Learning API Suggestion via Single LSTM
Network with Deterministic Negative Sampling

Jinpei Yan, Yong Qi, Qifan Rao, Hui He
School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
Emails: yjp2013@stu.xjtu.edu.cn, qiy @xjtu.edu.cn, asd5510@stu.xjtu.edu.cn, huihe @xjtu.edu.cn

Abstract—Modern programming relies on a large number of
fundamental APIs, but programmers often take great effort
to remember names and the usage of APIs when coding, and
repeatedly search the related API documents or Q&A websites.
To improve the programming efficiency, we present a Java API
suggestion approach called APIHelper which learns API sequence
pattern via the Long Short-Term Memory (LSTM) network, then
provides API suggestion based on the program context. Previous
related works use statistical methods based on Hidden Markov
Model (HMM), which require establishing one specific model for
each class. We propose Determininstic Negative Sampling (DNS)
to make API suggestion for a large number of Java classes by
one single end-to-end LSTM. To verify this approach, we make
API suggestion for 50,000 Java classes and evaluate it with top-K
accuracy. Results show that APIHelper outperforms other prior
works both on accuracy and computation efficiency.

Keywords—API suggestion; Long short-term memory; Nega-
tive sampling

I. INTRODUCTION

Modern programming languages continue to evolve and
introduce more and more high level APIs/methods/functions,
while increasing third-party libraries are available for pro-
grammers to use. The constantly optimized and rich APIs
allow programmers to achieve demo codes easily for different
kinds of requirements, but give programmers a great challenge
to memorize all these APIs. Programmers often use multi-
ple programming languages, and each programming language
involves a large number of grammar rules and APIs. Some
programming languages, like Java, have a large number of very
complex and long API names, which may be very similar. A
simple example, Java offers a lot of classes for I/O operations,
such as FilelnputStream(), ByteArraylnputStream(), CharAr-
rayReader(), InputStream(), StringReader(), StringWriter(),
PrintStream(), PrintWriter(), BufferedInputStream(), Buffered-
OutputStream(), BufferedReader(), BufferedWriter().

For this problem, some current IDEs are integrated with
API tip tools, such as the one in Eclipse (shown in Fig.1).
But these kinds of tools have a common problem that only
shows all API methods in the alphabetical order containing
the current Java class. Since a Java class often has a lot of
methods, programmers still need to look over the list to find
the right one in a bunch of similar method names.

To this end, we put forward a new approach of API
suggestion called APIHelper to complete APIs pattern learning
for full Java classes through the Long Short-Term Memory
(LSTM) network. Our approach has two advantages over

DOI reference number: 10.18293/SEKE2018-193

arr = (line+" ").split(",");
raw = arr[zz].}eplace(")

$#(raw. Tength(|| © .(cm(al(Slrin.g arg0) : String - String 2
@ intern() : String E
key = rsaD| @ replace(char arg0, char arg1) : String - Strir |
latitude=2|| e replace(CharSequence arg0, CharSequence argl) : Str
if(key.ind| g replacell(String arg, String argl) : String - Strir
arr :”E:;" o replaceFirst(String arg0, String arg1) : String - Strinc
for(String | © substring(int arg0) : String - S
line + | ® substring(int arg0, int argl) : String - Strir
tmp = || @ toLowerCase() : String - S
if (tn] o toLowerCase(Locale argQ) : String - Strir
@ toString() : String
< o

} else E
14}

Press "Alt+/' to show Template Proposals

}

Fig. 1. Eclipse IDE tools integrated with API tips.

the statistics-based approach. First, LSTM can capture more
long-term contextual patterns or relationships, resulting in a
higher prediction accuracy. Second, the mainstream statistical
approaches [1], [2] are based on Hidden Markov Model
(HMM), which require building separate HMMs for each
single Java class. Since the existing Java classes are huge
and keep increasing, the scalability of HMM-based method
is seriously challenged. Instead, we propose a method called
Deterministic Negative Sampling (DNS) to model all Java
classes and APIs in one single LSTM network, which is more
flexible and scalable.
Our main contributions are summarized as follows:

o We propose a new API usage pattern learning method
based on LSTM, which learns context features from Java
API sequences to make API suggestion.

