
Tailored Quality Modeling and Analysis of
Software-intensive Systems

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Abstract—While developing and operating software-intensive
systems various concerns must be considered. Concerns like
quality properties, domain, and lifecycle phase may differ from
one project to another. Currently different languages and tools
are required for modeling and analyzing these concerns. This
results in enormous effort for model creation and maintenance.
In this paper, we present a vision of tailored quality modeling
and analysis by clearly separating several concerns using modular
metamodels and tooling.

Index Terms—domain-specific modeling language, metamodel,
simulation, analysis, quality, reference architecture

I. INTRODUCTION

Mobility, energy, and infrastructure strongly depend on
software which is not always of high quality. Critical per-
formance or security issues may arise from bad software
quality. During development and operations of a software-
intensive system, various concerns must be considered. Quality
properties are examples of concerns which may differ from
one project to another. For instance, performance is highly
relevant for a web shop whereas for a storage service security
may be more relevant. In the context of cloud computing
and data-intensive systems, quality properties like privacy can
only be assessed reasonably during operations which makes
development analysis widely unrewarding. Further, software
interacts with other domains (e.g., in Industry 4.0 scenarios),
like a business process or mechanics and electronics of an
automated production system, where only a subset of domains
may be relevant for a certain software project.

For representing a software-intensive system in form of a
model, a modeling language is required. Modeling languages
are often defined through a metamodel. A metamodel is a
model which defines the structure and characteristics of other
models. If a model conforms to a metamodel, the model is
considered an instance of the metamodel. Thus, a metamodel
is similar to a grammar, as it defines a language.

Currently, developers and operators apply different model-
ing and analysis tools for each of the concerns. Each tool re-
quires specific input models of different languages. Hence, the
input models are not integrated and require enormous manual
effort for creation and maintenance. Quality is mostly not rep-
resented in a domain-specific modeling language (DSML). The
commonly agreed DSML in software engineering, the Unified
Modeling Language (UML) [20], does not consider quality
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properties. Even its extensions, for example MARTE [19] or
UMLSec [16], are restricted only to single quality properties.
Languages and tools that comprise all possible concerns would
be very large, unhandy, and hard to maintain.

The vision proposed in this paper targets more flexibility in
Model-Driven Engineering (MDE) by using MDE adaptation
capabilities to tailor DSMLs and related tooling to specific
concerns. The paper addresses the concerns quality property,
domain, and lifecycle phase. We aim for improving efficiency,
scalability and reuse of modeling and analysis approaches by
clear separation of concerns, focusing the modeling effort only
on the relevant concerns, and enabling easy tool customization.
Sec. II presents a motivating example before the state of the
art is discussed in Sec. III. Our vision of tailored modeling and
analysis of various concerns is proposed in Sec. IV and applied
prototypically in Sec. V. The paper concludes in Sec. VI.

II. MOTIVATING EXAMPLE

We introduce the Common Component Modeling Example
(CoCoME) as a typical software system to exemplify different
configurations that may result from several concerns. We
also introduce a DSML to demonstrate limitations in current
modeling approaches for various concerns. CoCoME is a
community case study for software architecture modeling [12],
[8]. It resembles a trading system of a supermarket chain.
A software system like CoCoME has to consider several
concerns. Several quality properties must be satisfied such as
performance, reliability, maintainability, security and privacy.
CoCoME interacts with other domains – a business process
and an automated production system. Software systems are
typically involved in one or more business processes to satisfy
business goals. In an Industry 4.0 scenario, software systems
interact with automated production systems to enable cus-
tomized production. An automated production system consists
of software, mechanical, and electrical components. Another
concern that must be considered is the system’s lifecycle
phases, i.e. development and operations [7]. Fig. 1 depicts
three different configurations of concerns for CoCoME.

For representing CoCoME and the associated concerns in
form of models we need a metamodel of a DSML. A promi-
nent example is the UML metamodel. Another historically
grown metamodel is the Palladio Component Model (PCM)
[23] which we choose for modeling and analyzing CoCoME.



