
Bayesian Logistic Regression for software defect prediction
Jinu M Sunil

BITS Pilani Hyderabad Campus
Hyderabad, India

f20130423@hyderabad.bits-pilani.ac.in

Lov Kumar
BITS Pilani Hyderabad Campus

Hyderabad, India
lovkumar@hyderabad.bits-pilani.ac.in

N L Bhanu Murthy
BITS Pilani Hyderabad Campus

Hyderabad, India
bhanu@hyderabad.bits-pilani.ac.in

Abstract—Timely identification of bugs plays an important role in
delivering quality software. Defect prediction models help to detect or
rank the defect prone files so that the project management team can
allocate resources diligently or may seek help from external sources to
enable rigorous quality assurance activities on defect prone files. Though
defect prediction models have been built using several machine learning
algorithms, Bayesian approach of these models is not explored. We pro-
pose Bayesian logistic regression with non-informative and informative
priors to build defect prediction models. We seek to study if there are any
advantages of using Bayesian logistic regression over logistic regression
and the role of priors in the performance of Bayesian logistic regression.
A comparative study of the performance of Bayesian logistic regression
with other widely known classifies is also presented.

Index Terms—Bayesian regression, Informative priors

I. INTRODUCTION

Delivering quality software is one of the most important goals of
any IT vendor to survive in the highly competitive market. Bugs1 or
defects surfaced during any time in the evolution of a software, espe-
cially in the post-production phase, will be detrimental to the software
quality. In practice, defects get uncovered during post-production
phase in spite of expending good number of man hours for quality
assurance activities like different kinds of testing and code reviews.
Researchers and practitioners proposed the methodologies to curtail
these defects. Software Defect Prediction is one such technique to
predict defects, preferably before rolling to production environment,
where in the deeper assurance activities like code reviews and testing
by Subject Matter Experts (SMEs) can be performed on these defect
prone files. The defect prediction models have been developed using
machine learning algorithms like logistic regression, Naive Bayes
classifier and Random forest etc.
Logistic Regression is a probabilistic discriminative model where in
probabilities of positive and negative class are modeled by sigmoid
function.

P (Y = 1|w, x) = 1/(1 + e−w
T x) (1)

It gives the probability that a class/file is defective, given the feature
vector of a file x and parameter vector w. Suppose there are n obser-
vations where the ith observation is a tuple (xi, yi) , xi is a m dimen-
sional feature vector and yi is boolean valued representing wether the
file is defective (1) or not (0). D = {(x1, y1), (x2, y2)..(xn, yn)} is
the set of all training instances.
The following equality is obtained from bayes theorem.

P (w|D) = P (D|w)P (w)/P (D) (2)

where P (w|D) is posterior distribution, P (D|w) is likelihood and
P (w) is the prior distribution.
P (D) is a constant for a given D and hence

P (w|D) ∝ P (D|w)P (w) (3)

1bug and defect are used synonymously throughout this paper

In logistic regression, it is assumed that w follows uniform
distribution and hence any tuple in Rm+1 (m is the size of input
vector) is a candidate solution and hence

P (w|D) ∝ P (D|w) (4)

y′is are conditonally independent hence we can write equation 4 as:

P (w|D) ∝
n∏
1

P (yi|xi, w) (5)

Let pi = P (yi = 1|xi, w) = 1

1+e−wT xi

∴ P (w|D) ∝
n∏
1

P (yi|xi, w) =
n∏
1

pyii ∗ (1− pi)
1−yi (6)

The optimal w for logistic regression is determined as the maxi-
mum likelihood estimator (MLE) of the given training data.

wMLE = argmaxw(

n∏
1

pyii ∗ (1− pi)
1−yi) (7)

There are some drawbacks of logistic regression when applied to
defect prediction problem and they are listed below.

1) MLE’s are asymptotically unbiased. i.e E(wmle) ≈ wtrue as
n (number of instances/samples) becomes very large. It has
been shown that regression coefficients are biased for small
and moderate sample sizes [1]. Long et al. [2] offers a rough
heuristic about appropriate sample sizes: it is risky to use MLE
with samples smaller than 100, while samples larger than 600
seem adequate. For 44 datasets that are used in our study, the
average number of files in a project are 400.