o We build an API suggestion approach called APIHelper.
It makes use of one single LSTM network combining
with a proposed DNS method for all Java classes&APIs
learning and predicting.

o We collect 18,000 Java project codes from Github for the
API suggestion experiment. Results show that APIHelper
has a better classification accuracy and computational
efficiency compared with HMM and N-gram.

II. RELATED WORK

API Mining/Usage Learning. These prior works are closely
associated with API suggestion. Xie et al. [3] first proposed
the method to mine API usage patterns from source code
called MAPO. UP-Miner [4] was proposed to improve the
efficiency on API sequences mining compared to MAPO. They
used a probabilistic graph to describe API sequences and
introduce a set of N-gram features of API call sequences for
clustering distance metric calculation. Recently, Fowkes et al.
[5] proposed a tool named PAM which is a near parameter-free
probabilistic algorithm to output a list of API call patterns.

PAM significantly outperforms both MAPO and UPMiner.
Similar work was proposed by Nguyen et al. [6] which also
used the graph to represent API sequences. They built a tool
called GROUM, a vector-based approximation approach, to
dig out the object usage pattern by finding the isomorphic
subgraph for anomaly detection.

Other works try to use NLP techniques to represent and
mine API usage patterns. For example, Nguyen et al. [7]
proposed API2VEC which represents APIs with a dense
vector. They came up with a series of rules to extract API
sequences from Java source codes and used API2VEC to do
the Java to C# code translation work for evaluation. Gu et
al. [8] used natural language to represent APIs and extracted
them from Javadoc annotations for code blocks to collect
<API seq,annotation> pairs as the dataset and mine the
correspondence.

API Suggestion/Recommendation. Currently, these are
some strategies for API suggestion/recommendation. The first
strategy is focused on sequential pattern mining. Nguyen
et al. [1] designed an API suggestion tool specifically for
Android mobile development. They used GROUM to extract
the API call graph from the Android source code, then simply
traversed the graph to generate the API sequences and process
it using a special HMM model for each Java class. On this
basis, further improvements were made by Pham et al. [2],
who analyzed directly the Android applications to find the
usage for APIs. They first decompiled the Android application
to get bytecodes, then transferred them into Control Flow
Graph (CFQG), finally built HMMs to mine API usage patterns.
Raychev et al. [9] implemented a tool called SLANG for
API prediction. They tried N-gram, Recurrent Neural Network
(RNN) and the combination of both methods to extract the API
call sequence, and used N-gram or RNN for training.

The second strategy is focused on frequent subgraph or
itemset mining. Zhong et al. [10] used code search engines and
code snippets to extract API call sequences. These extracted
APIs are clustered according to the distance metric which
reflects the similarity between class names and API names.
They mined the most frequent API calls using SPAM for each
cluster. Nguyen et al. [11] presented a tool named LIBSYNC
to guide the developer to update APIs so as to fit the third-
party library update. They used several graph-based techniques
to describe changes in the APIs.

Besides, Niu et al. [12] mined API usage patterns without
relying on frequent-pattern mining, but automatically extracted
usage patterns by clustering the data based on the co-existence
relations between object usages. Tetsuo Yamamoto [13] instead
took a simply and lightweight method, the author designed
a specific algorithm based on rules to give a method call
suggestion according to the context.

III. OUR METHODOLOGY
A. Overview

The main idea is to use the LSTM network to learn the
semantic and context information from Java source codes, the
embedding representation of Java classes&APIs (methods) and
the context features from API call sequences, respectively. We
treat API suggestion as a multi-class classification problem.