PE

RL
SEC

MA

PR

SW
EL

ME

BP

OP

DE

Quality

Life-
cycle Domain

Fig. 1. Colors Represent Three Different Configurations of Concerns for
Software-intensive Systems. Concerns Depicted in the Figure are Performance
(PE), Reliability (RL), Maintainability (MA), Security (SEC), Privacy (PR),
Mechanics (ME), Electronics (EL), Business Processes (BP), Software (SW),
Operations (OP), and Development (DE)

In contrast to UML, the PCM comprises elements for reflect-
ing analysis configurations and results. However, the PCM
is limited to modeling and analyzing software systems. So
we cannot model business processes or automated production
systems with the original Palladio approach. Extensions of the
PCM to model business processes have been proposed in [9].
Extensions for modeling mechanics and electronics are not yet
planned.

Analyzing the various quality properties related to Co-
CoME currently requires several tools. They all need specific
input models in different languages. For example, Queuing
Petri Nets may be applied for performance analysis. Markov
chains are used for analyzing reliability. Logic programming
languages like Prolog may be used for privacy constraint
checking. Consequently, high effort is required to create the
different models while large parts of the models represent the
same structure and behavior in different languages. Moreover,
the single models are hard to compare which results in incon-
sistencies. The example shows existing modeling capabilities
are not sufficient for various concerns. Putting all concerns into
a large metamodel is just as little a solution. To prevent large
and blown metamodels and enable tailoring the models and
tools to specific concerns a more modular specification and
composition of metamodels and related tooling is required.

III. STATE OF THE ART

Our work has intersections with three research areas –
metamodel modularization, quality modeling, and runtime
modeling.

Existing approaches to metamodel modularization do not
consider architectural characteristics for modularization and
do not support the interrelation between metamodel modules
and tooling. The underlying model in [1] captures all concerns
into orthogonal dimensions which are accessed through views.
CORE [26] specifies flexible software modules for model-
based and concern-oriented software reuse. Melange [5] and
MontiCore [18] reuse and customize legacy modules for creat-
ing new languages. An open topic is to provide modularization
concepts for DSMLs in direct interplay with related tooling.
First attempts came up for modular transformations [22] and
generators [15].

Quality modeling currently considers only single quality
properties in metamodels and lack configurability. Literature
reviews give an overview of quality modeling approaches (e.g.,
[17], [4]) for software systems. Quality properties are also
addressed in other domains like business processes (e.g., [3])
and automated production systems (e.g., [30]). In our previous
work, we developed an approach for modeling and analyz-
ing maintainability [24]. This approach was first restricted
to software systems. The approach has been extended for
modeling and analyzing maintainability of business processes
[25] and automated production systems [30]. Finally, the
approach has been generalized by providing a methodology for
domain-spanning maintainability analysis [11]. The promising
potential of a generic approach for modeling and analyzing
quality has already been recognized in earlier publications
[21]. First approaches for generic quality modeling came
up decades ago (e.g., [6]). They lack predictive analysis as
formal specifications are missing. Formal specifications of
quality have been proposed e.g. in [31]. Context-independent
modeling of quality is described in [14]. An open topic is using
commonalities between quality properties to make quality-
related annotations in metamodels configurable.

Runtime modeling distinguishes approaches for reusing de-
velopment models as foundation for reflecting systems during
operations and approaches for model extraction from scratch
using observations [10]. A comprehensive review of runtime
modeling approaches is given in [29]. An open topic is
reconfiguring models to changing concerns during operations
while keeping all development decisions.

Further, configuration and reuse are central to software
product lines and eco systems. While this research is limited
to the instance level, our work refers to the metamodel level.

IV. A VISION OF TAILORED
QUALITY MODELING AND ANALYSIS

Our vision is to provide a reference architecture for meta-
models that enables clear separation of several concerns in
quality modeling and analysis. Beyond considering different
quality properties the reference architecture comprises mul-
tiple domains related to software (i.e., business processes,
mechanics, and electronics), and life-cycle phases (i.e., de-
velopment and operations). Modelers will be enabled to cus-
tomize their tooling by composing modular specifications for
each of the concerns as desired for their project and run



