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Abstract—With the rapid development of android smart terminals, 

android applications are exhibiting explosive growth. However, 

there remains a challenging issue facing android system, a 

malicious application may broadcast user’s private information. 

In this paper, we propose a Naive Bayesian-based approach for 

analyzing private information leakage under the android 

broadcast mechanism, which calls BRbysA. Firstly, broadcast 

actions registered in manifest.xml are picked up statically by 

keyword matching technique. Secondly, with the Xposed 

framework, the broadcast actions specified at run time are 

discovered by hooking broadcast callback onReceive() function. 

Combining the above two ways, we can capture all real-time 

broadcast actions in an android application. Thirdly, we adopt 

Naive Bayesian learning algorithm, all broadcast actions which 

involved in users’ privacy leakage are analyzed and classified. 

Finally, we evaluate the proposed approach by using the dataset 

from Drebin and Google Play.  

Keywords- Android broadcast; private information leakage; 

keyword matching; hook; Naive Bayesian 

I.  INTRODUCTION 

Nowadays more attention has been paid to individual privacy 

information protection in android platform [1]. There are 

different security capabilities in android custom ROM [2]. It 

leads to the potential loopholes and vulnerabilities in android 

system [3]. For example, a loophole in BlackPhone has been 

discovered to allow an attacker to decrypt users’ encrypted 

information [4]. There has occurred a new malware through 

Google Play Store to inject malicious codes for collecting the 

user's bank and credit card information [5]. Consequently, it is 

of great importance to underpin trusted android market by 

malicious applications analysis approach, which can accurately 

and efficiently detect APKs that reveal users’ private 

information. 

Existing methods are mainly divided into two categories: 

static detection and dynamic monitoring. Static detection 

methods  involve in the analysis of signature information and 

permission information. However it is difficult to find the 

privacy disclosure from android broadcast mechanism by 

analyzing permission information. Dynamic detection methods 

like MonkeyRunner and HIPS can achieve malicious behavior 

detection with higher detection accuracy, but it also suffer from 

low code coverage and longtime consumption. In fact, android 

system may broadcast users’ private information [6]. If a 

malicious program can accept system broadcast, it can obtain 

users’ private information by calling onReceive() method.  

To solve these problems, this paper proposes a Naive 

Bayesian-based approach called BRbysA for analyzing private 

information leakage under the android broadcast mechanism. 

Firstly, broadcast actions registered in the manifest.xml are 

picked up statically by exploiting keyword matching technique. 

Secondly, referencing Xposed framework, the broadcast actions 

specified at running time are discovered by hooking broadcast 

callback onReceive() function. Combining the above two ways, 

we can capture all real-time broadcast actions in an android 

application. Thirdly, adopting Naive Bayesian-based learning 

algorithm, all broadcast actions involved in users’ privacy 

leakage are analyzed and classified. To our knowledge, we are 

the first one to introduce the machine learning-based method to 

analyze android broadcast receiver. Furthermore, based on the 

above analysis, the probability of each broadcast actions 

appeared in malicious programs is calculated to determine 

whether the application discloses users’ private information 

Based on Drebin dataset proposed by Daniel et al [7] and 

Google Play application set, we have test the effectiveness of 

the proposed method successfully. We summed up several 

kinds of broadcast actions that really exist the risk of leaking 

users’ private information. 
The rest of the paper is organized as follows. Section II 

presents related work. Section III gives the problem description. 
Section IV introduces the proposed method in detail. Section V 
presents our experimental results. Section VI concludes this 
paper and shows some possible future work. 

II. RELATED WORK 

In the aspect of android malware detection, there are two 

schemes: static detection and dynamic monitoring. Static 

detection methods [8] mainly concern the analysis of signature 

information, permission information of APKs. Dynamic 
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detection methods [9], [10], [11] can trigger the malicious 

behavior of malicious programs by running android 

applications. Common dynamic  testing tools  include Monkey, 

MonkeyRunner, TaintDroid, droidBox and so on [12]. 

Most of current malicious applications detection researches 

focus on the analysis of permissions and malicious APIs. There 

was a little work on investigating android broadcast mechanism. 