Eclipse JDT

Wildcard
Parser

Import

Extra Package
Java Source
Code

Catalog Structure

Information
Depth First
Search
f APIHelper |

[] (225
API Suggestion } 5 Embedding || Data. API Calls & Control Fields aind
Result | [Deterministic ¢ Augmentation by ¢ Flow Context - Local Variables
| -: Sliding Window Extraction Tracking
|
|

| Negative LSTM
I'|__Sampling

Fig. 2. The core flowchart of proposed method.

Given an API call sequence as an input, LSTM uses a softmax
output layer to predict next API call and outputs probabilities
of all candidate API calls. The core flowchart of our approach
is shown in Fig.2. We first extract API sequences from Java
source codes. Then APIHelper embeds Java classes and APIs
into dense vector representations. As a result, it transfers the
API sequence into a vector data stream as LSTM’s input for
training. Here API suggestion can be regarded as a “predict
next word” task. Given an API call sequence as one input,
LSTM tries to predict next API call.

B. API Sequence Extraction

We mainly extract the API call information from source
codes. For this information, we extract Java method invoca-
tions and Java class instance creations. Concretely, we first
obtain the corresponding Abstract Syntax Tree (AST) with
Eclipse JDT parser tool from Java source codes. Then we
traverse the AST tree through Depth First Search (DFS) to
extract nodes for Java classes and API calls, and track all
fields and local variables’ method calls. Thus we can resolve
the fully qualified name of an API call according to the field
or local variable. In this phase, we also need to parse the
import statements to get fully qualified class names to identify
all Java classes explicitly imported. Note that in some codes,
wildcards can be used to load all classes in a high level
package path, which will cause the fully qualified name of
some classes cannot be resolved. Under this situation, we
can obtain the package catalog structure information to get
a fully qualified path through the relevant Java documents.
After that, some method names cannot be fully resolved, so
we filter them in the data preprocessing phase. It should be
noted that the superclass method, method override, constructor
call, and class conversion expression do not take into account
for simplification in our scenario.

C. Learning API Usage Pattern with LSTM

Programming languages have some similarities to natural
languages, so here we use language models for API suggestion.
For a Java API sequence, since Java is an object-oriented
language and all methods are encapsulated in an object belong-
ing to one specific class, we can define an API sequence as
S ={ec1,a1,co,a9,...,cr,ar}, where ¢, t € (1,T) represents
the class to which the ¢th object belongs, and a; represents the
corresponding API called by the object. Then we can use the
statistical language model to define the occurrence probability
of this API sequence. According to the Bayesian algorithm,

Form Negative Sampling Softmax Matrix

‘/Candidate APIs: append, get, set, getValue, indexOf, hasNext, moveTo,\“
__insert, parse, max, charAt, delete, getFile, close, start, length, .../

x
Choose APIs Which Object; has
1

[E3E] 3] [EEEE]

/

Class API Class

Lookup

Class i API
Lookup

Lookup H Lookup Lookup ‘ Lookup ‘

java.lang.StringBuilder.newlnstance java.lang.StringBuilder.append java.lang.StringBuilder.???

Fig. 3. The neural language model for API suggestion by the LSTM network.

the probability that occurrence probability of a sequence S
equals to the combination of the probability that each “word”
appears, so P, (.S) can be expanded to:

T

Pw(S) = Pw(al) * pr(at|ct7at—lvct—17 "'7a1)7
t=2

6]

where w is a parameter learned by the statistical language
model and updated through training model. For the API
sequences in the training dataset, we maximize the occurrence
probability:

2

For the API suggestion task, we choose a; to maximize the
occurrence probability of current API sequence, and calculate
the maximum likelihood probability as the objective function
in the training phase which gets the highest probability when
a¢ equals to the true value y:

argmaz., Py (c1,a1, co, as, ..., ¢ty a).

3)

However, the actual Java API sequence often has a long-
term context, like follows:

argmaz., Py, (a; = y|c1, a1, 2, a9, ...,).

