
Object-oriented Software Modeling with Ontologies

Around
A Survey of Existing Approaches (SESE)1

Sohaila Baset

Information Management Institute

University of Neuchatel

Neuchatel, Switzerland

sohaila.baset@unine.ch

Kilian Stoffel

Information Management Institute

University of Neuchatel

Neuchatel, Switzerland

kilian.stoffel@unine.ch

Abstract—Despite the many integration tools proposed for

mapping between OWL ontologies and the object-oriented

paradigm, developers are still reluctant to incorporate ontologies

into their code repositories. In this paper we survey existing

approaches for OWL to OOP mapping trying to identify reasons

for this shy adoption of ontologies among conventional software

developers. We present a classification of the surveyed approaches

and tools based on the characteristics of their resulting artifacts.

We finally provide our own reflection for other potential reasons

beyond those addressed in the literature.

Keywords- Knowledge representation, Object Oriented

Programming, Software modeling, Ontologies; OWL; Language

transformation.

I. MOTIVATION

In software development, like in other engineering
disciplines, model sharing is always an encouraged practice. It
explains the industry’s constant pursuit of open standards for
modeling languages that allow for seamless incorporation of
models pertaining to a certain modeling school into another.
Ontological modeling is no exception. After a few predecessors,
Ontolingua [1] [2] and DAML+OIL [3], the Web Ontology
Language OWL [4] [5] is now the standard language for
developing and sharing ontologies in the semantic web as well
as many other fields such as the biomedical domain. In the
literature, there exist many attempts at integrating ontologies
into mainstream development. These attempts vary from loose
integration, i.e. accessing ontologies from a programming
language, to a more solid transformation from OWL ontologies
into software models.

The synergies between ontologies and software models
might seem so evident that in many cases an effortless mapping
between the two paradigms is taken for granted. This assumption
is further supported by a considerable number of proposed
development frameworks such as the Ontology Driven Software

1 DOI reference number: 10.18293/SEKE2018-198

Development ODSD [6] or the Ontology Oriented Programming
[7]. However, shifting a bit from the research state-of-the-art
into the circles of conventional software development, we
observe a different image than the one painted in research
papers. Despite the many integration tools proposed, developers
are still reluctant to incorporate ontologies into their code
repositories.

 In this paper, we try to examine the different reasons behind
the modest adoption of ontologies in software modeling. We
survey existing integration approaches and we deduce some of
their common characteristics with the goal of providing a
classification framework that researchers interested in the topic
can refer to. We then discuss some of the common challenges
reported in the literature before concluding with our own
reflection on the current state of OWL to OOP integration.

II. METHOD AND SCOPE

Given the qualitative nature of literature and the particular

topic in question, it is difficult to establish a procedure for

automatic classification of existing approaches. When selecting

papers to review, we started with three of the earliest papers as

seeds for collecting other related papers: OntoJava 2002 [8],

Kalynapur 2004 [9] and Knublauch 2004 [6]. Using Google

scholar, we harvested all papers that cited at least one of the

seed papers. This resulted in around 309 papers. We first

grouped similar papers in sets (e.g. papers originating from the

same author and/or proposing the same tool) and we chose a

representative paper of each group. We then used Google

citations metrics as an indicative measure of the impact of a

paper (especially for early published papers) to pivot our

manual inspection of papers. We dropped irrelevant papers such

as papers accentuating the application domain rather than the

integration approach. At the end of this process we retained 24

papers that we are surveying in this article. While by no means

an exclusive list of all papers in the field, the retained 24 papers

give a good indicator on the current state of research.

When reviewing papers, we focused on certain aspects like

the extent of integration and the challenges the authors faced

rather than focusing on the motivation behind each contribution

which was, more or less, common behind most of the reviewed

papers.

III. ONTOLOGY MAPPING

Ontologies, by design, are not intended as standalone

software units [10]. They need to be considered in the context

of an application that is responsible for accessing and

manipulating the concepts they represent. For that reason, it is

essential to provide some mapping between the content of an

ontology and the application environment in which it resides.

