
Conceptual Software: The Theory Behind Agile-
Design-Rules

Iaakov Exman
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel
iaakov@jce.ac.il

Abstract—Software practices often evolved sets of efficient
software design rules embodying together a kind of methodology.
However, methodologies per se are no substitute for a rigorous
software theory. Methodologies can live side by side with a
software theory which explains and justifies the widely accepted
wisdom of the field. This paper shows that Linear Software
Models, an algebraic Software Theory together with its basis, the
Conceptual Integrity principles, indeed explain the deeper
contents of the so-called “four rules of simple design”, which we
concisely name as Agile-Design-Rules. These rules are a succinct
expression of agile design methodologies that emerged from
Extreme Programming (XP). Thus one obtains the best benefits
from Software Theory and methodology co-existence: 1st, the
explained rules reinforce the Software Theory plausibility; 2 nd,
the Software Theory selectively clarifies roles of the Agile-Design-
Rules enabling quantitative calculations for their application in
practice; 3rd, co-existence leads to the idea of Design Tests as
illustrated by case studies. 1

Keywords: Conceptual Software; algebraic Software Theory; Agile-
Design-Rules; Software Design; Linear Software Models;
Modularity Matrix; Modularity Lattice; Conceptual Integrity;
Propriety; Orthogonality.

I. INTRODUCTION

A well-known set of rules for software system design is the
so-called “four rules of simple design” which we concisely
name as Agile-Design-Rules. These rules were first formulated
by Kent Beck (see page 57 in [2]) at the end of the previous
century, within the context of Extreme Programming (see e.g.
[3]), commonly abbreviated as XP. This well-known kind of
agile design methodology had a significant influence on
approaches to practical software system development.

Some outstanding XP development characteristics [3] are:

• Simple Design – expressed, e.g. by the Agile-
Design-Rules;

• Tests – software development is driven by tests
written and run in parallel to the software itself.

• Pair Programming – production code is often
written by two people at one
screen/keyboard/mouse.

DOI: 10.18293/SEKE2018-182

We claim, that however successful in practice, any
development methodology such as XP is no substitute for a
rigorous Software Theory. On the other hand, a theory totally
disconnected from practical directives in a field eminently
application-oriented such as Software Engineering is of no use.

This paper has two-way goals: a- to argue that the algebraic
Software Theory is a rigorous basis for applicable software
design methodologies; b- to show that the Agile-Design-Rules
essence is selectively explained and justified by the referred
Software Theory. We introduce the Agile-Design-Rules, the
basics of Conceptual Software design, and the algebraic Linear
Software Models.

A. Agile-Design-Rules for Software
Development

There are several formulations of the Agile-Design-Rules,
differing by the wording of each rule and the rules’ order. The
rules’ essence is common to all formulations. Here, we choose
a formulation by Ron Jeffries [25], reordering rules 2 and 3:

1. Test Everything – All the tests for the SUD

(Software Under Development) are passing;
2. Explicit Intent – Express the ideas the software’s

author wants to express;
3. Eliminate Duplication – Contain no duplicate code;
4. Minimize Entities – Minimize classes and methods.

The selective interpretation of these rules will be given

later on in this paper, after the theory basics are explained.

B. Conceptual Integrity

Conceptual Integrity is a deep software design idea
proposed by Frederick Brooks [6], [7], much earlier than the
Agile-Design-Rules. Historically, the earlier ideas were not
recognized as the basis for the practical rules.

Three principles suggested by Brooks [6] were verbally, not
formally, explained by Jackson et al. [10], [23], [24]. We focus
on the two most relevant to clarify Agile-Design-Rules:

1. Orthogonality – individual functions should be
independent of one another;

2. Propriety – a product should have just the
functions essential to its purpose and no more;

The Conceptual Integrity principles can be expressed in
terms of modularity and design simplicity. Orthogonality is a
basic modularity mechanism. Propriety is an optimization: the
fewer the functions performing exactly the same tasks, the
simpler the software product. One immediately perceives their
relevance to the Agile-Design-Rules. Full interpretation will
follow from the theory, presented next.