FileWriter writer = new FileWriter ("XX.csv");
{...a bunch of codes...};
writer.close ();

The bunch of codes in the middle part may be very long.
Therefore, we need a way to learn longer context information
to suggest API close(). The neural language model is one
good solution which is widely used in NLP tasks in recent
years. In this paper, we use LSTM to build a neural language
model. It is a powerful deep neural network for temporal data
mining and learning. As a variant of RNN, LSTM takes a
bunch of previous API sequences as context to predict next
API call, which actually gives a prediction category from all
candidate API calls as classification. The overall model part
that APIHelper uses for API suggestion is shown in Fig.3.

Specifically, the whole model contains three parts: embed-
ding layer, LSTM layer, and classification layer. First, the
embedding layer will embed these input API sequences into
dense vectors that actually learn some semantic and logic in-
formation from Java classes and API calls. These dense vectors
will be used as the input for several LSTM units to learn the
context features. Then, LSTM sequentially takes the elements
in the API sequence as an input. Each step, LSTM will update

Constant Error Carousel (CEC) and “gates” to selectively store
information from previous inputs and calculate them with the
input of current time node. In this way, after receiving the
complete API sequence input, LSTM can learn the context
information in the sequence to generate a dense vector for
the final prediction. Then this dense vector is regarded as the
highly abstract feature information to be added to the softmax
output layer, which outputs the prediction result. The formula
is as follows:

_ exp(W@Tht +by)
Sy exp(WEhy + bk/()4 ’)

Py (ar = gler, a1, c2,a9, ..., ¢t)

where Wg represents the part of weight matrix W correspond-
ing to the prediction category ¥, and h; is the final dense vector
calculated by LSTM forward propagation along the time series.
The softmax layer uses a nonlinear transformation to calculate
the conditional probability for outputting the final prediction
result. Meanwhile, it uses maximum likelihood probability as
the objective function to train model parameters.

It should be noted that, unlike dealing with natural language,
we have conducted some specialized training strategies for
API sequence learning. As mentioned earlier, each of Java
classes follows a specific API call. A straightforward approach
to digitalize these elements is directly mapping them using
one same dense embedding matrix. But this approach is not
good for several reasons. First of all, these two elements
are not the same type. Using one embedding matrix would
mix them up and lose this boundary between two elements.
Second, Java language contains a large number of classes and
APIs, and needs a very large embedding matrix to represent
them, which would greatly slow down the training speed. And
most importantly, LSTM is not effective due to the gradient
vanishing when dealing with a very long API sequence.
Therefore, we propose a new approach using two embedding
matrixes W¢ and W¢ for representing Java classes and APIs,

ef = Weled, ef = Welad. o)

Considering that each Java class must be followed by an API
call, we come up with a strategy called Embedding Concate-
nation (EC), which uses [ef, e?] to concatenate the Java class
embedding in the current timestep and the corresponding API
call embedding as the input for LSTM, that is x; = [e§, e}].

Since one embedding vector can represent one Java class
and one API call, and LSTM can deal with a Class&API unit
in one timestep, the length of the API sequence that LSTM
needs to process is actually reduced by nearly half. It allows
LSTM to handle and learn more long-term context information
and eases the gradient vanishing problem.

The last API call ap of an API sequence is to be predicted,
so the last timestep input is received by LSTM which contains
only the Java class information cr. Here we use an identifier
ePred to remind LSTM that it is the section to make a
prediction, that is z7 = [e5, eP"?).

