
Re-checking App Behavior against App Description
in the Context of Third-party Libraries

Chengpeng Zhang1, Haoyu Wang1,2∗, Ran Wang1, Yao Guo3, Guoai Xu1∗
1 Beijing University of Posts and Telecommunications, Beijing, China, 100876
2 Beijing Key Lab of Intelligent Telecommunication Software and Multimedia

3 Peking University, Beijing, China, 100871
Email: {buptkick, haoyuwang, wangran2015, xga}@bupt.edu.cn, yaoguo@pku.edu.cn

Abstract—Recent research suggested promising approaches
that identify potential malware by checking the inconsistence
between app description and actual behavior of the app. However,
state-of-the-art approaches have ignored the impact of third-
party libraries (TPLs) when detecting outliers, which could affect
the detection results greatly in two folds. On one hand, most
Android apps would not list the functionality of TPLs in app
description, which could cause false positives, as many apps that
use TPLs will be identified as outliers. On the other hand, it is
important to separate TPLs from custom code when analyzing the
sensitive behaviors, otherwise the malicious behaviors of custom
code will be obscured by TPLs. In this paper, we revisit the study
of checking app behavior against app description in the context
of TPLs. Experiment results on more than 400K Android apps
suggest that more than 54% of apps are no longer identified as
outliers after filtering TPLs, and we could identify roughly 50%
of new outliers. Furthermore, removing the impact of TPLs could
help to identify malware and pinpoint the malicious behavior
of custom code. Out results shed a light on applying the TPL
analysis to enhance a variety of mobile app analysis tasks.

I. INTRODUCTION

Mobile malware is rapidly becoming a serious threat in
recent years. The number of Android malware has risen
steadily. Recent report [1] shows that the number of Android
malware achieves almost 3.5 million in 2017, which has
affected billions of devices.

A wide range of research has thus proposed approaches to
analyze and detect malware, which could be roughly catego-
rized into static analysis methods [2]–[5] and dynamic analysis
methods [6], [7]. However, these approaches are usually not
help against new malware families [8], as in many cases, it
is difficult to differentiate between malware and benign apps
because they may share the same/similar sensitive behaviors.
For example, automated tools might detect that a flashlight
app and a map app both use users’ location information, while
the map app is more legitimate than the flashlight app from
the users’ perspective. As a result, the difference between the
users’ expectations and the actual behavior of the app should
be an important indicator for detecting a malicious app.

Recent research suggested promising approaches that iden-
tify potential malware/outliers by checking whether it behaves

*Co-corresponding authors
DOI reference number: 10.18293/SEKE2018-180

Knitting and Crochet Buddy

Sensitive APIs used in TPLs:

LocationManager.getLastKnownLocation()

TelephonyManager.getCellLocation()

Sensitive APIs used in custom code:

None

(1) Sensitive behaviors used in TPLs would lead to outlier apps

YaYa Globe

Sensitive APIs used in TPLs:

TelephonyManager;->getLine1Number

TelephonyManager;->getSimSerialNumber

LocationManager;->getLastKnownLocation

Sensitive APIs used in custom code:

TelephonyManager;->getLine1Number

TelephonyManager;->getSimSerialNumber

LocationManager;->getLastKnownLocation

(2) Sensitive behaviors used in TPLs would hide the
behaviors of custom code

Fig. 1. Motivating Examples

as advertised [9]–[11]. For example, WHYPER [9] and Au-
toCog [10] use natural language processing (NLP) techniques
to infer the apps expected behaviors from app descriptions, and
compare with the actual behavior extracted from the requested
permissions. CHABADA [11] uses Latent Dirichlet Allocation
(LDA) on app descriptions to identify the main topics of
each app, and then clusters apps based on related topics. By
extracting sensitive APIs used for each app, it can identify
outliers which use APIs that are uncommon for that cluster.
For example, for a group of 20 wallpaper apps, the app that
has uncommon behaviors (e.g., access location and contacts)
is probably up to malware.

Our work is motivated by CHABADA [11]. Although
their experiment results are promising, they have ignored an
important issue: the impact of third-party libraries (TPLs).
We argue that TPLs should be considered separately when
checking app behavior against app description for two reasons.