Scanning the literature, we can find different terms and

expressions denoting this sort of mapping. In this paper, we will

be using the term OWL to OOP mapping as an umbrella term

for integrating OWL ontologies to the object-oriented paradigm

in general. This includes both OOP modeling and programming

languages.

 We can differentiate between two main approaches for

OWL to OOP mapping. In the following sections we define

these two approaches, their main characteristics as well as their

sub-categories.

A. Passive OWL to OOP mapping

Passive OWL to OOP mapping depicts a generic and a rather

loose mapping between the content of an ontology and its

programming environment. Nevertheless, this approach is more

dominant for most applications on the semantic web. In this

approach, ontologies are integrated into the mainstream OOP

language simply by loading them into memory. Loading is

achieved by an ontology loader that transforms the ontology

from its syntactic form, e.g. RDF/XML, into an in-memory

representation. This in-memory representation can be an

Abstract Syntax Tree (AST) like in the case of OWL API loader

[11] [12], or an RDF triple-based structure like the one used in

Jena [13]. In either case, the loaded ontology is treated as data

and will reside in the data segment of the program allocated

memory, hence the name passive approach. This approach is

also less challenging as there are no constrains imposed by the

target programming language on the kind of data structures

used to encapsulate the concepts of the source ontology.

B. Active OWL to OOP mapping

In contrast to passive ontology mapping, the active mapping

approach will transform an ontology from its serializable format

into code statements in the target programming language. The

resulting ontology is then executable and belong to the code

segment of the allocated memory. This approach is more

challenging as it requires finding a native equivalent in the

target programming language for each axiom in the source

ontology; a requirement that happens to be problematic in many

cases as we will demonstrate in the following sections.

Active OWL to OOP mapping can itself be further classified

into static or dynamic [14]. In static mapping, the translation,

i.e. code generation from owl axioms (concepts, properties and

individuals) is done in one shot as a separated prior step. In this

case and depending on the target language support for dynamic

typing, type checking is mostly limited to compile time. Under

this category, we can classify the work done by Kalynapur [9]

and Zimmerman [15] to translate OWL ontologies into Java or

the .Net ontology compiler by Goldman [7].

Dynamic mapping, on the other hand, will also consider

reasoning possibilities about the executable ontology. By

dynamically translating OWL axioms at runtime, active OWL

to OOP mapping permits certain inference tasks like for

example entailing the class of an individual and assigning its

type at runtime. Under this approach we can find many tools

proposed in the literature and they all provide different degrees

of reasoning support. Here again we differentiate between:

 1) Tools that have a dynamic language as output and will

rely on its dynamic typing features. As examples we can name

SWCLOS [16], an OWL processor built on top of Common

Lisp Object System (CLOS) and Owlready [14], a python

module that beside relying on python interpreter for dynamic

typing, can also make use of an external reasoning component

(HermiT reasoner [17]) for further reasoning tasks. Under this

category as well, we classify the approach proposed by Babik

and Hluchy [18], an approach that uses python metaclasses to

represent OWL concepts and perform type checking

dynamically.

2) Tools that have a strongly-typed language as output but

can still offer some degree of flexibility for type changes at

runtime. Examples are the Sapphire tool [19] that relies on the

concept of cascade wrapping, or un-wrapping, of proxy objects

to handle type changes at runtime and the C# OntoJIT parsing

component [20] that exploits a mix of metaprogramming

techniques, namely C# reflection, with the dynamic

compilation support of CLR, the common language runtime of

.Net languages.