D. Deterministic Negative Sampling

The concept of Negative Sampling (NS) comes from a
training strategy for word vectors in the NLP area. Some
famous models using negative sampling are Skip-gram with

Negative Sampling (SGNS) and CBOW with Negative Sam-
pling (CBOW-NS). The main purpose of negative sampling
is to improve computational efficiency. For a multi-class clas-
sification problem, machine learning models usually use the
softmax layer to output multi-class prediction probabilities:

eacp(WgTht + by)
25:1 exp(WEhy + by) -

(6)

P, (a: = y|context) =

As we can see the softmax layer outputs probabilities by
a normalization operation, which is usually called the Cross
Entropy (CE) error function in machine learning. The compu-
tation cost increases linearly with the number of categories.
So the cost of CE is |V| 4 1, where V represents the number
of vocabularies to be predicted, and the cost of NS is |K |+ 1.
The speed up ratio is K/V (NS is much faster). Since in
each NLP word classification task, there is only one positive
category (the word to be predicted) and all other words
are negative. So instead of updating weights through whole
negative vocabularies, NS only samples some negative words
for weight updating.

APIHelper tries to build one single LSTM network for all
API suggestions. However, the biggest challenge is that the
number of candidate APIs to be predicted is so huge (for com-
mon Java classes, there are more than 30,000 candidate APIs
in total). From above we know the softmax is inefficient when
dealing with such a big multi-class classification. Therefore
we propose DNS to solve this. The main difference between
DNS and NS is that DNS is a deterministic sampling strategy
rather than a random sampling. The deterministic sampling is
from the specific constraints for API calls that every API call
must come from one specific Java class. Considering the API
we need to predict must belong to the current Java class, we
can use the last Java class ¢y to limit the range of candidate
APIs to be predicted. There are around 5 to 108 APIs for a
common Java class, so the LSTM network does not need to
do a prediction in the entire candidate APIs set. Instead, it first
picks out APIs subset for current Java classes, and then makes
a prediction based on that. Meanwhile, the LSTM network
computes softmax errors and does weight updating only for
negative API samples in this subset.

For the specific implementation of DNS, current mainstream
deep learning frameworks (such as Tensorflow, Caffe, Theano,
etc.) only provide a random negative sampling function. For
example, Tensorflow simply provides a random negative sam-
pling error function: ¢ f.nn.sampled_softmaz_loss(), which
computes the cross entropy over the subset of candidate
classes. Since it cannot achieve the function of DNS, we
devise a special LSTM training module to implement DNS
in Tensorflow. Specifically, in each iteration, we introduce
an additional Tensorflow place holder DNS to reduce the
prediction probability manually for APIs not belonging to
current Java classes. Then LSTM calculates the cross entropy
error for this fixed output probability:

dnsi«n = [bapr,bapr,,bapr,, -, bapry], where

T class Cp (1)
bapr, = 0

API, € current Java

otherwise

logtisi«xn = [PAPI, s PAPI,»DAPIs» s PAPIy), (8)

where
of the

logtis represents
original LSTM

the logistics probability
prediction. logtis adds
dns as bias, that is logtis = logtis + dns, and
calculates the loss for back propagation, shown as:
tf.nn.softmax_cross_entropy_with_logtis(logtis=logtis,
labels= ...). It can be seen as passing the prior knowledge to
the LSTM network by dns. By manually reducing the output
probabilities of some unrelated candidate APIs, their cross
entropy error is very low. This in turn lets the LSTM network
focus on learning to classify or distinguish APIs belonging to
current Java classes during error back propagation.

IV. EXPERIMENT AND RESULTS
A. Dataset and Data Preprocessing

We crawled 18,000 Java projects from Github and extracted
corresponding Java source codes for a total of 16GB data. To
ensure a high quality of Java codes dataset, we only collect
Java projects with over 100 stars. More stars means more
popular project and higher programming quality.

For example, APIHelper learns the most popular Java APIs,
as follows: java.* Java foundation classes; javax.*, Java
foundation classes extension; android.*, Android related Java
classes; org.apache.*, all top level Java project from Apache
software foundation; com.google.*, all Java project provider
by Google; org.springframework.*, one of the most popular
structure for Java web development.