2) Logistic regression works well when both non-event (no
bug) and event (bug) occur in the same ratio and the bias
is substantial for small and medium samples with skewed
ratio [3]. For defect prediction problem, generally the files
are skewed towards non-event (non-defective) and the number
of files in each of the project considered in our study is not high.

Logistic regression as stated above assumes uniform priors, but
in practice priors can follow any distribution. In Bayesian Logistic
regression a prior for w is ascertained from previous data or expert
opnion. Consider the case where the prior is a normal distribution
w ≈ N(µ,C) with mean µ and covariance C. The posterior
distribution is.

P (w|D) ∝ P (D|w) ∗ P (w) (8)

P (w|D) ∝ (

n∏
1

pyii ∗ (1−pi)
1−yi)∗

exp(−(w−u)TC−1(w−u)
2

)√
det (2πC)

(9)

It has been shown that Bayesian Logistic Regression improvises
prediction accuracy of learning models [4], [5]. Though there are

DOI reference number: 10.18293/SEKE2018-181

several learning models developed to predict defects, the Bayesian
perspective of the models have not been studied so far. We study
Bayesian Logistic Regression and attempt to answer the following
research questions:

• RQ1: Is there any significant difference between Logistic Re-
gression and Bayesian Logistic Regression?

• RQ2: Study informative and non-informative priors of w and test
whether there is any significant difference between the posterior
probabilities of the classifiers developed using these different
priors?

• RQ3: Is there significant difference between the Bayesian Lo-
gistic Regression and other widely used classifiers for defect
prediction problem?

The rest of the paper is organized as follows. In section II related
work is discussed. The metrics and datasets used in this study
are discussed in section III. A description of the bayesian logistic
regression model is given in section IV. The experimental setup
is described in section V. The results are discussed in section VI.
Threats to validity of the experiments are discussed in section VII.
Conclusions are presented at the end.

II. RELATED WORK

Bug Prediction models have been built using various metrics of
a software. Chidamber and Kermer (CK), Halstead metrics are well
known metrics used in defect prediction. However it has been shown
that lines of code (LOC) have strong correlation with proneness to
defect. Zhang et al. [6] concluded that LOC increases bug proneness.
CK metrics have been useful in detecting bugs ([7], [8]). Thomas et
al. [9] explored the relationship between code complexity and defect
proneness and arrived at the conclusion that complexity metrics are
very useful in defect prediction and also code bases that undergo
a lot of evolution are prone to defects. These metrics are used in
classification algorithms.
Bug detection algorithms are well studied. L. Guo et al. [10] applied
random forests to predict fault prone modules and found that random
forests were better when applied to large datasets. Neural networks
for bug prediction was explored by Rajni Jindal et al. [11] they
used ROC to interpret the results obtained. Czibula et al. [12] used
unsupervised algorithms for bug prediction and their rule mining
based approach resulted in as good results as other algorithms.
Relevant to this study Rakesh et al. [13] experimented with a bayesian
approach to predict number of bugs in a software and showed that
incorporating prior information gave beter results.
A study of benchmarking various algorithms was done by Stefan et
al. [14]. They conducted a freidman neymni with AUC-ROC as their
measure and showed that random forest outperformed all other mod-
els but not significantly. Also around 17 models including random
forest, logistic regression, naive bayes and multi layer perceptron
were shown to have no significant difference.

III. METRICS AND DATASET

TABLE II gives a description of software projects considered.
Only software projects with three or more versions are considered.
The data of these 12 projects is extracted from the Promise repository
[15]. The average number of classes over all projects and versions
is 400. The metrics considered for this study are given in TABLE
I. Jurecko and Madeyski [21] give a detailed description of all the
metrics.