C. Linear Software Models: the Modularity
Matrix and the Modularity Lattice

We concisely characterize two Linear Software Models’
algebraic structures, representing a software system. These are
the Modularity Matrix and the equivalent Modularity Lattice.
Here we explain the primitive terms of these models relevant to
this work; for further details, see [11], [12].

Software systems are assumed to be hierarchical. Structors,
the Modularity Matrix columns, are vectorial expressions of
software structure, generalizing classes for any hierarchical
level. Functionals, the Modularity Matrix rows, are vectorial
expressions of software behavior, generalizing functions which
are provided by structors. The standard Modularity Matrix is
block-diagonal. Modules, illustrated in Fig. 1, are sub-system
blocks along the Modularity Matrix diagonal, made of structor
and functional sub-sets, disjoint to other module sub-sets.

As shown by Exman and Katz [18], Modularity Matrix
design optimization neatly corresponds to Conceptual Integrity
principles. Propriety justifies Linear Independence of structors
among themselves and functionals among themselves.
Orthogonality implies the existence of modules.

The Modularity Lattice [14] is obtainable from the
Modularity Matrix, by well-known algorithms embodied in
software tools (e.g. Concept Explorer) building the lattice from
a given Formal Context. This Context is a rectangular Boolean
matrix showing relations between a set of attributes and a set of
objects. The standard Modularity Matrix can be seen as a
special case of Context: it is square, with relations respectively
between structors and functionals. A fitting Modularity Lattice
is obtained (Fig. 2 corresponds to Fig. 1), in which the Top
node contains the set of all functionals and the Bottom node
contains the set of all structors. Modularity Lattice modules
(see Exman and Speicher [14]) are the connected components,
obtained by erasing the Top and Bottom nodes, which
represent the whole system, and not specific modules.

The goal of Linear Software Models is to reach the standard
Modularity Matrix for a software system, where all blocks are
orthogonal. An outlier matrix element coupling modules, not
orthogonal anymore, demands a system redesign. Due to the
Modularity Lattice to the Modularity Matrix equivalence, all
conclusions extracted from the Matrix are valid for the Lattice.

Paper Organization

The remaining of the paper is organized as follows. Section
II describes related work. Section III concerns the intent of
Conceptual Software Design. The central section IV formulates
the quantitative algebraic software theory of Agile-Design-
Rules. Section V illustrates Design Tests with case studies.
Section VI concludes the paper with an overall discussion.

Figure 1. Software Theory explains Agile-Design-Rules – “Conceptual
Integrity” directly explains the first two rules and is a conceptual basis for the
algebraic “Linear Software Models”. These Models directly explain the three
other Agile-Design-Rules. This diagram motivates the paper organization.

Figure 2. An Abstract Standard Modularity Matrix – It has 4 Structors
(matrix columns) and 4 Functionals (matrix rows). Three block-diagonal
modules are seen (in blue): two strictly diagonal (S1, F1) and (S2, F2), and
one 2*2 block (S3, S4, F3, F4). Matrix elements outside the modules (in
white) have zero values (omitted for easier visualization). F3, an example of
functional inheritance, is provided by both classes S3 and S4.

Figure 3. Abstract Modularity Lattice diagram – This Lattice exactly fits the
Modularity Matrix in Fig. 1. It has three modules: two with just one-vertex
(S1, F1) and (S2, F2), and one with two vertices (S3, S4, F3, F4). Structor
labels are shown above and functional labels below the vertices. A vertex
above another one, provides all the functionals below the higher one: e.g. S4
provides both F4 and F3, as also seen in the matrix in Fig. 1, while S3
provides only F3. Modules are the connected conponents remaining after
cutting Top and Bottom nodes, as shown by the red dashed lines.

II. RELATED WORK

A. Agile-Design-Rules for Sofware Design

Agile-Design-Rules were formulated by Kent Beck, in the
first 1999 edition of his book “Extreme Programming
Explained: Embrace Change” [2]. They were reformulated by
Beck himself [3] and by several authors in different rules’
order and specific wording. Martin Fowler collaborated with
Kent Beck, writing together the “Planning Extreme
Programming” book [4], and later on wrote a blog entitled
Beck-Design-Rules [19] with his own version of the Rules.