Above Java classes and APIs cover daily function needs for
programmers. However, these Java libraries also contain some
rarely used Java classes and APIs. Thus we do the frequency
counts for APIs and use UNK to represent Java classes that
occur less than 20 times and Java APIs less than 10 times in
our dataset. This greatly reduces the size of embedding matrix
for LSTM. Only 50,000 Java classes and 60,000 Java APIs
are reserved, so the hyperparameter numen,p is reduced from
original 540,000 to 110,000.

The total number of candidate APIs to be predicted is
20,000, but the frequency of these APIs varies a lot. The
most frequent API is newlnstance which occurs more than
5,000,000 times in our dataset, while the least popular API
only appears 50 times. Hence we use data augmentation strat-
egy to rebalance the distribution, which achieves the maximum
augmentation ratio up to 40 times.

B. Model Setup and Training Details

In experiment, APIHelper is trained by GPU. We use
NVIDIA’s GTX980 GPU and related software repositories
including CUDA 7.5, cuDNN V4, Python 2.7.6, Numpy 1.8.2,
Scipy 0.13.3, and Tensorflow 0.9.0. APIHelper uses a two-
layer LSTM network, and each layer contains 128 neuron
units. For the design of LSTM structure, we use ReLU as
activation function and use Dropout with dropping probability
0.5 to ease overfitting problem. To ensure the LSTM network
convergence, we use orthogonal weight initialization with
a range of £0.04, add batch normalization layers, and set
gradient regularization factor to 10 (it is used to control
gradient expansion). APIHelper adopts an optimizer based on

the Adam optimization algorithm, sets the initial learning rate
of 7 = 5e — 03, and takes sequence length of 60 as the input
and batch size of 228. Also, we set the maximum number of
training epoches (=150,000). Since we use early stop strategy,
usually the training phase stops after 5 complete rounds.
Each element of an input API sequence consists of two
parts: Java class embedding with vector length of 150
and API embedding with vector length of 200. We pro-
pose EC to concatenate two-part embedding vectors to-
gether along the horizontal axis, z; = [ef,ef]. So the in-
put API sequence [x1,x2,xs,...,x7| can be represented as
{le5. ef], [e5. €81, [¢5. €8], oo [e5, 7]}, where ¢ s the
API to be predicted. The embedding lookup matrix is ini-
tialized randomly, and it uses 0.1 %) to adjust learning rate
(otherwise model will get seriously overfitting during training).

C. Results and Evaluation

We use 18,000 Java projects and 10-fold cross validation
to evaluate the performance of LSTM network used in API-
Helper, as well as the effect of using EC and DNS to verify
whether they are valid. The results are shown in Table 1.

TABLE I
THE PERFORMANCE FOR DIFFERENT LSTM NETWORKS

Methods Accuracy(%) top-5 Accuracy(%)
Standard LSTM 40 79
LSTM + EC 43 81
LSTM + EC + DNS (APIHelper) 53 90

We use accuracy and top-5 accuracy as evaluation indicators.
Here top-5 accuracy represents the prediction accuracy when
the model can provide top-5 predicted APIs. As we can see
from Table I, both EC and DNS give an improvement of
prediction accuracy. Specifically, the standard LSTM model
serves as the baseline method which regards each Java class or
API as one input, while EC merges and concatenates them into
one long vector as another input. EC enables LSTM to learn
API sequence in a more efficient way and capture more long-
term contextual information. So top-5 accuracy raises from
79% to 81% when using EC.

Apart from this, DNS has the most benefit to LSTM
performance, raising top-5 accuracy from 81% to 90%. For
each input API sequence, DNS builds one corresponding
softmax layer which narrows down the candidate APIs to
predict according to the last input Java class. Hence LSTM
only needs to choose one prediction API belonging to the last
input Java class instead of all Java APIs. This greatly reduces
the search space of LSTM network, making it more efficiently
during training and easier to converge. Most importantly,
this makes it possible to predict massive Java APIs (give
a API suggestion for massive Java classes) by using one
single LSTM network, because it simplifies the original multi-
class classification problem with hundreds of thousands of
categories into hundreds of categories classification.