TABLE I
METRICS

Author Metric
Chidamber and Kemerer [16] Weighted methods per class (WMC)

Depth of Inheritance Tree (DIT)
Depth of Inheritance Tree (DIT)
Coupling between object classes (CBO)
Response for a Class (RFC)
Lack of cohesion in methods (LCOM)

Bansiy and Davis [17] Number of Public Methods (NPM)
Data Access Metric (DAM)
Measure of Aggregation (MOA)
Measure of Functional Abstraction (MFA)
Cohesion Among Methods of Class (CAM)

Tang et al. [18] Inheritance Coupling (IC)
Coupling Between Methods (CBM)
Average Method Complexity (AMC)

Martin [19] Afferent couplings (Ca)
Efferent couplings (Ce)

McCabe [20] cyclomatic complexity (CC)

IV. METHODOLOGY

As discussed in the first section the prior p(w) need not necessarily
be a unifrom distribution but can be any distribution. There are two
kinds of priors informative and non-informative priors. Informative
priors can be derived from historical data or domain expertise whereas
Non-informative priors do not rely on previous data but can be
approximated by making use of training data.
In this study we make use of a Non-informative prior−Jeffery
prior and also propose couple of informative priors that follow a
multivariate normal distribution.

A. Choice of Priors

• Bayes-1 prior - This is an informative prior. The prior of
the current version is the posterior of the previous version of
the same software. For example consider the project ivy as
described in table II. Ivy has 3 versions, initially assume an
isotropic normal distribution w ≈ N(0, α−1I) as prior, and
obtain posterior with ivy 1.1 as the data

p(w|Divy1.1) = p(Divy1.1|w) ∗N(0, α−1I)

. A normal approximation of the above posterior distribution
will be used as prior for ivy 1.4

p(w|Divy1.4) = p(Divy1.4|w) ∗ p(w|Divy1.1)

.
• Bayes-2 prior - This is also an informative prior and is best

explained with an example. Consider again ivy described in
TABLE II,

1) Choose 66% instances of ivy 1.1 randomly let it be
Divy1.1 = 66% of ivy1.1. Train a logistic regres-
sion with this data, the resulting parameters are w1 =
argmaxw(P (Divy1.1|w))

2) Choose 66% instances of ivy 1.4 randomly let it be
Divy1.4 = 66% of ivy1.4. Train a logistic regres-
sion with this data, the resulting parameters are w2 =
argmaxw(P (Divy1.4|w))

TABLE II
12 PROMISE PROJECTS

Project Version No. of clases % of Bugs
Ant 1.3 125 16

1.4 178 22.4
1.5 293 10.9
1.6 351 26.2
1.7 745 22.2

Camel 1 339 3.8
1.2 608 35.5
1.4 872 16.6
1.6 965 19.48

Ivy 1.1 111 56.7
1.4 241 6.6
2 352 11.3

Jedit 3.2 272 33.09
4 306 24.53
4.1 312 25.31
4.2 367 13.08
4.3 492 2.23

Log-4j 1 135 25.18
1.1 109 33.94
1.2 205 92.19

Lucene 2 195 46.67
2.2 247 58.3
2.4 340 59.7

Poi 1.5 237 59.49
2 314 11.78
2.5 385 64.41
3 442 63.57

Synapse 1 157 10.19
1.1 222 27.03
1.2 256 33.59

Velocity 1.4 196 77
1.5 214 66.35
1.6 229 34.06

Xalan 2.4 723 15.21
2.5 803 48.19
2.6 885 46.44
2.7 909 98.79

Xerces 1.2 440 16.14
1.3 453 15.23
1.4 588 74.32

PC 1 735 8.3
2 1493 1.2
3 1099 12.5
4 1379 12.9

3) Repeat the above 2 steps around 30 times, giving 60
parameter vectors−30 from ivy 1.1 and 30 from ivy 1.4.

4) Find the best fit multivariate normal for these 60 points
5) Use this multivariate normal as prior for ivy 2.0

• Jefferey Prior-The jefferey prior is a ’non-informative’ prior
(uniform priors are also non-informative). p(w) ∝

√
det(I(w)),

where I(w) is the fisher information matrix. The fisher infor-
mation matrix in the case of logistic regression is
Ii,j(w) = −E[δ

2ln(Likelihood)
δwiδwj

] (wi and wj are the ith, jth

component of vector w. E[] is expected value). The posterior
distribution becomes.

P (w|D) ∝ P (D|w)
√
det(I(w)) (10)

It was shown by Firth [22] that this choice of prior reduces first
order bias in the case of logistic regression.