Fadi Mohsen et al. [6] have developed a tool broadcastViewer, 

which can be used to view android system broadcast actions that 

has been installed on your phone. However, the work detects 

broadcast actions only from the perspective of static analysis 

and cannot detect the behavior of broadcast receiver when the 

actual operations are triggered by the application. In addition, 

Erika Chin et al. [13] proposed ComDroid to analyze android 

inter-process communication risk. Di Tian et al. [14] analyzed 

the characteristics of Broadcast Receiver vulnerability and 

developed a broadcast receiver vulnerability detection system 

called BRVD. Noam Kogan  et al. [15] present an anti-pirate 

revocation scheme for broadcast encryption systems. The above 

three work have mentioned that broadcast message may be with 

user's private information in broadcast transmission and inter-

application communication. But they also didn’t analyze all 

broadcast actions systematically. It may lead to miss some 

broadcast actions that reveal users' private information. 

III. PROBLEM DESCRIPTION 

Users download a wide variety of APKs from third-party 

application market in order to meet their daily commerce and 

communication needs [16]. An android system consists of four 

components: BroadcastReceiver, Activity, Service, and 

Content provider. BroadcastReceiver is used to receive 

broadcast declared in Manifest.xml file. At this time, 

BroadcastReceiver also can call its onReceive() method to 

perform certain operations. Interaction between 

BroadcastReceiver and android system is shown in Fig. 1.  The 

broadcast information may contain users’ private information. 

A malicious program can perform android broadcast callback 

function by customizing onReceive() method. For example, if a 

malicious program has registered SMS BroadcastReceiver, it 

can receive SMS messages and access the information through 

intent.getExtras() method. In this paper, our objective is to 

provide a sound method for detecting and analyzing malicious 

android APKs, which use broadcast to steal user privacy. 
Android 
System

Broadcast 
Receiver

issue system broadcast notification

regiser system broadcast

Monitor system broadcast

occur specific system events

receive system broadcast, callback 
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Figure 1. Interaction between broadcast receiver and android system 

IV. DESIGN OF BRBYSA 

As shown in Fig.2, the BRbysA method is divided into three 
parts: broadcast action static collection, broadcast action 
dynamic discover and Naive Bayesian-based privacy leakage 
analysis. It must combine static and dynamic methods to collect 
broadcast action, because the existing dynamic technologies do 
not monitor all broadcast actions in the APK’s manifest.xml. 
Moreover, exploiting Naive Bayesian-based learning algorithm, 
we can determine whether there exist the risk of leaking users' 
privacy through broadcast action information in an APK. 
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Figure 2.The principle of BRbysA 

A. Statically collecting broadcast action 

In general, self-defined BroadcastReceiver is specified by 
receiver label. A particular broadcast action can be specified by 
intent-filter label and received by BroadcastReceiver. In 
BRbysA, broadcast actions in APK’s manifest.xml file are 

collected  using keyword matching algorithm in Table I. 

TABLE I.  KEYWORD MATCHING-BASED BROADCAST ACTION 

EXTRACTION ALGORITHM 

Input: APK package under test 
Output: broadcast action set 
Begin： 

1. Decompile APK source file based on APKTool. 

2. Extract the manifest.xml file of APK into a specific directory. 
3. Read the manifest.xml using FileReader and BufferdReader. 

4. Split the manifest.xml across blank, store elements into String array.  
5. Create broadcast actions set, to compare with String array 

while ( bufferdReader.readLine() != null) { 

String[] words = line.split(" "); 
for (String word : words) { 

if (word.equals(“SMS_RECEIVED”)) 

{arrayList.add(“SMS_RECEIVED”)} 
} 

} 

6. If the broadcast action equals the array element, then add it to the 
result set. 

End. 

B. Dynamically discovering broadcast action 

To obtain broadcast actions specified at run time, this paper 

proposes a hook-based dynamic monitoring scheme to observe 

the actual state of broadcast callback onReceive() method. The 

hook operation for broadcast registration API is carried out 

based on Xposed framework. BRbysA states the 

XposedInstaller entrance class in the configuration file 

assets/xposed_init. The algorithm is shown in Table II. 