3) And finally, some of the proposed tools for dynamic

OWL to OOP mapping have gone to the extent of proposing a

Figure 1. A taxonomy of existing OWL to OOP mapping

Table 1- List of main tools and approaches for OWL to OOP mapping

Year Tool/Approach
Source
language

Target
language

Mode
Reasoning
support

2002 OntoJava [23] RDF(s) Java Active/Static None

2003 Goldman [7] OWl C# Active/Static None

2003 OWL API [11] OWL Java passive External

2004 Knublauch [6] OWL Java ___ ___

2004 HarmonIA [9] OWL Java Active/Static None

2004 Jena [13] OWL Java Passive External

2005 SWCLOS [16] OWL CommonLisp Active/Dynamic Limited

2005
RDFReactor
[24]

RDF/RDF(S) Java Active/Static None

2006
Atkinson et al.
[25]

OWL UML ___ ___

2006 Babik [18] OWL Python Active/Dynamic Limited

2006 Clark et al. [21] OWL Go! Active/Dynamic Supported

2007 ActiveRDF [26] RDF(s)
Ruby on
Rails

Active/Static None

2007
Athanasiadis
[27]

RDF / OWL JavaBeans Active/Static ___

2007 Owlet [28] OWL Java passive Supported

2008
Puleston et al.
[29]

OWL
Hybrid
OWL/Java

___ ___

2009 OWL2Java [15] OWL Java Active/Static None

2011 Sapphire [19] OWL Java Active/Dynamic Limited

2014 LITEQ [30] RDF(s) F# Active/Static Limited

2016 OntoJIT [20] OWL C# Active/Dynamic Limited

2017 Owlready [14] OWL Python Active/Dynamic Indirect

2017
Leinberger et al.
[22]

OWL DL Active/Dynamic Supported

dedicated programming language for that purpose such as Go!

[21] or the more recent language DL [22]. Figure 1. provides

a treelike representation of existing OWL to OOP mapping

approaches while table 1. provides a somewhat extended list of

main tools and approaches.

IV. SEMANTIC GAP

The most prominent challenge that is present in active OWL

to OOP mapping approaches is the semantic gap between the

ontological and object-oriented paradigms. The semantic

richness of ontological languages makes it very difficult to find

an OOP counterpart to express OWL semantic constructs. One

of the most obvious examples is perhaps the different

interpretation of class inheritance. OWL, or Description Logics

DL in general, has a looser interpretation of a class being the

subclass of another. In OWL, the term “rdfs:subclassOf” is the

manifestation of the subsumption operator of DL. An OWL

class is allowed to have many parent classes (named or

anonymous) as long as it is subsumed by all these parents. On

the other hand, pure OOP languages like Java or C# have a

stricter definition of class inheritance, OOP classes are disjoint

by design and that is why a class cannot be a subclass of two

different parent classes and multiple inheritance is, generally

speaking, not supported. Multiple inheritance is not the only

example of the missing semantic equivalence. A similar

argument goes for OWL axioms such as “owl:equivalentClass”,

“owl:sameAs” or “owl:disjointWith”.

Many of the approaches we surveyed did not attempt at

bridging this gap and have instead limited the mapping scope to

what is expressible in the target programming languages. On

the other hand, some of the active approaches proposed

interesting solutions ranging from a “Keep it simple, stupid”

approach of adding a meta-layer of code as a substitute for the

missing semantics in formal programming languages [20] to a

more sophisticated approach of stretching the expressiveness of

modeling in Java to that of OWL DL by enforcing some

constraints and design patterns [9]: Interfaces with shadow

classes for multiple inheritance, special listeners on property

accessors, type checking for domain and range properties, etc.

V. DISCUSSION

One of the main motivations behind most of the work

surveyed in this paper is the difficulty of manipulating

ontologies in mainstream software development and the

scarcity of options for an ontology programming interface.

Nevertheless, as we can see from earlier sections, a

retrospective scan on work done in this area revealed a different

story. In fact, there exist many options both for accessing or

integrating ontologies in an OOP paradigm, yet we still did not

witness ontologies spanning new development territories.

Below we try to list some of the potential reasons for this shy

adoption of ontologies beyond what has been proposed in the

literature:

1) Too many options: The real problem developers may

have with integrating ontologies is not necessarily the lack of

ontology programming interfaces – there exist well many – but

rather the lack of consensus on a standardized option. Unlike

the case of ontological modeling where OWL is “the language”

and Stanford protégé is “the editor”; when it comes to

integrating ontologies as software models, there exist many

options but none of them has reached a good level of maturity

to gain community consensus. As a result, the developer has to

go through the hassle of sorting them out before being able to

judge on the pertinence of any of these options; a task that is not

affordable in most of today’s agile software projects.