B. Sampling from the Posterior

In logistic regression we get a point estimate wMLE and in the
bayesian approach a set of samples are drawn from the posterior

P (w|D). For any testing example, average of all probabilities would
be taken into consideration to classify the testing instance. Suppose
k samples are drawn w1, w2...wk from P (w|D) then the probability
that a file with attribute x is defective would be.

P (y = 1|x,D) =
1

k

k∑
1

1/(1 + e−w
T
i x) (11)

We discuss below the two ways of drawing samples from posterior
p(w|D).
Laplace Approximation: The posterior is approximated to a
multivariate normal distribution with mean wmax and covariance
matrix K where wmax = argmaxw(p(w|D)) and K = H−1, H
is the hessian of p(w|D) computed at wmax. Samples are drawn
from this approximation. Laplace approximation works well when
the pdf is unimodal otherwise it might be a bad approximation [23]
and hence we have not used it in this study.

MCMC: The other way of drawing samples from the posterior
is the famous Markov Chain Monte Carlo (MCMC) which involves
constructing a markov chain with desired distribution as its
equilibrium distribution. In this study we use gibbs sampling which
is a MCMC method, to draw samples from the posterior.

Among these prior choices using jeffrey priors did not improve
performance the other two priors improved performance over simple
logistic regression significantly.

V. EXPERIMENTS

A. Cost Model

Normalized Expected Misclassification Cost (NEMC) is used to
compare performance of the models. Type 1 error is predicting a non-
defective file as defective and Type 2 error is predicting a defective
file as non-defective. For the defect prediction problem it is evident
that type 2 errors are costlier than type 1 errors. The cost ratio β is
defined as.

β =
cost of Type 2 error

cost of Type 1 error
(12)

False Positive Rate and False Negative Rate are defined as.

E1 =
FP

TN + FP
(13)

E2 =
FN

TP + FN
(14)

where FP-false positive, TN-true negative, FN-false negative and TP-
true positive

NEMC = β ∗ (E2 ∗ Pdf) + (E1 ∗ Pndf) (15)

Where Pdf and Pndf are prior probabilities of defective and non-
defective files in the dataset respectively. We refer the reader to
Khoshgoftaar et al. [24] for a detailed derivation of NEMC.

B. Implementaion settings

To answer RQ1 and RQ2, we implement logistic regression,
Bayesian logistic regression with Bayes-1 Prior, Bayes-2 Prior and
Jeffery Prior. We also implement Random Forest, Nave Bayes and
SVM for comparative study of these classifiers with Bayesian logistic
regression to answer RQ3. All models are implemented in R-
programming [25] and details are discussed below:
• Bayes 1 and Bayes 2: Logit function of the Bayes Logit

package [26] is used to implement both the bayesian logistic
regression methods. The function requires Data, prior mean and

prior variance as input. Logit function returns samples from the
posterior − 1000 points were sampled after a burn-in of 1000.

• Jeffrey Prior (JP): logistf [27] package is used to implement
logistic regression with jeffrey prior. The package computes the
fisher matrix and also retuns a set of samples from the posterior.

• Random forest (RF): randomforest [28] function is used to
implement random forest, the ntree variable was set to 100 after
experimentation.

• Naive bayes (NB): naiveBayes [28] function is used to imple-
ment naive bayes algorithm, this function requires data to be
un-normalized.

• Logistic regression (LR): glmnet [29] is used to implement
logistic regression algorithm, the regularization parameter was
computed using cross-validation.

• svm, l-svm: svm [28] function is used to implement both the
svm’s. l-svm kernel is linear whereas the kernel for svm is radial.

C. Training and Testing

Each model is trained on 66% of the last version of each of the
software projects mentioned in TABLE II and tested on the remaining
34% of the same project. For the bayesian methods the priors come
from the previous version of a project. Consider the ivy project for
elaboration of the training-testing process.

• Train RF, LR, NB, svm and l-svm on 66% of ivy 2.0 (last version
of ivy)

• Train JP, Bayes 1 and Bayes 2 on 66% of ivy 2.0 and the priors
are approximated from ivy 1.1 and ivy 1.4.

• Test all the models on the remaining 34% of ivy 2.0, Compute
NEMC on the testing data of ivy 2.0 for all models.

