of Existing
Techniques,” ACM Computing Surveys, Vol. 49, no. 2, pp.38, 2016.

[3] Yang. K, Zhuge.J, Wang. Y, Zhou. L, and Duan. H, “IntentFuzzer:
detecting capability leaks of android applications,” in Proceedings of the
9th ACM symposium on Information, computer and communications
security, pp.531-536, ACM, 2014.

[4] 360 security broadcast, The world's most secure mobile phone
BlackPhone was found loopholes can cause loss of privacy [Online].
Available: http://bobao.360.cn/news/detail/1171.html 2015-01.

[5] Ren. C, Chen. K, and Liu. P, “Droidmarking: resilient software
watermarking for impeding android application repackaging,” in
Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, pp.635-646, ACM, 2014.

[6] F. Mohsen, M. Shehab, E. Bello-Ogunu,and AA. Jarrah, “Android System
Broadcast Actions Broadcasts Your Privacy,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pp.1484-1486, ACM, 2014.

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon and K. Rieck ,
“DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket,”in Proceedings of NDSS 2014, Internet Society, 2014.

[8] Quan. D, Zhai. L, Yang.F and Wang. P, “Detection of Android Malicious
Apps Based on the Sensitive Behavious,” in Proceedings of TrustCom
2014, pp. 877-883, IEEE, 2014.

[9] S. S. Shinde and S. S. Sambare, “Enhancement on privacy permission
management for Android apps,” Communication Technologies, pp.838-
842, IEEE, 2015.

[10] Yang.W, Xiao. X, P. Rahul, E. William and Xie.T, “Improving mobile
application security via bridging user expectations and application
behaviors,” in Proceedings of the 2014 Symposium and Bootcamp on the
Science of Security, pp.32, ACM, 2014.

[11] S. Feese, B. Arnrich, G. Troster, M. Burtscher, B. Meyer and K. Jonas,
“CoenoFire: monitoring performance indicators of firefighters in real-
world missions using smartphones,” in Proceedings of the ACM
international joint conference on Pervasive and ubiquitous computing,
pp.83-92, ACM, 2013.

[12] S. K. Singh, B. Mishra and P. Gera, “A privacy enhanced security
framework for android users,”in Proceedings of the 5th International
Conference on IT Convergence and Security, pp.1-6, IEEE, 2015.

[13] E. Chin, A. P. Felt, K. Greenwood and D. Wagner, “Analyzing Inter-
Application Communication in Android,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
MobiSys'11 and Co-located Workshops, pp. 239-252, ACM, 2011.

[14] Tian.D, “Detecting Vulnerabilities of Broadcast Receivers in Android
Applications,” ProQuest Dissertations and Theses A&I: The Sciences
and Engineering Collection, 2016.

[15] N. Kogan, Y. Shavitt and A. Wool, “A practical revocation scheme for
broadcast encryption using smartcards,” ACM Transactions on
Information and System Security (TISSEC),Vol.9,no.3,pp.225, 2006.

[16] Li. Y, Yao. F, Lan. T and Venkataramani. G. , “SARRE: Semantics-
Aware Rule Recommendation and Enforcement for Event Paths on
Android,” IEEE Transations on Information Forensics and Security:
Vol.11, no 12, pp. 2748-2762, 2016.

[17] S. Feldman, D. Stadther and B. Wang, “Manilyzer: Automated Android
malware detection through manifest analysis,” in Proceedings of the 11th
IEEE International Conference on Mobile Ad Hoc and Sensor Systems,
pp. 767-772, IEEE, 2015.

1582

26 49 123 141
26

0

200

400

600

800

1000

1200

1400

1600

1800

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.6 aboveTh
e

n
u

m
b

er
 o

f
A

P
K

s
w

h
o

se

P
ro

A
 f

al
ls

 in
 a

 c
er

ta
in

p

ro
b

ab
ili

ty
 v

al
u

e
ra

n
ge

different probability value range

78

80

82

84

86

88

90

92

94

1 2 3 4 5 6 7 8 9 10Th
e

n
u

m
b

er
 o

f
m

al
ic

io
u

s
A

P
K

s

Different rounds

BRbysA Manilyzer

http://bobao.360.cn/news/detail/1171.html%202015-01