2) Paradigm shift: Although largely addressed in the

literature, the paradigm shift the developer has to go through

when integrating ontologies is still present. Providing tool

support is one thing, but it takes much more to overcome the

conceptual switch behind ontological modeling. Translating

ontologies into a program does not change the fact that

ontological modeling is explicit and most of the time based on

an Open World Assumption OWA in contrast to implicit

closed-world modeling in UML and OOP languages.

3) Legacy projects: From a pure practical point of view,

introducing ontologies to mainstream software projects is

especially challenging when there is some legacy code to

maintain and respect; which is the case of the majority of

software projects in large scale organizations.

4) Resistance to change: For most “right-wing” software

engineers, adopting ontological approaches, or generally

speacking linked data approaches from the semantic web,

means, in a way or another, shifting towards a more volatile

domain model. A move that may not be perceived as a positive

step in the circles of software engineering with strong

preferences for tidy and well-engineered domain models. It

provokes a lot of philosophical discussions similar to the

dynamic vs. static-style of coding in languages that permits the

two possibilities. Eventually, such a change may very well be

welcome, but just when the right time comes.

VI. CONCLUSION

In this paper, we surveyed the literature for existing approaches

for mapping between OWL ontologies and object-oriented

programming paradigms. We presented a classification of the

surveyed mapping tools based on the characteristics of their

resulting artifacts. We highlighted some of the common

challenges encountered in the literature before finally providing

our own reflection on why software engineers are still reluctant

to incorporate ontologies into their code repositories.

Unfortunately, as we mentioned before, most of the tools and

prototypes, especially the early ones, did not yield a concrete

body of use cases in software industry. It would be interesting

therefore to see how the more recent propositions will evolve

given the re-awaken interest of the semantic web in the last few

years.

VII. REFERENCES

[1] T. R. Gruber, "A translation approach to portable ontology

specifications," Knowledge acquisition, vol. 5, pp. 199-220,

1993.

[2] A. Farquhar, R. Fikes and J. Rice, "The ontolingua server: A tool

for collaborative ontology construction," International journal

of human-computer studies, vol. 46, no. 6, pp. 707-727, 1997.

[3] I. Horrocks and others, "DAML+OIL: A Description Logic for

the Semantic Web," IEEE Data Eng. Bull., vol. 25, pp. 4-9,

2002.

[4] I. Horrocks, P. F. Patel-Schneider and F. Van Harmelen, "From

SHIQ and RDF to OWL: The making of a web ontology

language," Web semantics: science, services and agents on the

World Wide Web, vol. 1, pp. 7-26, 2003.

[5] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz

and others, "Owl 2 web ontology language: Profiles," W3C

recommendation, vol. 27, p. 61, 2009.

[6] H. Knublauch, "Ontology-driven software development in the

context of the semantic web: An example scenario with

Protege/OWL," in 1st International Workshop on the Model-

Driven Semantic Web (MDSW2004), 2004.

[7] N. M. Goldman, "Ontology-oriented programming: static typing

for the inconsistent programmer," in International Semantic

Web Conference, Florida, 2003.

[8] A. Eberhart, "OntoJava--Applying Mainstream Technology to

the Semantic Web," in Workshop on Semantic Web-based E-

Commerce and Rules Markup Languages at the ICEC, Vienna

(Austria), 2001.

[9] A. Kalyanpur, D. J. Pastor, S. Battle and J. A. Padget,

"Automatic Mapping of OWL Ontologies into Java.," in SEKE,

2004.

[10] Wache, Holger and Voegele, Thomas and Visser, Ubbo and

Stuckenschmidt, Heiner and Schuster, Gerhard and Neumann

and Holger and Hübner, Sebastian, "Ontology-based integration

of information-a survey of existing approaches," in IJCAI-01

workshop: ontologies and information sharing, Seattle, USA,

2001.