NEMC is used to compare performance of classifiers as discussed
in the previous section. NEMC for each model is averaged over
several runs (R). For example consider random forest (RF) and ivy
2.0

for i in 1→ R do
Dtrain = 66% of ivy2.0
Dtest = ivy2.0 −Dtrain
train RF on Dtrain
compute NEMC for RF over Dtest, let it be npi

end for
avg NEMC for RF = npRF =

∑R
1 npi
R

The above algorithm is used to compute average NEMC for all 8
models.

D. Statistical Tests for comparing classifiers

Classifiers are compared based on average NEMC and statistical
tests used in our study are discussed below:

• Two sample test − Wilcoxon signed rank test and rank test
In both cases the null hypothesis is

H0 : The two models have the same performance

and the alternative

Ha : The two models have different performance

H0 is rejected if pvalue < 0.05. For example, consider TABLE
III to compare Bayes 2 and Logistic Regression (LR) at β = 5.
Here two samples are NEMC values of Bayes-2 (column 2) and
LR (column 3)

• K sample test − Friedman test
Here the null hypothesis is

H0 : all classifiers perform alike

and the alternative

H1 : atleast 2 classifiers differ in performance

Friedman test assigns a mean rank to each classifier. And if the
null hypothesis is rejected a Nemenyi test is used to compare
all classifiers. The mean rank of two classifiers have to differ by
a critical difference (CD) for them to be considered significantly
different.

CD = qa;∞;L

√
L(L+ 1)

12K
(16)

where L is the number of classifiers and K is the number of
projects.

VI. RESULTS AND DISCUSSION

Type 2 error is much costlier than Type 1 Error for defect prediction
problem and the ratio of two costs (β) is an important parameter in
the performance measure NEMC. The cost ratio (β) varies with the
type of project and organization. We consider the cost ratio to be 5,
10, 20, 40 and conduct experiments to answer RQ1 through RQ3.
For each of the project and cost ratio, learning models are developed
using logistic regression and Bayesian logistic regression with Bayes-
1 Prior, Bayes-2 Prior and Jeffery prior. The average NEMC over
1000 runs for each of the project are tabulated in Table III, IV, V and
VI respectively. Wilcoxon signed rank test and rank test is performed
to check whether there is any significant difference between logistic
regression and Bayesian logistic regression (RQ1).
For Bayesian logistic regression with Bayes-1 prior and Bayes-2
prior, the null hypothesis for Wilcoxon signed rank test (WSR) and
rank test (RT) is rejected as pvalues are considerably less than 0.05.
Hence the Bayesian logistic regression with informative priors is
significantly better than logistic regression. The pvalues for different
values of β are tabulated in Table VIII. The average number of
data points, 400 for our study, is low and could lead to biased
estimates and this might be one reason for lower performance of
logistic regression. Also, the imbalance of defective files and non-
defective files could be another reason.
However it is found out that there is no significant difference between
the logistic regression and Bayesian logistic regression with Jeffery
prior. Jeffery prior is non-informative prior like uniform prior and it
is not generated from historical data and this could be one of the
reasons for downplay of Bayesian logistic regression with Jeffery
prior. Supporting the argument, it is also observed that there is a
significant difference between the performances of Bayesian logistic
regression with informative priors and that of non-informative priors
(RQ2).
After observing significantly better performance of Bayesian Logistic
regression (with informative priors) as compared to logistic regres-
sion, the obvious next step is to rank its performance with other
widely used classifiers like Random Forest, Nave Bayes, SVM etc
(RQ3). We have not considered Bayesian logistic regression with Jef-
fery prior in this comparative study as it is not significantly different
from Logistic Regression (LR). We have conducted Freedman test
to check whether there is any significant difference between these
classifiers - Bayes 1, Bayes 2, RF, LR, NB, L-SVM, SVM. It is
observed that there is significant difference between the performances
of these classifiers. Neymni test has been conducted to rank these
classifiers and the results are reported in Table VII. Random Forest

is ranked higher than all classifiers and this result is in tune with
other comparative studies [14], [30], [31]. The random forest (RF)
is an ensemble classifier and for reasons mentioned in [14], it ranks
higher than other classifiers. Bayesian logistic regression with Bayes-
2 prior and Bayes-1 prior rank 2nd and 3rd respectively but with no
significant difference from Random Forest (RF).