First, TPLs (e.g., ad library, third-party analytics, social
networking libraries, etc.) are widely used in Android apps.
Previous work [12] suggested that more than 60% of the code
in Android apps belongs to third-party libraries on average.
However, the use of TPLs could affect the outliers detection
due to the reason that most Android apps would not list
the functionalities of TPLs in their descriptions. In our
initial experiment on 100 popular Android apps, we found that

Fig. 2. Study Methodology

95% of them do not explicit show the functionalities of TPLs
in app descriptions. For instance, as shown in Figure 1 (1),
the app (androiddeveloperjoe.knittingbuddy) uses the Amazon
Ads and InMobi library to display ads. It was identified as
outliers because several sensitive APIs introduced by TPLs,
although there are no sensitive behaviors exist in its main code.

Second, we argue that it is important to separate TPLs
from app custom code, which could be then used to
determine whether the sensitive behaviors are introduced
by custom code or not. Otherwise, the malicious behaviors
of core functionalities will be obscured by TPLs. For example,
for a group of 20 wallpaper apps, the malicious app that tracks
user’s location information in its main code will be identified
as normal app if most of these apps embed advertisement
library that would access location data for targeted advertising.
Indeed, more than 70% of popular apps in Google Play use
advertising libraries [13]. The purposes of sensitive behaviors
used in custom code and TPLs are usually different [14], [15].
As shown in Figure 1 (2), the sensitive behaviors used in TPLs
would dilute the behaviors of custom code.

It is worth noting that some TPLs also show aggressive and
malicious behaviors, as reported by many previous work [16]–
[19]. However, the key idea of this paper is to separate TPLs
from app custom code and determine whether the sensitive
behaviors are introduced by custom code. The malicious
behaviors introduced by app developers in the core function-
alities of the app will be more obvious if we remove the noisy
introduced by TPLs.

Hence, in this paper, we revisit the study of checking
app behavior against app description in the context of TPLs.
We take the first step to examine the impact of TPLs in
pinpointing outlier apps. Experiment results on more than 400k
apps (an order of magnitude higher than CHABADA) from
Google Play suggest that TPLs introduce great impact on the
outlier detection of Android apps, with more than 54% of
apps are no longer identified as outliers after excluding TPLs.
Besides, we could identify more than 50% of new outliers

because removing the impact of TPLs could sharp the sensitive
behaviors of the main functionalities.

II. STUDY METHODOLOGY

A. Crawling the dataset

We have downloaded more than 400 thousand free Android
apps from Google Play in March, 2015. We crawled the meta-
data of these apps, including the app names, app categories,
app ratings, the number of installs, etc. We also downloaded
all the apk files of these apps.

B. Overall Architecture

The overall architecture of our study is shown in Figure 2.
For the crawled apps, we first apply natural language process-
ing (NLP) techniques to the app descriptions for filtering and
stemming. Then we take advantage of LDA to identify topics
from app descriptions, and each app is represented as a topic
vector. Apps with similar topic vectors will be grouped in the
same cluster. For apps in the same cluster, we extract sensitive
APIs used in them. Apps with unusual API used patterns will
be labeled as outliers. Note that to explore the impact of TPLs
on the outliers detection, we use a clustering-based approach
to identify TPLs used in these apps and compare the results
with and without TPLs.

C. Description-based Clustering

1) App Description Preprocessing: Considering that a too
short description cannot represent the functionality of the app
well, we first exclude the apps with the length of descriptions
less than 10 words in our dataset. Then we use the language-
detector [20] tool to detect the language of app description.
Note that we only consider the apps whose descriptions are
written in English in this work. Take advantage of Mallet [21],
we build a list to filter out stop-words. Then we use the
Snowball [22] to turn the words into stem form. At last, after
app description preprocessing, we have 276,333 app samples
left in the dataset.