transformations to create model editors and solvers. Prior
publications (cf. Sec. III) already raised the need for a generic
approach to quality modeling and analysis. A reference archi-
tecture for metamodels for quality modeling and analysis is an
ambitious goal. In the past it was assumed to be unattainable as
quality properties were considered to be too different in their
relation to system’s architecture and context. Consequently, a
generic approach was assumed to be too abstract for adequate
predictive analysis. Recent advances, however, lead to the
conclusion that the challenges can now be overcome as: (i)
Research on formalization of single qualities (e.g., [2]) resulted
in much deeper understanding of similarities which we can
use for the reference architecture. (ii) Research on mutual
quality impact between different domains (e.g., [9]) provides
starting points for specification of quality-dependent inter-
domain relations. (iii) A first reference architecture for single
qualities in a DSML for software systems [27] is starting
point to more generic investigation for different concerns. (iv)
Research on simulation-based quality analysis (e.g., [23]) is
foundation for a general approach to generic tooling. The
vision requires innovation in several areas as detailed hereafter.

Metamodel Modularization and Composition: Foundation
to the reference architecture is a concept for composition of
modular metamodels. If modular metamodels are not already
available, we first need to identify a set of dimensions and
elaborate criteria along which metamodels can be modularized.
One way is to specify dimensions based on characteristics
of metamodels. As we focus on metamodels for quality
modeling and analysis in various domains, dimensions like
paradigm, domain, quality specification, and quality analysis
appear natural. Prior work on dimensions is given in [27].
Then, existing model extension mechanisms (e.g., inheritance,
profiles, stereotypes, and aspects) for composing metamodel
modules created along the dimensions can be investigated and
mapped to composition operators. The operators are used to
build composable tooling by running transformations. Finally,
we can construct the reference architecture by exploiting the
concepts for metamodel modularization and composition.

Extensible DSML: The reference architecture then enables
the structured extension of existing DSMLs (e.g., PCM [23])
by comprehensive specifications of quality properties. In a
software DSML, systems are typically described as composi-
tions of components by connectors made explicit through in-
terfaces. These generic modeling concepts can be extended to
support the specification of various quality properties and their
context dependencies. Using modularization and composition
capabilities eases the extension of a software DSML to the
domains business process and automated production system
by composing the corresponding modular metamodels. Further
investigation is necessary on how the fundamental concepts
of a DSML (i.e., composition and connectors) known from
software modeling can be applied to other domains.

Reconfiguration for Operational Concerns: While building
upon the extensible DSML we can reconfigure development
models to changing concerns during operations while keeping
all development decisions. Reconfiguration cannot be limited

to DSMLs and tools but also affects monitoring probes re-
quired to observe the quality properties in the changed focus
when running the system.

Modular Tooling: For providing tools tailored to specific
concerns, the notion of modular metamodels for several con-
cerns must be expanded to modular construction of modeling
and analysis tools. Aforementioned concepts for metamodel
modularization and composition are foundation for modular
tooling. Explicitly specified dependencies between quality
properties of several domains mark the points where different
analytical and simulative solvers need to interact. Compos-
able tools for modeling and analysis can be built using the
composition operators. Foundations already exist for coupling
simulative solvers [9].

V. PROTOTYPICAL APPLICATION

This section gives concrete examples for metamodel modu-
larization and composition to demonstrate the applicability of
the reference architecture and tool modularization.

Application of the Reference Architecture: The PCM in
its current form is focused on single quality properties yet
does not reflect the various concerns related to our motivating
example (cf. Fig. 1). For each concern we must provide
specific metamodels as extensions to the PCM. For tailoring
the DSML to specific concerns, the PCM and its extensions are
divided into four dimensions – paradigm, domain, quality, and
analysis – along which the metamodels can be modularized.
Previous work limited to metamodels of software systems is
given in [27] and [10].

The four dimensions have been chosen as (i) they represent
generic characteristics of a DSML for quality modeling and
analysis. (ii) Their hierarchical nature eases the composition of
metamodels assigned to the single dimensions. In the reference
architecture the modularization dimensions are represented as
layers ordered hierarchically with respect to their dependen-
cies. Metamodel modules of one layer may only depend on
modules of the same or more foundational layers.

The modularization of the PCM according to the reference
architecture is depicted prototypically for the domains soft-
ware system and business process as well as for the quality
properties maintainability and performance in Fig. 2. The
figure shows a very simplified representation of the modular
PCM for visualization in this paper. Each rectangle reflects a
modular metamodel that may extend another metamodel and
can itself be extended. Arrows depict general relationships
between metamodel modules. Within a certain module the
relationship is implemented by composition operators between
the metaclasses of one and another module.