TABLE III
NORMALIZED PENALTY AT β = 5

β = 5 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 0.6505 0.7140 0.8952 0.7919 1.9743 0.597 0.6954
ANT 0.7197 0.6946 0.8072 0.7737 0.609 0.6569 0.8243

CAMEL 0.9143 0.8947 0.9551 0.9962 0.8192 0.8540 0.9916
XALAN 0.0268 0.0360 0.0560 0.0114 0.9149 0.0102 0.0110
JEDIT 0.1403 0.1423 0.1525 0.1308 0.2900 0.1301 0.1276

PC 0.0050 0.0047 0.0055 0.0057 0.0056 0.0058 0.0070
IVY 0.7132 0.7169 0.7107 0.7310 0.6004 0.7160 0.8256

LOG4J 0.2809 0.4614 0.5059 0.1459 2.3786 0.0971 0.0732
LUCENE 0.9301 0.7724 1.1920 1.0087 1.8144 0.7732 0.9008

SYANAPSE 0.9720 0.9738 1.1104 1.0479 0.9182 0.812 1.0251
VELOCITY 0.9461 0.9618 1.1267 1.0334 1.2760 0.8941 1.2530

XERCES 0.3294 0.3415 0.5492 0.3436 1.5594 0.1671 0.4893

TABLE IV
NORMALIZED PENALTY AT β = 10

β = 10 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 1.1383 1.3174 1.6982 1.4682 3.9051 1.0939 1.2691
ANT 1.3936 1.3215 1.5855 1.5138 1.12 1.2534 1.6114

CAMEL 1.8034 1.7376 1.8962 1.9867 1.5753 1.6650 1.9760
XALAN 0.0451 0.0654 0.1027 0.0118 1.8270 0.0151 0.011
JEDIT 0.2590 0.2625 0.2732 0.2553 0.3729 0.2532 0.2551

PC 0.0099 0.0093 0.0110 0.0114 0.0111 0.0116 0.0140
IVY 1.3894 1.3707 1.3932 1.4399 1.1048 1.4087 1.6490

LOG4J 0.4954 0.8631 0.9555 0.2199 4.7415 0.1307 0.0732
LUCENE 1.6974 1.3707 2.2785 1.8765 3.5797 1.3730 1.6320

SYANAPSE 1.8489 1.8511 2.1542 2.0187 1.7318 1.5253 1.9739
VELOCITY 1.7829 1.8181 2.1713 1.9712 2.4785 1.6755 2.4385

XERCES 0.6008 0.6251 1.0521 0.6393 3.0898 0.2866 0.9008

TABLE V
NORMALIZED PENALTY AT β = 20

β = 20 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 2.1137 2.5242 3.3042 2.8209 7.7667 2.0876 2.4164
ANT 2.7414 2.5753 3.1420 2.9941 2.1419 2.4464 3.1856

CAMEL 3.5816 3.4233 3.7783 3.9676 3.0873 3.2871 3.9448
XALAN 0.0819 0.1243 0.1963 0.0127 3.6511 0.0250 0.011
JEDIT 0.4964 0.5028 0.5146 0.5043 0.5388 0.4994 0.5102

PC 0.0197 0.0186 0.0219 0.0229 0.0220 0.0231 0.0281
IVY 2.7418 2.6782 2.7581 2.8575 2.1136 2.7941 3.2958

LOG4J 0.9246 1.6665 1.8548 0.3678 9.4673 0.1981 0.0732
LUCENE 3.2318 2.5673 4.4516 3.6120 7.1101 2.5724 3.0943

SYANAPSE 3.6026 3.6058 4.2419 3.9603 3.3592 2.9517 3.8717
VELOCITY 3.4565 3.5309 4.2605 3.8468 4.8836 3.2383 4.8097

XERCES 1.1436 1.1924 2.0578 1.2307 6.1507 0.5256 1.7239

VII. THREATS TO VALIDITY

The various threats to validity that may impact the analysis of
the proposed approach, the experimental study and conclusions are
presented here.