TABLE I
THE 30 TOPICS EXTRACTED FROM THE 276,333 APP DESCRIPTIONS

Topic
Name

Topic Keywords

0 sociality share facebook twitter social chat app friend messag email send network post love peopl free photo creat sms featur easi
1 picture pictur photo imag camera beauti make color design fashion galleri dress girl hair style effect frame choos creat app share
2 religion church god prayer bibl christian book chapter app india indian islam lord read audio listen quran vers holi hindi day
3 racing race car game speed play free slot drive win machin coin real simul truck park excit fun featur spin experi
4 workout workout app weight number calcul exercis time train fit bodi measur result unit simpl convert track math system program base
5 shopping shop servic offer search find book app store price order deal featur product locat custom direct inform home special mobil
6 child child kid babi children game learn fun play anim app color draw pictur cat dog pet educ age free sound
7 jumping play game jump run level shoot control fli fun enemi score tap collect challeng featur bird zombi power avoid world
8 sport sport team score footbal player club world golf soccer countri leagu match app game live cup play includ flag fan
9 geography citi nation state art year south area counti north west american countri includ san world award histori cultur york local

10 theme theme icon font keyboard launcher instal download app appli set free select screen widget home press android function phone support
11 video video mobil watch app movi free download content youtub connect updat channel stream copyright offici disclaim latest devic share
12 scenery beauti natur enjoy fish water christma magic world tree sea room flower beach night day time light blue hous halloween
13 finance money account mobil manag app bank credit check pay bill view payment onlin access secur transact transfer balanc servic inform
14 cooking cook food recip make easi eat drink kitchen step fruit cake ingredi app love delici healthi cream ice chicken restaur
15 business busi compani manag servic provid product develop market custom client industri experi profession design technolog work job offer
16 audio audio music song radio listen play record app download station stream artist lyric free favorit rock danc player live featur
17 life life time peopl make thing good day work person start love feel give tip find learn mind fact back don’t
18 mobile mobil phone call android devic app applic contact connect number messag user sms network wifi control data send password secur
19 calendar calendar event inform school schedul app mobil view student class date access featur offici news confer connect find updat communiti
20 accounting list real properti applic estat inform licens agreement licensor provid term data termin sale user mls servic state relat right
21 ringtone rington sound quot app free applic android phone alarm set funni friend make fun joke inspir sleep effect download notif
22 dictionary dictionari word english learn translat languag studi app test question answer chines letter quiz text search spanish french phrase featur
23 system set button time screen widget app tap click mode display press select devic start phone batteri light version chang featur
24 puzzle puzzl game play score level point fun time challeng match mode player card number free move block simpl bubbl ball
25 news news read latest updat magazin app issu star content articl inform access stori world featur free download subscript www page
26 wallpaper wallpap background live imag set free screen galaxi phone app applic devic support download home pictur anim samsung tablet
27 health healt medich app treatment inform mortgag care help patient doctor profession complet emerg diseas time featur easi access free
28 map map citi locat app guid inform travel hotel place find search navig weather gps tour rout time restaur featur trip
29 documenter file manag android app version devic support applic note data featur search user list creat card googl record save code

2) Identifying Topics from App Descriptions: A “topic”
consists of a cluster of words that frequently occur together
in app descriptions. To identify sets of topics, we resort to
topic modeling using LDA based on Mallet [21]. Note that
we choose the same number of topics (n=30) to be identified
by LDA as CHABADA [11] for comparison. Table I shows the
result of 30 topics (with top 20 keywords of each topic) that we
have identified from the 276K app descriptions. Note that the
“topic name” in the second column is the abstract concept we
manually assigned to that topic, which is a meaningful word
that can represent the corresponding topic. As a result, each
app is represented as a topic vector, and each dimension of
the topic vector represents the probability that an app belongs
to the corresponding topic.

3) App Clustering: To identify the clusters of apps with
similar descriptions, we take advantage of K-means++ algo-
rithm1 for app clustering based on the topic vectors.

Note that the K-means++ algorithm needs to be given either
some initial potential centroids, or the number K of clusters
to identify. Thus one challenge here is to identify the number
of clusters that should be created. One straight-forward idea
is to run the algorithm multiple times and each time with a
different K number. Based on a set of clustering results, we
would then be able to identify the best one.

