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ABSTRACT

Latent Direchlet Allocation (LDA) is a statistical topic mod-
eling approach that has been used to support several soft-
ware engineering activities. The main assumption is that
LDA offers a unique insight into the semantic content of
software systems, thus revealing otherwise unseen relations
between software artifacts. However, a main problem when
dealing with LDA is the complexity of its output. In par-
ticular, the numerical probabilistic distributions produced
by LDA to represent topics and documents are not intuitive
to understand and rationalize. To address this problem, in
this paper we present a topic modeling based approach to
visualize software systems based on LDA. We also present
several visualizations to represent the basic elements of LDA
including words, topics, and documents. These different ba-
sic views are combined through a set of integration links to
enable users to effectively explore software systems by sup-
porting knowledge discovery at different levels of abstrac-
tion. We also demonstrate how the topic modeling based
visualization approach can provide support to several soft-
ware engineering activities such as program comprehension,
software clustering, and code evolution analysis.
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1. INTRODUCTION

Software visualization can be defined as the mapping from
software artifacts to graphical representations [16]. The
main assumption is that using graphical representations of
code structures reduces the cognitive effort required for un-
derstanding and navigating large and complex software sys-
tems [22]. However, extracting and visualizing meaningful
information from source code is a non-trivial task [14, 18].
This can be explained based on the fact that the lexicons
and syntax of programming languages is inherently more
constrained than natural language [21]. Therefore, to be
effectively visualized, the complex textual content of soft-
ware systems has to be first reduced down to lower dimen-
sional representations, while retaining as much of the origi-
nal meaning of the text as possible [25]. These reduced rep-
resentations can then be mapped into basic graphical objects
to produce views of the system at higher levels of abstrac-
tion. A reductive transformation that has gained a con-
siderable attention in Natural Language Processing (NLP)
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related tasks is Latent Dirichlet Allocation (LDA) [5]. Us-
ing LDA, the dimensionality of a large text corpus can be
reduced down into a set of meaningful latent topics, where
each topic consists of a group of words collectively repre-
senting a cohesive domain concept. In particular, LDA is an
unsupervised probabilistic approach for estimating a topic
distribution over a text corpus. The main assumption is
that documents in the text collection are generated using
a certain statistical generative model as random mixtures
over latent topics. LDA has been successfully applied to
several software engineering activities. However, a main
problem when dealing with LDA is the complexity of its
output. In particular, the numerical probabilistic distribu-
tions produced by LDA are not intuitive to understand and
rationalize. This has motivated researchers to start looking
for alternative ways to represent LDA’s output [6, 13, 24].

Motivated by these observations, in this paper we pro-
pose a collection of visualization techniques, which are often
used to represent topic models in NLP, to visualize software
systems. These visualizations include combinations of basic
and integrated views that facilitate effective navigation and
comprehension of software systems. The rest of the paper is
organized as follows. Section 2 briefly introduces LDA and
our preprocessing analysis. Section 3 the various suggested
visualization techniques of LDA. Section 4 presents visual-
ization supports for clustering evaluation and code evolution
analysis. Finally, Section 5 presents the conclusion and fu-
ture work.

2. LATENT DIRICHLET ALLOCATION

LDA takes the documents collection D, the number of top-
ics K, and a and 8 as inputs. Each document in the corpus is
represented as a bag of words d =< w1, wa, ..., w, >. Since
these words are observed data, Bayesian probability can be
used to invert the generative model and automatically learn
¢ values for each topic t;, and 6 values for each document d;.
In particular, using algorithms such as Gibbs sampling [23],
an LDA model can be extracted. This model contains for
each t the matrix ¢ = {¢1,d2,...,0n}, representing the
distribution of ¢ over the set of words < wi,wa,...,wn >,
and for each document d the matrix § = {601,02,...,0,},
representing the distribution of d over the set of topics <
t1,t2,...,tn >.