A. Internal Validity

NEMC as performance measure has been adopted by previous
studies. Performance measures of similar kind which give more
weightage to one kind of error is common in defect prediction [30],

TABLE VI
NORMALIZED PENALTY AT β = 40

β = 40 Bayes1 Bayes2 LR L-SVM NB RF SVM
POI 4.0646 4.9378 6.5161 5.5262 15.4899 4.0750 4.7109
ANT 5.4371 5.0829 6.2550 5.9547 4.1858 4.8324 6.3339

CAMEL 7.1380 6.7948 7.5424 7.9295 6.1114 6.5313 7.8823
XALAN 0.1553 0.2419 0.3834 0.0143 7.2993 0.0448 0.011
JEDIT 0.9713 0.9835 0.9974 1.0021 0.8706 0.9917 1.0204

PC 0.0394 0.0371 0.0437 0.0457 0.0439 0.0462 0.0561
IVY 5.4465 5.2932 5.4879 5.6929 4.1313 5.5648 6.5895

LOG4J 1.7829 3.2732 3.6534 0.6637 18.9188 0.3327 0.0732
LUCENE 6.3008 4.9606 8.7976 7.0829 14.1711 4.9713 6.0189

SYANAPSE 7.1101 7.1153 8.4172 7.8437 6.6138 5.8047 7.6672
VELOCITY 6.8036 6.9563 8.4389 7.5979 9.6938 6.3639 9.5520

XERCES 2.2292 2.3269 4.0693 2.4136 12.2726 1.0037 3.3701

TABLE VII
FRIEDMAN NEMENYI CD=2.62

β = 5 Mean rank
RF 2.083
Bayes2 3.167
Bayes1 3.500
SVM 4.417
L-SVM 4.667
NB 4.833
LR 5.333
β = 10 Mean rank
RF 2.250
Bayes2 3.167
Bayes1 3.250
SVM 4.417
L-SVM 4.583
NB 4.833
LR 5.500
β = 20 Mean rank
RF 2.333
Bayes2 2.917
Bayes1 3.083
L-SVM 4.667
SVM 4.667
NB 4.833
LR 5.500
β = 40 Mean rank
RF 2.583
Bayes2 2.917
Bayes1 3.083
NB 4.333
L-SVM 4.833
SVM 4.833
LR 5.417

TABLE VIII
WILCOXON SIGNED RANK TEST

(WSR) AND RANK TEST (RT)

β = 5 RT WSR
Bayes2-LR 0.006 0.001
β = 10 RT WSR
Bayes2-LR 0.0004 0.0005
β = 20 RT WSR
Bayes2- LR 0.0004 0.0005
β = 40 RT WSR
Bayes2-LR 0.0003 0.00004

β = 5 RT WSR
Bayes1-LR 0.005 0.001
β = 10 RT WSR
Bayes1-LR 0.0005 0.0005
β = 20 RT WSR
Bayes1- LR 0.0005 0.0005
β = 40 RT WSR
Bayes1-LR 0.0004 0.00004

[32]. The choice of the cost factor β was made under the assumption
that a defect uncovered in production is more costly than testing for
bugs in a defect free class. Different choices of cost factor β could
yield different results, it is up to the project team to set a suitable
value for β based on available resources and time constraints.

B. External Validity

The results presented holds good for the 12 Promise projects.
The experiment may lead to different results if another dataset is
used. Further the metrics used are a combination of several metrics
proposed by different authors, these metrics have been adopted in
several defect prediction studies. Different set of metrics could lead
to different results.

VIII. CONCLUSION

In this paper, we have formulated the Bayesian logistic regression
with three different priors for defect prediction problem. We study the
performance of Bayesian approach for logistic regression by making
use of several versions of 12 promise projects. The performance of
Bayesian logistic Regression with informative priors is significantly
better than logistic regression. The performance of Bayesian logistic
regression is very much dependent on the choice of prior. Bayesian
logistic regression with informative priors outperform their counter-
part, Bayesian logistic regression with non-informative prior. The
comparative study of all classifiers reveal that Random Forest ranks
first and Bayesian logistic regression with Bayes-2 prior, Bayesian
logistic regression with Bayes-1 prior ranks second and third as
compared with other widely used classifiers.