[11] S. Bechhofer, R. Volz and P. Lord, "Cooking the Semantic Web

with the OWL API," in International Semantic Web Conference,

2003.

[12] S. K. Bechhofer and J. J. Carroll, "Parsing owl dl: trees or

triples?," in Proceedings of the 13th international conference on

World Wide Web, 2004.

[13] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne

and K. Wilkinson, "Jena: implementing the semantic web

recommendations," in Proceedings of the 13th international

World Wide Web conference on Alternate track papers \&

posters, 2004.

[14] J.-B. Lamy, "Owlready: Ontology-oriented programming in

Python with automatic classification and high level constructs

for biomedical ontologies," Artificial intelligence in medicine,

vol. 80, no. 2017, pp. 11-28, 2017.

[15] M. Zimmermann, "OWL2Java: a Java Code Generator for

OWL, website," -, -, 2009.

[16] Koide, Seiji and Takeda and Hideaki, "OWL-Full reasoning

from an object oriented perspective," in Asian Semantic Web

Conference, Beijing, 2006.

[17] Shearer, Rob and Motik, Boris and Horrocks and Ian, "HermiT:

A Highly-Efficient OWL Reasoner.," in OWLED, Washington,

DC, 2008.

[18] M. Babik and L. Hluchy, "Deep integration of python with web

ontology language," in In Proceedings of the 2nd Workshop on

Scripting for the Semantic Web, 2006.

[19] Stevenson, Graeme and Dobson and Simon, "Sapphire:

Generating Java runtime artefacts from OWL ontologies," in

International Conference on Advanced Information Systems

Engineering, Gdańsk, Poland, 2011.

[20] S. Baset and K. Stoffel, "OntoJIT: Parsing Native OWL DL into

Executable Ontologies in an Object Oriented Paradigm," in

International Experiences and Directions Workshop on OWL,

2016.

[21] Clark, Keith L and McCabe and Frank G, "Ontology oriented

programming in Go!," Applied Intelligence, vol. 24, no. 3, pp.

189--204, 2006.

[22] M. Leinberger, R. Lämmel and S. Staab, "The essence of

functional programming on semantic data," in European

Symposium on Programming, Uppsala, Sweden, 2017.

[23] A. Eberhart, "Automatic generation of java/sql based inference

engines from rdf schema and ruleml," in International Semantic

Web Conference, Sardinia,Italy, 2002.

[24] M. Völkel and Y. Sure, "RDFReactor-from ontologies to

programmatic data access," in Poster Proceedings of the Fourth

International Semantic Web Conference, Galway,Irland, 2005.

[25] C. Atkinson, M. Gutheil and K. Kiko, "On the Relationship of

Ontologies and Models.," WoMM, vol. 96, pp. 47-60, 2006.

[26] E. Oren, R. Delbru, S. Gerke, A. Haller and S. Decker,

"ActiveRDF: object-oriented semantic web programming," in

Proceedings of the 16th international conference on World Wide

Web, 2007.

[27] I. N. Athanasiadis, F. Villa and A.-E. Rizzoli, "Ontologies,

JavaBeans and Relational Databases for enabling semantic

programming," in Computer Software and Applications

Conference, 2007. COMPSAC 2007. 31st Annual International,

2007.

[28] A. Poggi, "OWLET: an object-oriented environment for OWL

ontology," in Proceedings of the 11th WSEAS International

Conference on Computers, Agios Nikolaos, Crete Island,

Greece, 2007.

[29] C. Puleston, B. Parsia, J. Cunningham and A. Rector,

"Integrating object-oriented and ontological representations: a

case study in Java and OWL," in International Semantic Web

Conference, 2008.

[30] M. Leinberger, S. Scheglmann, R. Lämmel, S. Staab, M.

Thimm and E. Viegas, "Semantic web application development

with LITEQ," in International Semantic Web Conference, Riva

del Garda, Italy, 2014.

[31] C. Atkinson and T. Kuhne, "Model-driven development: a

metamodeling foundation," IEEE software, vol. 20, pp. 36-41,

2003.