We propose to use Genetic Algorithm (GA) [23] combined
with K-means++ to determine the best number of clusters,

1https://en.wikipedia.org/wiki/K-means%2B%2B

which was shown to be effective in previous work [24].
GA is suitable to this problem space because the selection,
crossover and mutation steps of GA could help to choose the
optimal value of K. With the generations evolving, the better
individuals with higher fitness values will emerge [24]. As a
result, take advantage of GA, we will get the best value of K.

We used the silhouette coefficient2 as the fitness value to
measure the effectiveness of clustering results. Note that each
cluster is represented by a silhouette coefficient, which is based
on the comparison of its tightness and separation. This silhou-
ette coefficient shows how closely each element is matched
to the other elements within its cluster, and how loosely it is
matched to other elements of the neighboring clusters. The
range of the value of silhouette coefficient is -1 to 1. When
the value of the silhouette coefficient of an element is close to
1, it means that the element is in the appropriate cluster. Thus,
we compute the average of the silhouette coefficient for each
solution using K as the number of clusters, and we select the
solution whose silhouette coefficient was closest to 1.

In this paper, we use the scikit-learn [25] to implement K-
means++ algorithm and the calculation of silhouette coeffi-
cient. The implementation of GA is based on Pyevolve [26], an
evolutionary computation framework. As a result, to achieve
the highest silhouette coefficient on average, we choose 29 as
the best number of clusters should be created. The clustering
result for the 267,333 apps we analyzed is listed in Table II.

2https://en.wikipedia.org/wiki/Silhouette (clustering)

TABLE II
THE RESULT OF APP CLUSTERING.

Apps Most Important Topics

0 5825 sport(94.2%), puzzle, jumping
1 11791 business(95.3%), accounting, finance
2 11508 shopping(98.5%), cooking, picture
3 8660 workout(98.6%), finance, racing
4 4711 cooking(99.8%), geography, theme
5 7967 audio(96.9%), geography, video
6 5079 racing(99.8%), jumping, geography
7 5800 health(98.3%), geography, mobile
8 7853 dictionary(99.4%), theme, puzzle
9 18498 puzzle(99.2%), jumping, racing
10 10449 mobile(99.5%), finance, theme
11 5817 ringtone(97.9%), jumping, wallpaper
12 10084 calendar(99.5%), geography, finance
13 6567 finance(100.0%)
14 12485 documenter(95.6%), mobile, finance
15 7025 scenery(78.2%), jumping(5.4%), wallpaper(3.7%)
16 5954 theme(100.0%)
17 10791 system(95.7%), theme, wallpaper
18 9084 map(98.8%), geography, calendar
19 7952 picture(99.7%), wallpaper, geography
20 8539 sociality(94.3%), mobile, picture
21 17604 jumping(99.9%), geography, wallpaper
22 28138 geography(20.7%), accounting(5.5%), jumping(4.8%)
23 6410 religion(98.5%), geography, wallpaper
24 8194 child(97.0%), puzzle, picture
25 7088 video(99.4%), jumping, wallpaper
26 8069 news(95.4%), geography, video
27 9518 life(88.8%), jumping, cooking
28 8873 wallpaper(99.8%), theme, scenery

Each cluster contains apps whose descriptions contain similar
topics, as shown in Column Most Important Topics. The
percentages reported in the last column represent the weight
of the dominant topic within each cluster.

D. App Processing

1) Identifying the Sensitive APIs: To identify outliers re-
garding their actual behavior, we need to identify the sensitive
APIs used in each app. CHABADA uses a set of sensitive APIs
derived from STOWAWAY [27]. The dataset was published
in 2011 and it contains a list of sensitive APIs of Android
version 2.2, which is outdated and incomplete. In this work,
We use a list of permission-related APIs from PScout [28],
which contains 680 sensitive APIs.

As shown in previous work [29], APIs with the same name
but different parameters always share the similar functionali-
ties. Thus we only take account of the name of the API, i.e.,
the APIs with the different parameters but the same name are
identified as the same API. At last, there are only 428 APIs
left from the 680 permission-sensitive APIs.