REFERENCES

[1] J. Van Houwelingen and S. Le Cessie, “Predictive value of statistical
models,” Statistics in medicine, vol. 9, no. 11, pp. 1303–1325, 1990.

[2] J. Scott Long, “Regression models for categorical and limited dependent
variables,” Advanced quantitative techniques in the social sciences,
vol. 7, 1997.

[3] G. King and L. Zeng, “Logistic regression in rare events data,” Political
analysis, vol. 9, no. 2, pp. 137–163, 2001.

[4] E. M. Schulz, D. Betebenner, and M. Ahn, “Hierarchical logistic
regression in course placement,” Journal of Educational Measurement,
vol. 41, no. 3, pp. 271–286, 2004.

[5] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian
logistic regression for text categorization,” Technometrics, vol. 49, no. 3,
pp. 291–304, 2007.

[6] A. G. Koru, D. Zhang, K. El Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Transactions on Software Engineering, vol. 35, no. 2, pp. 293–304,
2009.

[7] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics
for object-oriented design complexity: Implications for software defects,”
IEEE Transactions on software engineering, vol. 29, no. 4, pp. 297–310,
2003.

[8] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
software engineering, vol. 22, no. 10, pp. 751–761, 1996.

[9] T. Zimmermann, N. Nagappan, and A. Zeller, “Predicting bugs from
history.,” Software Evolution, vol. 4, no. 1, pp. 69–88, 2008.

[10] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of fault-
proneness by random forests,” in Software Reliability Engineering, 2004.
ISSRE 2004. 15th International Symposium on, pp. 417–428, IEEE,
2004.

[11] R. Jindal, R. Malhotra, and A. Jain, “Software defect prediction using
neural networks,” in Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2014 3rd International Con-
ference on, pp. 1–6, IEEE, 2014.

[12] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction
using relational association rule mining,” Information Sciences, vol. 264,
pp. 260–278, 2014.

[13] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and W. Meding,
“Analyzing defect inflow distribution and applying bayesian inference
method for software defect prediction in large software projects,” Journal
of Systems and Software, vol. 117, pp. 229–244, 2016.

[14] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[15] “The promise repository of empirical software engineering data,” 2015.
[16] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[17] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on software engineering,
vol. 28, no. 1, pp. 4–17, 2002.

[18] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-
oriented metrics,” in Software Metrics Symposium, 1999. Proceedings.
Sixth International, pp. 242–249, IEEE, 1999.

[19] R. Martin, “Oo design quality metrics,” An analysis of dependencies,
vol. 12, pp. 151–170, 1994.

[20] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[21] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
p. 9, ACM, 2010.

[22] D. Firth, “Bias reduction of maximum likelihood estimates,” Biometrika,
vol. 80, no. 1, pp. 27–38, 1993.

[23] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[24] T. M. Khoshgoftaar and N. Seliya, “Comparative assessment of software
quality classification techniques: An empirical case study,” Empirical
Software Engineering, vol. 9, no. 3, pp. 229–257, 2004.

[25] R Core Team, R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2013.

[26] N. G. Polson, J. G. Scott, and J. Windle, “Bayesian inference for logistic
models using polya-gamma latent variables.” Most recent version: Feb.
2013., 2013.

[27] G. Heinze and M. Ploner, logistf: Firth’s Bias-Reduced Logistic Regres-
sion, 2016. R package version 1.22.

[28] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch,
e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien, 2017. R package version
1.6-8.

[29] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Journal of Statistical
Software, vol. 33, no. 1, pp. 1–22, 2010.

[30] K. Muthukumaran, A. Dasgupta, S. Abhidnya, and L. B. M. Neti, “On
the effectiveness of cost sensitive neural networks for software defect
prediction,” in International Conference on Soft Computing and Pattern
Recognition, pp. 557–570, Springer, 2016.

[31] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward comprehensible
software fault prediction models using bayesian network classifiers,”
IEEE Transactions on Software Engineering, vol. 39, no. 2, pp. 237–257,
2013.

[32] K. Muthukumaran, A. Choudhary, and N. B. Murthy, “Mining github
for novel change metrics to predict buggy files in software systems,”
in Computational Intelligence and Networks (CINE), 2015 International
Conference on, pp. 15–20, IEEE, 2015.