In addition, we compare APIHelper with the current two
mainstream methods, HAPI [2] and N-gram. Original task of
HAPI is for Android API learning. It first extracts Android
bytecodes from .apk file through dex parser tool (e.g. baksmali)

Method Method
HAPI HAP!
N-gram N-gram
APIHelper APIHelper

(a) (b)

Fig. 4. (a) The results of API suggestion for predicting next APIL. (b) The
results of API suggestion for filling API hole.

and converts them to CFG, then traverses CFG to generate API
sequences for training HMM (HMM takes the sequence as the
input). For each Java class, HAPI trains one specific HMM
model and takes two experiments for evaluation, which are
called “predict next API” and “fill API hole”. The difference
is the latter task not only takes the context before the API to be
predicted, but also the context after it. The experiment takes
a 63GB dataset for 2,700 Java classes with 17,000,000 API
sequences. Each Java class has around 6,000 API sequence
samples and the average length of an API sequence is 4.
HAPI trains 1,200 HMM models on 2,700 Java classes, with
averaging eight hidden states per HMM.

The goal of HAPI is to solve Android API learning, which is
a subtask compared with Java API suggestion, but APIHelper
needs to predict APIs for 18,000 Java project codes which
contain all Android related APIs and many other Java APISs.
Thus, in order to better evaluate and compare APIHelper
with HAPI, we reproduce the HAPI method and conduct a
comparative experiment with the same task on our dataset.

Also, we make the experiment of 3-gram for API suggestion
or recommendation as a baseline. We first filter out low
frequency 3-gram combinations, then use the Random Forest
(RF) model for feature importance analysis, from which a
43,000-dimensional feature vector is extracted. Finally, we use
these features with softmax regression to achieve multi-class
classification and get the API suggestion result. As we can see
from the results shown in Fig.4(a) and Fig.4(b), APIHelper
outperforms other two methods. The performance of HAPI
is somehow lower than the original results in their paper.
One reason is that our task is to make an API suggestion or
recommendation at any randomly chosen location rather than
at the end of a well-extracted API sequence. Thus sometimes
the context is relatively insufficient.

D. Computation Efficiency

We analyze the computational efficiency and computation
resource consumption of all methods, and separately calculate
the storage consumption, training time and API suggestion
time-consuming for comparison. The evaluation results are
shown in Table II. As we can see, the training time con-
sumption for standard LSTM model takes 2.4 hours, which
is obviously slower than HAPI. Besides, the slowest method

TABLE I
THE EXPERIMENT RESULTS FOR DIFFERENT METHODS

Methods Accuracy(%) top-5 Accuracy(%) Training Time(h) Disk Space Consumption(MB) Suggestion Time(ms)
Standard LSTM 40 79 24 328 23.3
LSTM + EC 43 81 1.5 263 13.5
3-gram 43 68 1.4 182 172
HAPI [2] 48 81 1.2 18.5 14.4
APIHelper 53 90 0.5 263 13.2

is 3-gram model, mainly because 3-gram takes a lot of time
for feature extraction. As mentioned before, 3-gram counts
all occurrences of 1-gram, 2-gram and 3-gram in the dataset,
which means doing millions of counts as features. After that
the N-gram statistical method uses a simple classifier which
costs a little time for training.

However, after using EC and DNS, APIHelper only needs
half an hour to complete the training process. The main
reasons are as following: first EC almost reduces the input
sequence length by half for LSTM. EC concatenates class and
API embeddings as [ef, ef], so LSTM timestep takes more
information for each one timestep. Then DNS further speeds
up the training phase because the back propagation calculation
only needs to be done on some softmax nodes instead of all of
them. This greatly accelerates the weight updating speed for
LSTM network. At last, coupled with GPU-accelerated deep
neural network computation, APIHelper takes the shortest time
for training. For HAPI [2], thought training a single HMM
model for a Java class takes less time, HAPI needs to train
thousands of HMMs for all Java classes. Overall, it is less
efficient than APIHelper. Since the model training phase is
often offline, the more critical indicator is the time-consuming
in API suggestion phase, which reflects the response speed
of API suggestion system. In the prediction phase, the LSTM
network is the fastest (13.2ms) which only needs to do one
forward propagation to get the prediction result.