Corey Haines published a whole book entitled
“Understanding the 4 Rules of Simple Design” [21] using the
Game of Life to illustrate the rules. Several other variations of
the Agile-Design-Rules are due to Bekkers [5], Rainsberger
[30] and Sironi [31], among others.

Hunt and Thomas [22] in their book “The Pragmatic
Programmer” mention the simple design rules, stressing in
Chapter 2 the relationship between Duplication (3rd rule) and
Orthogonality: “The first warns not to duplicate knowledge
throughout your systems, the second not to split any one piece
of knowledge across multiple system components”.

B. Applications of Conceptual Integrity

After Frederick Brooks’ proposal of Conceptual Integrity
as a fundamental idea for software development, researchers
tried to apply Conceptual Integrity in practice. Despite the
absence of formal quantitative criteria, these authors
interpreted the Conceptual Integrity principles in ways similar
to the Agile-Design-Rules, in particular rules 3 and 4.

Kazman and Carriere [27] extracted a meaningful software
architecture using conceptual integrity. The guideline was a
small number of components connected in regular ways,
minimizing numbers of entities (rule 4). Kazman [26]
described a SAAMtool, in which Conceptual Integrity is
estimated by the number of primitive patterns of a system.

Clements et al. [9] interpreted conceptual integrity as
“similar things should be done in similar ways”, with
parsimonious data and control, i.e. duplication avoidance and
minimization of entities (rules 3, 4). They suggested counting
entities as a way to quantify Conceptual Integrity.

C. Algebraic Structures for Software Systems

In this work we focus on the Modularity Matrix [13]. Other
matrices have been used for modularity analysis. The Laplacian
(von Luxburg [28]) has been used in various applications.
Exman and Sakhnini [17] derived a Laplacian matrix with
equivalent information to the Modularity Matrix, obtaining the
same modular design for a given software system.

The ‘Design Rules’ by Baldwin and Clark [1], despite the
name similarity to the Agile-Design-Rules, have a very
different character. This approach is based upon a Design
Structure Matrix (DSM), whose design quality is estimated by
an external economic theory superimposed on the DSM. It has
been mostly applied to non-software systems, and also to some
software systems, e.g. Cai et al. [8]. A key difference from the
Modularity Matrix is the lack of model linearity of the DSM.

Conceptual lattices, analyzed within Formal Concept
Analysis (FCA) were introduced in Wille [32]. An overview of
its mathematical foundations is given by Ganter and Wille [20].
The equivalence between Modularity Matrices and Conceptual
Lattices has been shown by Exman and Speicher [14], which
justifies dealing with structors as concepts.

III. CONCEPTUAL SOFTWARE DESIGN: REVEALING

INTENTION

We start here the systematic interpretation of the Agile-
Design-Rules. By Fig.1 Conceptual Integrity directly explains
the first two rules.

A. A Separability Principle for Software

The first Agile-Design-Rule deserves special consideration.
To this end we need a Separability Principle for Software
Engineering. We have formulated such a principle in [16]. It
states the following:

 “Software Proper vs. Human Concerns Separability
Principle” – theories dealing with software proper are
separable from theories dealing with human concerns of
software engineering.

This Separability principle says that theories dealing with
properties of the software system proper are independent of
theories dealing with human stakeholder concerns, either
developer processes or end-user interactions with developers.

B. Relevance to Agile Software Development

The Separability Principle is relevant to the possible
meaning of the 1st Agile-Design-Rule, which tells us to
continuously run all tests and make sure they still pass. This
depends on the particular interpretation of this rule.

The first interpretation is trivial: a code with bugs is not
runnable, and no next rule is applicable to code quality
analysis. Successful tests are a pre-condition for the next rules.

Another interpretation directly touches pair-programming
characteristics of XP. Pair-programming works by one person
writing the code while the other person of the pair writes tests
to be run on the written code, and then they switch the
programmer/tester roles. From this viewpoint this rule concerns
the human social aspects of development, and is not relevant to
the software product proper.

In our view, the best interpretation touches the motivation
for testing. The importance of tests it not just for finding bugs,
but rather to enforce system redesign, in case design problems
were identified. In this view, testing is an inherent part of the
software product design and not an extraneous human concern.
But was this the truly original motivation behind this rule?