TABLE II.  BROADCAST ACTION DYNAMICAL DISCOVERY ALGORITHM 

BASED ON XPOSED FRAMEWORK 

Input: APK package under test 

 Output: broadcast action set 

 Begin: 

1. Android cellphone install Xposed framework, then configure Xposed 
framework in project’s manifest.xml. 

2. Import XposedBridgeApi-54.jar into project as library file, the stating 

XposedInstaller entry class in the assets/xposed.init file. 
3. Main class Module implements IXposedHookLoadPackage Interface, 

override handleLoadpackage(LoadPackageParam lpparam) method. 

4. Assign the hooked package name、method name and param type, 

across XposedHelpers.findAndHookMethod(). 

5. When the specific package is loaded, the system will call 

findAndHookMethod(), and then call beforeHookedMethod and 
afterHookedMethod. 

6. Get broadcast action through ((Intent)param.arg[1]).getAction to, 

then storage it into broadcast action array. 
End. 

C. Naive Bayesian-based privacy leakage analysis 

Based on the above methods, all real-time broadcast actions 

can be captured in an APK. Next, a naive Bayesian machine 

learning algorithm is introduced to classify broadcast actions. 

Let X0 be normal program, X1 be malicious program, Ci 

represents broadcast action bai  appearing in an APK, then the 

formula P(Ci|Xi) = P(Xi |Ci) * P(Ci)/P(Xi) (1) indicates the 

occurrence probability of broadcast action bai when the APK is 

normal or malicious. The algorithm is shown in Table III. 

TABLE III.  NAIVE BAYESIAN-BASED PRIVACY LEAKAGE ANALYSIS 

ALGORITHM 

Input: Broadcast action set outputted by the above methods  

Output: the conditional probability of occurrence of each broadcast action 

when an APK is malicious 
Begin: 

1． Construct an array ActionArrays[], each element of ActionArrays[] is 

from the broadcast action set outputted by the above methods. 

2． Array ClassVec[] stores APKs’ classification, where '0' indicates 

normal program, '1' indicates malicious program. The array 

ArraySingle is used to store the occurrence number of unreplicated 
broadcast action . The initial elements of ArraySingle are set all '0'. 

3． For any broadcast action bai, count the number of malicious APKs 

from ActionArrays under the premise of bai occurrence, which is 
denoted by Ni1, count the total number of all APKs from ArraySingle 

under the premise of bai occurrence, which is denoted by Ni2. 

Calculate P(X1|Ci) through Ni1 divided by N i2. 

4． For any APK, calculate P(X1), the probability that APK is malicious.  

5． For any broadcast action bai, count the number of bai in ArraySingle  

Ni3; Count the total number of all broadcast action in ActionArrays 
Ni4. Calculate P(Ci)  through Ni3 divided by Ni4. 

6． For any broadcast action bai, calculate P(Ci|X1) by Formula (1).  

7． For different broadcast actions in an APK, count the average value of  

P(Ci|X1)  and find a suitable threshold. Determine whether an APK 

will reveal user private information by judging if the above average 
value exceeds the selected threshold or not. 

End. 

V. EXPERIMENT EVALUATION  

A. Experiment environment 

We have implemented and deployed BRbysA on Android 

version 4.4. The total kinds of broadcast actions is 136. The 

Xposed Framework version used in BRbysA is No.54. We 

randomly choose 1000 regular APKs from the Google Play and 

download 1000 malicious APKs from Drebin dataset as 

experimental samples. 

B. Static collection and dynamic discovery effectiveness 

Using the algorithms in Table I and II, we have counted the 

number of all broadcast actions in the 2000 APKs. Due to 

limited space, here we only release statistic data. As shown in 

Table IV, only 31 in 136 kinds of broadcast actions appears in 

the 2000 APKs, the others don’t appear. PA represents the 

average value of conditional probability for broadcast actions 

occurring under the premise of malicious APK. The result 

shows that the first five have higher frequency than 0.3. 

TABLE IV.  THE NUMBER OF ALL BROADCAST ACTIONS IN THE SAMPLE. 