The paradigm layer (Π) defines the foundational concepts
without any semantics, e.g. componentization. Here the com-
ponent module and the activity module specify the core entities
to describe structure and behavior. Composition by connectors
is specified for both in the component composition and activity
composition module respectively. The data module provides
foundational concepts for specifying data flows such as source
and sink.
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Fig. 2. Prototypical Modularization of the PCM for Different Domains and Quality Properties

The domain layer (∆) extends Π by domain-specific se-
mantics. Here the software components and their interfaces are
specified within the software component module. The software
behavior module extends the software component module by
a behavior abstraction for software similar to flow charts. A
business process on an atomic level comprises activities either
conducted by human actors or machines (here the software
system) [9]. To specify a business process, the software
behavior module and the actor behavior module extend the
activity module. Thus, the software behavior module serves
as the connecting link between business process modeling
and software modeling. Moreover, the data object and data
type modules extend the generic data module by specifications
of data used in business processes and software services.
The modules on ∆ layer are used in subsequent layers for
performance and maintainability modeling.

The quality layer (Ω) defines quality properties, primarily
in form of second class entities which enrich the first class
entities of ∆. Quality properties on Ω are not derived by
analysis [27]. Here, Ω comprises modular metamodels to
reflect performance (light grey) and maintainability (dark grey)
properties. The performance module comprises metamodeled
performance properties which are specialized for software and
business processes in the extending modules. For example, the
software performance module specifies resource demands of a
service while the business process performance module reflects
execution time of a human activity [9]. The same structure
applies to the performance metrics module which comprises
abstract metrics to be specialized for software and business
processes.

The annotation module contains abstract specifications of
artifacts annotated to first class entities on ∆. The extending
modules specialize these artifacts, e.g. test cases for software
components [24] or training material for human activities [25].
Maintainability analysis in a PCM instance is conducted as
change propagation analysis using the KAMP approach [24].
Once a component or activity changes the test cases or training
material may change, too. Starting with a seed modification
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Fig. 3. Modular Base Editor and its Extension

changes propagate through instances of the entities on ∆
which may change instances of the entities on Ω. Elements to
specify this change propagation are contained in the change
propagation module and specialized by the extending modules.

The analysis layer (Σ) is required if models are used
for analysis or simulation. It comprises metamodels for de-
rived performance properties in the results module and the
simulation configuration in the configuration module. The
modification repository module reflects the origin of a change
and the result of a change propagation analysis.

Modularizing the PCM according to the reference architec-
ture is key for modularizing the related tooling as discussed
hereafter. Again we use the example of software systems and
business processes for demonstration.

Application of Modular Tooling: The modularized PCM and
all its extensions form a directed acyclic graph. The tooling
and all its extensions must mirror this structure. Next, we
discuss how model editors, simulative and analytical solvers –
that are closely related to metamodels – can be implemented
for modular metamodels.

Model editors allow for visualizing and modifying model
elements and thus are obviously related to metamodels. For
exemplifying the implementation of modular editors we build



upon the eclipse modeling framework and the Sirius editor
framework. Details on the implementation of the editors for
the Palladio tooling are given in [28]. The implementation of
modular editors is depicted schematically in Fig. 3. Rectangles
represent modular metamodels and modular tools. Arrows
reflect relationships between the modules or instances of the
modules. The relationships are labeled to further specify the
sort of relationship. Sirius offers the possibility to extend
a diagram representation by further layers without altering
the implementation of the base diagram intrusively. Anal-
ogously to a modular base metamodel and its extensions,
editor extensions are packaged in their own Eclipse plugins.
Applying the reference architecture, modelers can customize
their tooling by selecting plug-ins for the specific metamodel
modules and corresponding editors. Base metamodel in our
example is those for software systems which is composed of
metamodel modules on the layers Π to ∆ of the reference
architecture. The base editor comprises all features required
for visualizing and modifying elements of software systems.
The base metamodel is extended by metamodel modules
on the layers Π to ∆ for representing business processes.
Furthermore, metamodel modules on Ω layer extend the base
metamodel by performance and maintainability properties.
Therefore, modular editors for business processes and the
quality properties performance and maintainability extend the
base editor.