C. 1st Agile-Design-Rule: Passing Design Tests

Whatever was the original motivation behind the first
Agile-Design-Rule, we propose here a novel interpretation
consistent with our emphasis on Design instead of
implementation or development process.

The goal of the 1st Agile-Design-Rule is to pass systematic
“Design Tests”, viz. to reveal design problems conflicting with

Conceptual Integrity. This new focus on design means that the
tests themselves should be carefully designed to be consistent
with the SUD (System Under Design) Conceptual Integrity.
Design test examples will be given in section V.

D. 2nd Agile-Design-Rule: Revealing Intention

The focus on design interpretation of the first rule is a
suitable transition to the deep meaning of the 2nd Agile-Design-
Rule. This rule in the formulation presented in the Introduction
of this paper (in sub-section A) reads “Explicit Intent”, viz. to
explicitly express the ideas of the software author. In other
words, the concepts embodied in the software design units
should both reflect the main ideas of the software system and
be clearly understood by other stakeholders reading the
software. Summarizing, Conceptual Integrity is not only
essential to high-quality design, it should be explicitly revealed
in the software itself, and not just in its documentation.

IV. THE ALGEBRAIC SOFTWARE THEORY IS QUANTITATIVE !

To be applicable to the practice of software system design
an actual Software Theory should be quantitative, as it is clear
even in the naïve formulation of the rules: “no duplication” and
“minimize entities”. In this section we provide formulas for
calculating the relevant quantities, to explain rules 3 and 4 and
later on propose a 5th rule.

A. A Quantitative Theory of Agile-Design-Rules

The quantitative algebraic Software Theory, the Linear
Software Models, which in turn is based upon Conceptual
Integrity (see Fig. 1), obeys the following demands:

• Software represented by a mathematical
structure – be it a matrix or a lattice; in this paper
we chose the matrix representation;

• Quantities in formulas amenable to calculation –
getting precise numbers for each obtained design;

• Standard Criteria for design quality – allowing
comparison of proposed designs with standards;

Quantities involved in the Conceptual Integrity calculations
are normalized. These quantities are independent of the
vector/matrix sizes, by dividing results by relevant entity sizes.

B. 3rd Agile-Design-Rule: No Duplication

“No duplication” in terms of vectors, is the simplest case of
linear independence: any set of identical structors are obviously
linearly dependent and all but one should be eliminated. The
same is true for identical functionals. Thus, the 3rd Agile-
Design-Rule is a particular case of the 4th rule discussed next.

C. 4th Agile-Design-Rule: Minimize Entities i.e.
Propriety

Following Exman and Katz [18], the naïve “Minimize
Entities” rule corresponds to the generic linear independence
Propriety principle of Conceptual Integrity. Linear
independence within a module is evaluated by equation (1), in
which r is the rank and c is the number of columns of the
module sub-matrix. Since module sub-matrices are square, one

could use as well the number of rows instead of the number of
columns. The module propriety criterion in equation (1) has a
value between zero and the maximum propriety value of 1
obtained when r equals c.

Propriety = 1 - ((c - r) c) (1)

D. Orthogonality

As already mentioned, Hunt and Thomas [22] linked in

their book the “No duplication” rule with Orthogonality. The
latter quantity is calculated as follows. Assume a pair of
normalized vectors u and v i.e. all their elements are divided by
the length of the respective vector. Their Orthogonality is
calculated by equation (2), where ()u vi is the vectors’ scalar

product. Orthogonality has a value between zero and the
maximal value 1 obtained for zero scalar product.

)iOrthogonality = 1 - (u v (2)

Software system calculations, using the above equations,
should be done for the whole set of Modularity Matrix modules
to obtain the combined system conceptual integrity.

V. DESIGN TESTS ILLUSTRATED BY CASE STUDIES

The Agile-Design-Rules are here illustrated by Case

Studies. They are numbered and presented according to the
rational interpretation given by the algebraic Software Theory,
and adding a fifth Orthogonality rule.

A. 1st Agile-Design-Rule: Design Tests – ATM
Conceptual Integrity Case Study

Design Tests are distinct from Unit Tests whose purpose is
to find syntactic or logical errors. A design test, may check the
Conceptual Integrity of a sub-system. For instance, an ATM
(Automatic Teller Machine) is a reasonable machine to deposit
or withdraw cash or deposit checks. But it is not currently an
acceptable way to obtain a house mortgage.