3. CODE VISUALIZATION USING LDA

This section describes the various visualization techniques
used to represent the different aspects of the latent topic
structure of software systems produced by LDA. We start



Table 1: Experimental Datasets

Dataset VER. NO. CLASS LANG. LOC COMMENTS
1 Trust 15.0 299 Java 20.7K  9.6K
Apache Ivy  2.3.0 451 Java 499K 16.7K

WDS 3.5.1 521 Java  44.6K 10.7K

abloader sched u Ie physical doctor clear

conflict accept

checkup hotd appointment time builder

pend general req

duration bin

start minute

Figure 1: Tag cloud for a sample topic from the
1Trust system

by describing basic views used for representing the basic
units of LDA including words, topics, and documents. We
then describe more sophisticated views where multiple basic
views are integrated to represent the whole system at higher
levels of abstraction.

3.1 Datasets

To start our analysis, we used three software systems from
different application domains. Table 1 describes the charac-
teristics of these systems including: the size of the system
in terms of lines of source code (SLOC), lines of comments
(cLoc), implementation language (LANG.) version (VER.)
and number of classes (CLS).

3.2 The Topic View

This view emphasizes topics as the main unit of visualiza-
tion. The topic view allows users to visually explore a topic
as a collection of weighted words organized in a tag cloud.
Tag clouds are visually-weighted renditions of collections of
words (tags), extracted from a certain corpus, where more
important words are depicted in a larger font size than less
important words [17]. Importance can be quantified based
on different schemes such as words counts, or the TFIDF
weights of words. Tag clouds are widely used as an effective
method to quickly find relevant information on the Web [3].

In our analysis, each topic is represented as a separate
tag cloud. Each tag in the cloud represents a word from
the topic-word distribution matrix. In particular, the size
of the word in the cloud is proportional to its probability
in the topic word matrix P(w;,t) i.e,. words with higher
probability are shown in larger font. Fig. 1 shows a tag
cloud generated for a topic from the iTrust dataset. The
topic is represented by 20 terms. The size of the different
words <appointment, schedule, duration, ..., etc.> in the
tag cloud in Fig. 1 shows that this particular topic describes
the domain concept of scheduling a patient appointment.

3.3 The Document View

This view emphasizes artifacts as the main unit of visu-
alization. In particular, each artifact (d) in the system is
represented using a combination of graphical and textual
components including:

e Topics chart: A standard pie chart which shows the
topic distribution of each document. In particular,
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Figure 2: Document view of AddDruglListAction.java

each sector of the pie represents a topic in the document-
topic matrix. The size of the sector is proportional to
the P(t;,d) of that topic. A unique color is used to
represent each topic [6].

e Topics list: A list of color-coded topics arranged in a
descending order based on their P(¢;, d) value. The top
three words of each topic are used as representatives
of the topic; 3-5 terms were found to decently convey
the main theme of the topic [7].

e Document text: A main window that shows the actual
artifact (i.e., the actual source code of the class).

e Related artifacts: A list of other artifacts in the sys-
tem ranked in a descending order based on their top-
ical similarity to the main document. In particular,
The similarity between documents di and d2 can be
measured by the similarity between their correspond-
ing topic distributions, using techniques such as the
cosine similarity, or approaches such as the Kullback-
Leibler (KL) divergence measure [26].

Fig. 2 shows a document view window for the class Ad-
dDruglListAction. java from the ¢Trust dataset. The view
shows that the topic <drug, home, prescribe> is the dom-
inant topic in this class. It also shows that the class Ad-
dDruglistActionTest. java is the most topically similar class
to AddDrugListAction. java.

3.4 The Document-Topic View

This visualization provides an in-depth look into the topic
distribution of each artifact in the system. In particular,
stacked charts are used to represent the document-topic ma-
trix of each document. Using stacked charts, the contribu-
tion of several data items into a total are represented as bars
stacked one on top of, or next to, each other. In LDA, the
width/height and color of each bar represents the P(t;,d)
of each topic representing the document d. Stacked charts
are known to be effective and intuitive for comparing data
distributions [11]. In our analysis, the main objective of
this particular view is to enable the comparison of the doc-
uments at topic level. Comparing the topic distribution of
documents is essential in several software engineering ac-
tivities such as code evolution analysis [2] and traceability
recovery [27].

3.5 The System-Topic View

This view is used to represent the whole system in a single
view. We adopt distribution maps as the main visualization
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Figure 3: A topic distribution map of Apachi Ivy

for this view [10]. This visualization is composed of large
rectangles containing small squares. Each rectangle repre-
sents a system folder or a package, and each square repre-
sents an artifact within that folder. The color of the square
represents the dominant topic of the artifact. Distribution
maps are suitable for showing the conceptual content of a
corpus. In particular, they are good for visually represent-
ing metrics as such focus, or how well-encapsulated or cross-
cutting a topic is, and spread, or the parts of the system in
which this topic is present as a dominant topic [10].