Finally, we compare the memory and disk consumption.
Since data storage is critical for all methods, here the main
storage consumption we evaluate is the model storage for
storing model parameters. It can implicitly indicate the mem-
ory consumption because usually a system loads all model
parameters into memory for fast computation. The evaluation
results show APIHelper and N-gram consume more storage
than HAPI. APIHelper needs more storage because LSTM
network is complex and contains mass parameters. However,
all three methods consume less than S00MB of storage space,
which we think is not a bottleneck for current computer
resources in a server with GPU computation.

V. CONCLUSIONS

In this paper, we explore a new LSTM-based API suggestion
approach to improve programming efficiency. To this end, we
construct a prototype implementation called APIHelper, which
uses what we called deterministic negative sampling to build
one single end-to-end LSTM network to make API sugges-
tion for tens of thousands of Java APIs. While experiments
show that APIHelper can effectively provide API suggestions
according to the API contexts and has better performance in

terms of suggestion accuracy, computational efficiency and
scalability compared with previous works.

For the limitation of APIHelper, it has to rely on class object
information for API suggestion, so currently it can only be
applied to strongly typed languages. In the future work, we will
plan to explore APIHelper making API suggestion for weakly
typed languages like Python, which is a more challenging task.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61672421
and the Shaanxi Provincial Natural Science Foundation under
Grant No. 2017JIM6109.

REFERENCES

[1] T.T.Nguyen, H. V. Pham, P. M. Vu, et al. Recommending API usages for
mobile apps with hidden markov model. In Proc. of 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
795-800, 2015.

H. V. Pham, P. M. Vu, T. T. Nguyen. Learning API usages from bytecode:
A statistical approach. In Proc. of the 38th International Conference on
Software Engineering (ICSE), 416-427, 2016.

T. Xie and J. Pei. MAPO: mining API usages from open source
repositories. In Proc. of the International Workshop on Mining Software
Repositories (MSR), 54-57, 2006.

J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie and D. Zhang. Mining
succinct and high-coverage API usage patterns from source code. In
Proc. of the 10th Working Conference on Mining Software Repositories
(MSR), 319-328, 2013.

J. Fowkes, C. Sutton. Parameter-free probabilistic API mining across
GitHub. In Proc. of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), 254-265, 2016.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, et al. Graph-based mining
of multiple object usage patterns. In Proc. of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC/FSE),
383-392, 2009.

T. D. Nguyen, A. T. Nguyen, H. D. Phan, et al. Exploring API embedding
for API usages and applications. In Proc. of the 39th IEEE/ACM
International Conference on Software Engineering (ICSE), 438-449,
2017.

X. Gu, H. Zhang, D. Zhang, et al. Deep API learning. In Proc. of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 631-642, 2016.

V. Raychev, M. Vechev, E. Yahav. Code completion with statistical
language models. In Proc. of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 419-428,
2014.

H. Zhong, T. Xie, L. Zhang, J. Pei and H. Mei. MAPO: Mining and
recommending API usage patterns. In European Conference on Object-
Oriented Programming (ECOOP), 318-343, 2009.

H. A. Nguyen, T. T. Nguyen, Jr. G. Wilson, et al. A graph-based approach
to API usage adaptation. In Proc. of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 302-321, 2010.

H. Niu, I. Keivanloo, Y. Zou. API usage pattern recommendation for
software development. The Journal of Systems and Software, 129: 127-
139, 2017.

T. Yamamoto. Code suggestion of method call statements using a source
code corpus. In Proc. of the 24th Asia-Pacific Software Engineering
Conference (APSEC), 2017.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