Thus, a design test to verify an ATM design for Conceptual
Integrity is a loop on a Financial Ontology, looking for and
flagging for deletion all concepts appearing in the ATM
design that are related or sub-types of the mortgage concept.

B. 2nd Agile-Design-Rule: Revealing Intention –
Interdisciplinary Ambiguity Case Study

Revealing Intention is again a matter of Conceptual Design
verification. Trivial cases are to demand naming of classes and
functions by meaningful names such as “Bridge” or “Liquid”,
instead of meaningless names such as “X” or “Y” (see e.g.
[29]), or even worse, misleading names.

Less trivial cases deal with ambiguity, for instance in an
interdisciplinary software in which the same term has different
meanings in two disciplines. An example is the usage of the
“Bridge” software design pattern within an application for

civil engineering dealing with tunnels and “bridges”. Another
example is the usage of “Liquid” financial assets within an
application about “Liquid” chemicals.

In order to verify ambiguity absence one may build an
SUD (Software Under Development) Application Ontology,
from the domain ontologies intersection, and check whether
the same term appears in different Application Ontology
branches dealing with the different disciplines.

C. 3rd Agile-Design-Rule: No duplication –
Circle Functionals Case Study

As already stated above, “No duplication” is a particular
simple case of Linear Dependence. Whenever there are two or
more identical functionals (similarly for identical structors),
one should eliminate all of them except one.

For instance, assume a geometrical application involving
circles. The Modularity Matrix has a “circle” structor. Suppose
it also has two functionals – calculate area by Π*Radius2 and
calculate perimeter by 2*Π*Radius. Then there are two
identical rows in the matrix, in which there are 1-valued
elements for these two rows in the same circle structor
column. One should eliminate duplication, since both these
functions depend only on the Radius variable; when one fixes
either the Area or the Perimeter, the Radius is determined and
also the value of the other function. These functionals are
trivially dependent.

D. 4th Agile-Design-Rule: Minimize Number of
Entities – General Propriety Case Study

The Propriety principle of Conceptual Integrity effectively
minimizes the numbers of structors and respective functionals
in a Modularity Matrix representation of a software system.
Whenever there are linear dependences of row or column
vectors within the matrix, one must eliminate some vectors to
obtain total linear independence in the matrix. This is checked
by equation (1), in which the matrix rank r should be equal to
the number of structors (columns), or equivalently the number
of rows (functionals). If Propriety is less than 1 by equation (1),
some vectors must be eliminated by the software engineer,
using semantic considerations.

For instance, in elementary trigonometry there are various
cases of mutually dependent functions, in which one needs a
lesser number of independent functions. To calculate the
values of sine, co-sine and tangent fuctions of an angle in
radians, one needs at most two of these functions.

E. 5th Agile-Design-Rule: Orthogonality –
Redesign to Eliminate Coupling Case Study

The Software Theory leads us to add a fifth Agile-Design-
Rule in our formulation to comply with the Orthogonality
principle of Conceptual Integrity, which is obeyed by the
standard Modularity Matrix. It means that all structors and
functionals of a given module should be respectively
orthogonal to all structors and functionals of all other modules

in the software system represented by the Modularity Matrix.
Orthogonality is calculated by repeated application of equation
(2). If the overall matrix orthogonality is not 1, with some
sparse modules, there is a case of coupling and the software
system must be redesigned by the software engineer to
eliminate coupling and assure orthogonality.

For instance, in a sub-system whose purpose is geodesy
applications, a module performing proper geodetic
calculations should be orthogonal to a module containing
generic algebraic functions needed for e.g. matrix
computations that may be needed within the geodetic
calculations. Any redefinition of a generic algebraic function
within a proper geodetic class, causes coupling of the geodetic
and the algebraic modules, in need of redesign.