More sophisticated solutions are required for modular sim-
ulations. For modular simulations we sketch an online co-
simulation of a software system and a business process in
Fig. 4. We conduct a simulation of performance properties
as common in Palladio [23]. A discussion on benefits and
limitations of online co-simulation is given in our previous
work [9]. We have instances of two metamodels – one for
the software system and one for the business process – that
are composed of metamodel modules on the layers Π to ∆.
Additionally, the metamodels contain metamodeled perfor-
mance properties and metrics on Ω. Each metamodel has its
specific modular tooling – the simulative solvers – which are
interlinked by a coordinator. The coordinator is responsible for
time management and model synchronization to coherently
integrate the modular simulations. Simulation configuration
and results are specified on Σ. The simulative solvers assure
technical interoperability by providing an interoperability layer
for enabling the coordinator to interact with the simulations.
There already exists approaches to couple simulations based
on a common runtime infrastructure, e.g. High-Level Archi-
tecture [13], which can be applied to build a coordinator.

Coupling modular maintainability analyzes for software
systems and business processes again requires modular meta-
models and analysis tools. In contrast to simulation coupling,
there is no coordinator needed for synchronization. Consistent
notion of time is not required in modular maintainability
analyzes. Fig. 5 shows a metamodel for software systems
composed of modules on layers Π to ∆. The metamodel also
contains modules for artifact annotations and change propaga-
tion on Ω as well as for analysis results [24] on Σ. Instances of
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Fig. 5. Modular Maintainability Analyzes of Software Systems and Business
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this metamodel are analyzed by the modular software analysis
tool. The metamodel for software systems may be extended
by another metamodel to reflect business processes on Π to ∆.
This again contains modules for annotations on Ω and analysis
results on Σ. Instances of the business process metamodel are
analyzed by the modular business process analysis tool which
extends the software analysis tool. Due to the modular nature
we can decide whether to include the metamodel modules
specific to business processes or not. This allows for tailoring
metamodels and tooling to specific purposes.

Reconfiguring development models to changing concerns
during operations is also part of our research vision. With the
iObserve approach [7] we provide first attempts for updating
development models by operational observations to construct
runtime models. iObserve bridges the divergent levels of
abstraction in architectural models used in development and
operations. An architectural model is combined with monitor-
ing probes and used for source code generation. Monitoring
data related to source code artifacts is gathered during system
operation and is associated with architectural runtime model
elements. Thus, iObserve allows for reusing development mod-
els during operation phase while preserving design decisions.



The iObserve approach is described in detail in [7]. Metamodel
modularization and composition in this context is sketched in
[10].

Findings: The prototypical application of our modulariza-
tion and composition concepts for metamodels and tooling re-
vealed several findings as summarized hereafter. Based on the
PCM it is easy to see that a modularized metamodel according
to our reference architecture provides many benefits compared
to a metamodel without modular structure. Modularization
offers a well specified base for extension as demonstrated
for business processes and quality properties. Due to the
hierarchical structure, modelers merely need to understand
the modules they directly or indirectly extend. Side effects
of changes to modules are minimized. Thus, clear separation
of concerns allows modelers to focus modeling effort only on
concerns relevant for a specific project. The greatest advantage
for our research is that metamodel modules can be reused in
different contexts. This allows for tailoring the metamodels to
specific concerns. Tools can be customized easily for specific
metamodels as exemplified for model editors, simulative and
analytical solvers. Thus, the concepts proposed in this paper
contribute to more efficient, scalable and reusable modeling
and analysis of various concerns.

VI. CONCLUSION

In order to enable clear separation of several concerns we
proposed a reference architecture for metamodels used for
quality modeling and analysis. We sketched modular tool-
ing for model editors, analytical and simulative solvers. We
demonstrated the applicability of the reference architecture
and modular tooling to a historically grown metamodel for
software systems. Our prototypical application comprised the
quality properties performance and maintainability for the two
domains. Advantages of modular metamodels and tooling are
a well structured base for metamodel extension, minimization
of side effects in case of modification, focus only on relevant
concerns, reuse of modular metamodels and tools as well as
project-specific configuration of metamodels and tools.

In the future, we will continue the modularization of existing
metamodels and related tooling in several case studies to eval-
uate, expand and sharpen our approach. This includes further
investigation of technologies for metamodel composition and
simulation coupling.
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