Fig. 3 shows a partial distribution map for the Apachy_Ivy
dataset. In particular, the map shows how some topics are
spread over multiple folders, dominating multiple artifacts in
each folder. It also shows how some other topics are focused
(well-encapsulated) within one folder only.

3.6 The Integrated View

The integrated view combines several basic views to pro-
duce a full picture of the system, or one integrated visu-
alization experience that allows users to navigate through
the system’s multiple views at different levels of abstrac-
tion. This view is enabled through a number of integration
links that connect the different basic views of the system.
Technically, such links could refer to a mouse click; in other
implementations such as Web platforms, hyperlinks could
be adopted. To integrate our views, several links have been
added to the system. These links are shown in Fig 4. Such
links include:

e In the system-topic views (i.e, distribution map), there
is a link between each artifact’s graphical object (square)
and the document view of that artifact. An additional
secondary link (right-click) is also available to show
the tag cloud of the artifact’s dominant topic.

e In the document view, a click on a topic in the list of
document’s topics lunches the tag cloud of the topic.
Also, a click on any of the artifacts in the list of topi-
cally similar documents will lunch that artifact’s doc-
ument view.

e Links have also been added to the stacked charts views,
where there is a link between each bar in the chart and
the tag cloud of the topic represented by that bar.

The main objective of the integrated view is to facili-
tate effective program comprehension by enabling different
comprehension strategies including top-down and bottom-
up comprehension [19]. In particular, under the top-down
strategy, software developers utilize their knowledge about
the domain to build a set of expectations that are mapped
onto the source code [19]. The top-down comprehension
process starts from the distribution map view of the system,
where developers who are usually familiar with the domain,
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Figure 4: Integrated View

can explore the system as one unit. Such knowledge can then
be propagated through the integration links down to the ba-
sic views of individual artifacts and topics, where users can
investigate the source code of individual classes in the doc-
ument view and the word distribution of each topic through
the topic’s tag cloud.

On the other hand, a bottom-up comprehension approach
adopts a divide and conquer strategy. In particular, the
comprehension process starts from the source code, where
developers who are often unfamiliar with the domain can
then gradually build a full understanding of the system.
This process is also enabled by moving to higher abstrac-
tion levels through the integration links, starting from basic
document’s and topic’s views, up to the system’s distribu-
tion map to produce a full understanding of the system from
the bottom-up.

4. VISUALIZATION SUPPORT

4.1 Clustering Evaluation

LDA has been intensively used as a mechanism for cluster-
ing software systems. In particular, the topic distributions
of artifacts are used as main features to group topically re-
lated artifacts into smaller, more conceptually cohesive, and
thus, easier to understand subsystems [12, 21]. However,
finding best LDA clustering settings (e.g., number of topics,
a, ¢, clustering algorithm to use, number of clusters, and
the distance function) that best fit a certain task is often
described as an NP-complete problem [28].

Several internal and external methods have been proposed
in the literature to estimate optimal clustering parameters.
Internal methods use a fitness function that captures the
twin objectives of high cohesion and low coupling to help
determine the boundaries between clusters [8]. On the other
hand, external measures (e.g., MoJo [29]) use an authorita-
tive decomposition as a reference point to assess the quality
of generated clusters. However, such methods reduce the
overall evaluation into a single number, hiding valuable in-
formation about the nature of the problem. To that end,
visualizing clustering results can help to assimilate such in-
formation, providing insights into the operation of the differ-
ent clustering algorithms, and their sensitivity to different
clustering parameters, such as number of clusters, member-
ship, and boundaries. [9]

In the following example, we demonstrate how topic mod-
eling based visualizations can be used to visually compare
clustering algorithms. In particular, we experiment with
Complete Linkage (CL) and Single Linkage (SL), two Hi-
erarchical Agglomerative Clustering (HAC) algorithms that
have been showing consistent performance in several soft-
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Figure 5: Visually comparing the clustering results of SL and CL algorithms on iTrust

ware engineering activities [1]. Technically, both SL and
CL start from individual items in the cluster space, where
each item is treated as a separate cluster, iteratively merging
items based on a certain update rule, until the whole system
is grouped into a single cluster. This process produces a hi-
erarchy of clusters, or a dendrograph, of the whole process.
Formally, SL and CL can be defined as follows:

SL = min{d(a,b) :a € A,b € B}. (1)
CL = max{d(a,b) : a € A,b € B}. (2)

In these equations, d(a,b) is the distance between data
objects a and b, defining the linkage (merging) criteria for
clusters A and B. For instance, SL merges the two clus-
ters with the smallest minimum pairwise distance, and CL
merges the two clusters with the smallest maximum pairwise
distance. Cosine similarity is used to measure the topical
distance between the different artifacts.

We apply LDA using K = 20 to our iTrust dataset. We
then cluster the system’s artifacts using both CL and SL
algorithms. We set both algorithms to produce 20 clus-
ters. We then use MoJoFM to assess the performance of
both algorithms by comparing their output to the optimal
decomposition [29]. An optimal decomposition is the one
that groups documents that match in their dominant topics
into separate clusters. Since we produced 20 topics for the
system, the optimal decomposition consists of 20 clusters.

MoJo measures the distance between two decompositions
of a software system by computing the number of Move and
Join operations to transform one to the other. MoJoFM
is basically a normalized MoJo that produces a number in
the interval [0, 1]. MoJoFM value of 1 means that the al-
gorithm is optimal. Applying MoJoFM on our clustering
output returns values of < 87.71%,43.1% > for CL and SL
respectively, giving a clear indication of the superiority of
CL over SL; however, no other information is provided. To
reveal such information, we refer to our distribution maps to
visually compare the output of the two algorithms. Results
are shown in Fig. 5. Each map shows how each cluster-
ing algorithm divided the 299 artifacts of the iTrust system
among the 20 clusters.

Fig. 5 shows that SL produced unbalanced clusters, scat-
tering some of the topically related artifacts all over the clus-
tering space. This behavior of SL can be explained based
on its update rule, SL uses the smallest minimum pairwise

Table 2: Clustering Results

Algorithm MoJo  Avg. Spread Avg. focus
Complete Linkage 87.71% 1.35 82%
Single Linkage 43.1% 2.35 48%

distance between cluster items as the new distance in the
newly formed clusters. Therefore, when SL is used, bigger
clusters tend to be grouped together rather than incorporat-
ing singletons (clusters with only one element). As a result,
SL tends to create a small number of large, isolated clusters,
in addition to a number of singletons. In constant, CL uses
the smallest pairwise maximum distance to merge clusters,
thus pushes clusters apart, creating smaller, more balanced,
and highly cohesive clusters.

To confirm our visual assessment, we refer to the focus
and spread metrics associated with distribution maps. Such
values, averaged over all the topics in iTrust, are shown in
Table 2. The spread values show that using SL, artifacts
sharing same dominant topic are spread over an average of
2.35 clusters, while in CL, the average spread is 1.35, giving
an indication of the high encapsulation of topically related
artifacts in CL clusters. Similarly, we calculate the focus
values of both algorithms using the following formula:

focus(t,P) = Z touch(t, p;) * touch(p;,t) (3)

where touch(t,p;) is the ratio of the number of artifacts in
p; with dominant topic ¢ to the total number of artifacts in
ps, and touch(ps,t) is the ratio of the number of artifacts
in p; with dominant topic t to the total number of artifacts
in the system with a dominant topic ¢ [10]. Focus values
show that SL was less successful in producing cohesive clus-
ters (focus = 48%), producing larger clusters that contain
multiple sets of topically related artifacts. In contrast, CL
produced more cross-cutting clusters (focus = 82%).

In general, using our distribution map view, it can be visu-
ally concluded that CL was more effective than SL in divid-
ing the system’s artifacts into more topically cohesive and
more balanced clusters. In particular, visualization helps
users to visualize the different metrics and the meaning of
these numbers, providing an effective alternative for illus-
trating the impact of the various clustering parameters, and
facilitating a real-time comparison of different clustering re-
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Figure 6: Visually analyzing the change in one of the WDS system’s folders

sults. For instance, the concentration of colors inside boxes
gives an indication of high encapsulation and clear cross-
cutting. In addition using the integrating links, the user can
get a better understanding of the results, for example why
certain artifacts with different dominant topics tend to be
grouped together.