VI. DISCUSSION

A. Agile-Design-Rules: Plausibility of the
Conceptual and Algebraic Software Theory

Our analysis in this work of the four original Agile-Design-
Rules in the formulation by Jeffries, as displayed in sub-section
A of the Introduction to this paper, shows the following picture:

• For consistency of the 1st rule on running tests
with the other rules, we proposed a novel
interpretation in which tests should be essentially
Design Tests, instead of just debugging unit tests;

• The 2nd rule says that Conceptual Integrity besides
being a general demand, it must be explicitly
expressed in the names of the entities, such as
classes and functions;

• The 3rd and 4th rules are completely explained by
the Propriety principle which is part of the
Conceptual Integrity approach; quantitatively it
corresponds to the demand of Linear
Independence among structors and among
functionals in the Modularity Matrix;

Overall, the explanations for the Agile-Design-Rules
reinforce the plausibility of the algebraic Linear Software
Models, based upon Conceptual Integrity, as a Software
Theory of software composition.

B. Rules Variability: Selectivity, Numbers and
Order

Any theory proposed to explain and justify methodological
rules of development, must be a self-consistent theory. A
possible outcome is that justification must be selective, i.e. not
all practical rules are derivable from the Software Theory and
the theory may generate additional practical rules.

In the particular case of the Agile-Design-Rules, the 1st rule,
on running tests, has a novel interpretation in order to comply
with the Software Theory self-consistency. Furthermore, a new
reasonable 5th rule of Orthogonality has been explicitly
generated, as suggested by Hunt and Thomas [22].

The particular order of the rules seems less important, as
long as they rigorously follow from the Software Theory. The

rule order is perhaps of interest for rule classification, in which
the 1st and 2nd rules strictly belong to a Conceptual viewpoint
and the 3rd and 4th rules belong to an algebraic viewpoint.

C. Future Work

In order to solidify the explanation and justification for the
Agile-Design-Rules one needs to analyze software system
examples of a variety of sizes.

Another open issue is the applicability of these or similar
rules to other development methodologies.

While linear independence is relevant to Modularity
Lattices, their orthogonality deserves further investigation.

D. Main Contribution

There are three main contributions of this paper. 1st, it
argues that Linear Software Models, the algebraic Software
Theory based upon Conceptual Integrity, is a rigorous basis for
software design methodologies. 2nd, it shows that the Agile-
Design-Rules essence is selectively explained and justified by
the Software Theory. 3rd, it proposed the idea of systematic
Design Tests.

ACKNOWLEDGMENT

The author thanks Reuven Yagel for his useful suggestions
which contributed to improve the paper.

REFERENCES

[1] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of

Modularity, MIT Press, Cambridge, MA, USA, 2000.

[2] K. Beck, Extreme Programming Explained: Embrace Change, 1st
edition, Addison-Wesley, Boston, MA, USA, 1999.

[3] K. Beck, “Embracing Change with Extreme Programming”, IEEE
Computer, Vol. 32, pp. 70-77, October 1999. DOI: 10.1109/2.796139

[4] K. Beck and M. Fowler, Planning Extreme Programming, Addison
Wesley, Boston, MA, USA, 2000.

[5] N. Bekkers, “4 Rules of Simple Design”, 2016. Web:
https://www.theguild.nl/4-rules-of-simple-design/

[6] F.P. Brooks, The Mythical Man-Month – Essays in Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[7] F.P. Brooks, The Design of Design: Essays from a Computer Scientist,
Addison-Wesley, Boston, MA, USA, 2010.

[8] Y. Cai and K.J. Sullivan, “Modularity Analysis of Logical Design
Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[9] P. Clements, R. Kazman and M. Klein, Evaluating Software
Architecture: Methods and Case Studies. Addison-Wesley, Boston, MA,
USA, 2001.

[10] S.P. De Rosso and D. Jackson, “What’s Wrong with Git? A Conceptual
Design Analysis”, in Proc. of Onward! Conference, pp. 37-51, ACM,
2013. DOI: http://dx.doi.org/10.1145/2509578.2509584.

 [11] I. Exman, “Linear Software Models”, video presentation of paper at
GTSE 2012, KTH, Stockholm, Sweden, 2012b. Web site:
http://www.youtube.com/watch?v=EJfzArH8-ls.

[12] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal of Software Engineering and
Knowledge Engineering, Vol. 24, pp. 183-210, 2014. DOI:
10.1142/S0218194014500089.