Broadcast action Num. PA 

android.provider.Telephony.SMS_RECEIVED 300 0.4507 

android.net.conn.CONNECTIVITY_CHANGE 243 0.4105 

android.net.wifi.NETWORK_IDS_CHANGED 156 0.3954 

android.intent.action.PHONE_STATE 113 0.3522 
android.intent.action.NEW_OUTGOING_CALL 84 0.3013 

Intent.ACTION_LOCALE_CHANGED 53 0.2652 

Intent.ACTION_REBOOT 22 0.1024 

android.hardware.action.NEW_PICTURE 7 0.0202 

android.hardware.action.NEW_VIDEO 4 0.0106 

android.intent.action.CAMERA_BUTTON 2 0.0103 
android.intent.action.DATA_SMS_RECEIVED 2 0.0096 

android.intent.action.FETCH_VOICEMAIL 2 0.0043 

android.intent.action.NEW_VOICEMAIL 1 0.0043 

android.intent.action.PROVIDER_CHANGED 1 0 

android.intent.action.PROXY_CHANGE 1 0 
android.intent.action.SCREEN_ON 1 0 

android.intent.action.SCREEN_OFF 1 0.0043 

android.media.VIBRATE_SETTING_CHANGED 1 0.0043 

android.net.nsd.STATE_CHANGED 1 0 

android.net.wifi.STATE_CHANGE 1 0 

android.nfc.action.ADAPTER_STATE_CHANGED 1 0 
android.provider.Telephony.SMS_RECEIVED 1 0.0043 

android.intent.action.WALLPAPER_CHANGED 1 0 

android.media.AUDIO_BECOMING_NOISY 1 0 

android.intent.action.PACKAGE_FIRST_LAUNCH 1 0.0043 

android.intent.action.MEDIA_SCANNER_SCAN_FIL 1 0.0043 

android.intent.action.INPUT_METHOD_CHANGED 1 0 
android.intent.action.BATTERY_LOW 1 0 

android.intent.action.BATTERY_CHANGED 1 0 

android.bluetooth.device.action.UUID 1 0.0043 

android.bluetooth.devicepicker.action.LAUNCH 1 0.0043 

C. Malicious APKs detection accuracy 

Next, we use the above samples to test malicious APK 

detection accuracy of BRbysA. As shown in Fig. 3, the 

horizontal axis represents probability value ranges, the vertical 

axis represents the number of APKs that PA falls in a certain 

probability value range. In the experiment, 0.3 is selected as a 

threshold. As shown in Fig. 3, the number of APKs whose PA 

is greater than 0.3 is 123+141 + 26 = 290. That means, 290 

malicious APKs can be detected by BRbysA. Meanwhile, the 

number of APKs registered broadcast actions in 1000 malicious 

APKs is counted as 310. Considering the most extreme situation, 

all malicious APKs registered broadcast actions exist the risk of 

leaking users’ private information. Thus the malicious APKs 

detection rate of BRbysA is 290/310=93.548%. The result 

shows that BRbysA can achieve good malicious APKs detection. 



 
Figure 3.Different probability value range vs the number of APKs whose 

ProA falls in a corresponding probability value range.  

Finally, we compare BRbysA with Manilyzer [17]. In the 

experiment, we randomly select 100 APKs from the above 310 

malicious APKs registered broadcast actions and select 100 

APKs from the above 1000 regular APKs. BRbysA and 

Manilyzer are implemented to analyze the selected 200 APKs. 

As shown in Fig. 4, the horizontal axis represents different 

rounds and the vertical axis represents the number of detected 

malicious APKs under different malicious APKs detection 

methods. The result shows that BRbysA can work better than 

Manilyzer at malware detection rate in most cases. 

 

Figure 4. Different rounds vs the number of detected malicious APKs under 

different malicious APKs detection methods. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper proposes BRbysA to analyze private information 
leakage under android broadcast mechanism. The highlights of 
this paper are as follows. Firstly, combining static collection and 
dynamic discovery, all real-time broadcast actions in an APK 
can be captured. Secondly, adopting Naive Bayesian learning 
algorithm, all broadcast actions involved in users’ privacy 
leakage can be analyzed and classified. Finally, we have 
evaluated BRbysA using the dataset from Drebin and Google 
Play, which illustrate there are several kinds of broadcast actions 
that really exist the risk of leaking users’ private information. 

However, the problem of threshold selection is not covered 
in this paper. With the change of sample size, we have found that 
different thresholds may make different decisions. This is 
desirable to develop some data mining approaches to increase 
the malware detection accuracy in the set of more malwares. 
Furthermore, our ongoing research will test the time and load 
overhead performance of the proposed approach. 
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