4.2 Code Evolution Analysis

Several studies have reported that topic models can be
effectively used for the purposes of describing software evo-
lution [20]. The main assumption is that the changes in the
latent topic structure of a software system are reflective of
actual changes made by developers, for example feature in-
tegration or refactoring milestones [27]. In particular, such
events can be detected by applying LDA to different releases
of the system and monitoring the changes in a system’s topic
structure over time.

For instance, the sensitivity of LDA to software evolu-
tion can be quantified through matching individual artifacts
based on their document-topic distribution, or comparing
how the topic-word matrices of the different topics in the
system have changed over time using well-defined evolu-
tion metrics [27]. However, similar to software clustering,
such analysis can reveal only a little about the nature of the
change [15]. For instance, other evolution-related informa-
tion such as what specific types of change took place, and
which artifacts have been affected, is often invisible to such
metrics. To that end, visualization can help developers and
software engineers to uncover such information by providing
a more in-depth look into the different releases of the sys-
tem overtime. In particular, to visualize a software change,
a time dimension is integrated into the different views of the
software system [15]. For example, to visualize system arti-
facts’ evolution, we add a time dimension to our document-
topic view. Similarly, a time dimension is integrated into
the system-topic view of the system to visualize changes in
the system as a whole.

To demonstrate this process we run LDA over two releases
of the WDS dataset. In particular, we work with releases
1.0 and 3.0 of the system as milestone changes have been
reported between these two particular releases. In order to
keep a consistent color assignment, if two topics generated
for different releases of the system share the top five domi-
nant words, then the same color is used. Using our zooming
feature, we produce distribution maps of one the system’s
sub-folders (reporting) in both releases of the system. In

release 1.0, this particular folder contains two sub folders in-
cluding controllers and devtools. In release 3.0 the same
folder now includes the additional folder dataUtilities.

Distribution maps, shown in Fig. 6, show that artifacts in
folder devtools remain unchanged between releases. How-
ever, a drastic change in a portion of the artifacts in folder
controllers has happened. To understand this change we
take a look at the stacked chart of the system class Pub-
licJobController.Java in both releases. The charts show
that in release 1.0 the topic <bean, job, data, control> was
dominating this class. This topic describes functionalities
related to job requirements and database connections. How-
ever, in release 3.0 this class is now dominated by the topic
< job, contact, edit, transact >, and the data related terms
are no longer present. In an attempt to understand this
change we inspect the new folder dataUtlities that has
emerged in the folder reporting in release 3.0. All arti-
facts in this folder are dominated by the same topic. It
can be inferred from the word distribution of this topic
< data, server, control, transaction > that this folder basi-
cally contains database related functionalists. This suggests
that probably EXTRACT CLASS [4] refactoring has taken
place somewhere between releases 1.0 and 3.0, where most of
the database related features have been moved and encapsu-
lated into the new folder dataUtlities, leaving artifacts in
folder controllers with only job-controlling related func-
tions.

This example demonstrates how a change in the system
was made immediately obvious by our views, allowing users
to not only identify the change, but also provide insight into
the nature of the change.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a set of visualization techniques
to represent source code using topic models. The main as-
sumption is that using graphical representations to represent
complex source code structures helps to reduce the cognitive
load when comprehending a software system. In particular,
we used LDA as an effective dimentionality reduction tech-
nique to reduce the inherently complex textual content of
source code into a set of semantically cohesive topics that
can be effectively visualized. Such topics are represented
through several views that have been used in a wide range
of NLP applications. These views provide graphical repre-
sentations for the different numerical distributions produced
by LDA including words, topics, and documents. These dif-



ferent basic views are integrated through a set of links to
enable users to quickly browse through the system modules,
exploring relationships between artifacts that might other-
wise go unnoticed. In addition, we presented how the topic
modeling based visualization can provide support to soft-
ware engineering scenarios such as program comprehension,
code clustering, and evolution analysis. In the future we plan
to implement our proposed visualizations through a work-
ing prototype which provides several options to adjust the
visualization settings and to navigate through the different
views of the system.
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