[13] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Matrix Eigenvectors”, Int. Journal of Software Engineering
and Knowledge Engineering, Vol. 25, pp. 1395-1426, 2015. DOI:
http://dx.doi.org/10.1142/S0218194015500308

[14] I. Exman and D. Speicher, “Linear Software Models: Equivalence of the
Modularity Matrix to its Modularity Lattice”, in Proc. 10th ICSOFT’2015
Int. Conference on Software Technology, pp. 109-116, ScitePress,
Portugal, 2015. DOI: 10.5220/0005557701090116

[15] I. Exman, “Linear Software Models: An Algebraic Theory of Software
Composition”, in Proc. 28th Int. Conf. on Software Engineering and
Knowledge Engineering, Keynote Abstract, KSI Research, Redwood
City, CA, USA, 2016.

[16] I. Exman, D.E. Perry, B. Barn and P. Ralph, “Separability Principles for
a General Theory of Software Engineering: Report on the GTSE 2015
Workshop”, ACM SIGSOFT Software Engineering Notes 41 (1): 25-27
(2016). DOI = 10.1145/2853073.2853093

[17] I. Exman and R. Sakhnini, “Linear Software Models: Modularity
Analysis by the Laplacian Matrix”, in Proc. 11th ICSOFT’2016 Int.
Conference on Software Technology, Volume 2, pp. 100-108,
ScitePress, Portugal, 2016. DOI: 10.5220/0005985601000108

[18] I. Exman and P. Katz, “Conceptual Software Design: Algebraic Axioms
for Conceptual Integrity”, in Proc. 29th Int. Conf. on Software
Engineering and Knowledge Engineering, pp. 155-160 , KSI Research,
Pittsburgh, PA, USA, 2017. DOI: https://doi.org/10.18293/SEKE2017-
148

[19] M. Fowler, “Beck Design Rules”, Blog, March 2015, URL:
https://martinfowler.com/bliki/BeckDesignRules.html.

[20] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, Springer-Verlag, Berlin, Germany, 1998.

[21] C. Haines, “Understanding the Four Rules of Simple Design”, Leanpub,
2014.

[22] A. Hunt and D. Thomas, The Pragmatic Programmer: From
Journeyman to Master, Addison-Wesley, Boston, MA, USA, 1999.

[23] D. Jackson, “Conceptual Design of Software: A Research Agenda”,
CSAIL Technical Report, MIT-CSAIL-TR-2013-020, 2013. URL:
http://dspace.mit.edu/bitstream/handle/1721.1/79826/MIT-CSAIL-TR-
2013-020.pdf?sequence=2

[24] D. Jackson, “Towards a Theory of Conceptual Design for Software”, in
Proc. Onward! 2015 ACM Int. Symposium on New Ideas, New
Paradigms and Reflections on Programming and Software, pp. 282-296,
2015. DOI: 10.1145/2814228.2814248.

[25] R. Jeffries, “Essential XP: Emergent Design”, October 2001. URL:
https://ronjeffries.com/xprog/classics/expemergentdesign/.

[26] R. Kazman, “Tool Support for Architecture Analysis and Design”, in
ISAW’96 Proc. 2nd Int. Software Architecture Workshop, pp. 94-97,
ACM, New York, NY, USA, 1996. DOI: 10.1145/243327.243618

[27] R. Kazman and S.J. Carriere, “Playing Detective: Reconstructing
Software Architecture from Available Evidence.” Technical Report
CMU/SEI-97-TR-010, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

[28] U. von Luxburg, “A Tutorial on Spectral Clustering”, Statistics and
Computing, 17 (4), pp. 395-416, 2007. DOI: 10.1007/s11222-007-9033-
z

[29] K. Owen, “What’s in a Name? Anti-Patterns to a Hard Problem”, 2016.
Web: https://www.sitepoint.com/whats-in-a-name-anti-patterns-to-a-
hard-problem/

[30] J.B. Rainsberger, “The Four Elements of Simple Design”, 2016. Web:
http://blog.jbrains.ca/permalink/the-four-elements-of-simple-design

[31] G. Sironi, “The 4 rules of simple design”, 2011. Web:
https://dzone.com/articles/4-rules-simple-design

[32] R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts” In: I. Rival (ed.): Ordered Sets, pp. 445–470, Reidel,
Dordrecht-Boston, 1982.