For each app, we generate an API feature vector where
each dimension represents the invocation frequency for the
corresponding API. Note the previous work [30] suggested
that there are unreachable APIs in Android apps, i.e., these
apps do not declare the corresponding permissions. Thus, we
extract the declared permissions for the manifest of each app
and filter the APIs that use undeclared permissions.

2) Identifying Third-party Libraries: One key idea in this
paper is to measure the impact of third-party libraries in
description-based outlier detection. Thus, we first need to

identify the code that belongs to third-party libraries, and then
we generate the API feature vector for each app with and
without third-party libraries respectively.

In this paper, we have implemented a clustering-based
approach which is shown to be effective in LibRadar [31]–[33]
to identify the common frameworks used in apps. We extract
the API call features at the package level and then we enforce
strict comparison here to cluster all the features into groups,
which means that only when the features of two packages are
exactly the same can they be clustered. We choose the 128 as
the threshold to identify third-party libraries, which means that
as long as the package has occurred in more than 128 apps,
we will regard it as the common library. With this threshold,
we are able to find that roughly 70% of the code belongs to
TPLs. Then we check the usage of sensitive APIs in TPLs to
generate the feature vectors without TPLs as comparison.

E. Outliers Detection

In this paper, we use the Isolation Forest [34] algorithm to
identify outliers, which was shown to be effective in identi-
fying anomalous points in a large number of data. Besides,
Isolation Forest algorithm has low memory requirements and
linear time complexity, so it is more suitable for processing
high-dimensional data. Note that the Isolation Forest algorithm
needs two important parameters, one is the amount of trees,
the other one is the amount of samples. In our study, we use
the default value of sklearn, i.e., the amount of trees is set as
100 and the amount of samples is set as 256.

III. EVALUATION

A. The Impact of Third-party Libraries

First, we want to answer the research question: what is the
impact of TPLs in pinpointing outliers? For this purpose, we
compare the results of outliers detection using Isolation Forest
algorithm with and without TPLs respectively. The result of
outliers detection is shown in Table IV.

Surprisingly, it turns out that only 721 (46.5%) apps are still
identified as outliers while excluding TPLs. Moreover, 723
apps (50.1%) are newly identified as outliers after excluding
TPLs in our experiment. Thus we further analyzed the reasons
that leading to the inconsistence between the results.

1) “False Positive” Outliers: For the apps that are no
longer identified as anomalies after excluding TPLs, we ran-
domly picked 5 apps for each cluster (145 apps in total) and
manually inspect the code for understanding the reason.

At a result, we found that almost all these apps belong to the
reason that TPLs have introduced sensitive APIs that are not
rarely used in the custom code. For example, the app named
“Puzzle Code” (with package name “com.yiqusoft.puzzle”)
uses two ad libraries named “domob” and “adsmogo”. These
two ad libraries use several sensitive APIs (e.g., “getLast-
KnownLocation”) to display customized ads. However, these
sensitive APIs are never invoked in the custom code. Thus,
this app was identified as outliers without filtering TPLs.

TABLE III
THE RESULT OF MANUALLY ANALYSIS.

Cluster No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total

With TPLs 1 0 2 1 2 6 0 6 1 2 3 6 1 2 0 0 9 2 0 7 3 2 2 6 2 0 0 6 9 81

W/O TPLs 2 0 4 4 2 10 2 10 2 4 4 6 2 4 0 0 10 2 0 8 4 4 4 10 4 0 0 10 10 122

TABLE IV
THE RESULT OF OUTLIERS DETECTION.

Outliers # Common % Percent

Before 1,551 721 46.5%

After 1,444 721 49.9%

2) “False Negative” Outliers: For the apps that are newly
identified as outliers, we randomly picked 5 apps for each
cluster (a total number of 145 apps) and manually inspect the
code to explore the reason.

We found that the anomalous behaviors introduced by app
developers in the core functionalities of the app will be more
sharp if we remove the impact of TPLs. For instance, the app
“com.appgame7.fruitsbreak” uses a certain amount of sensitive
APIs to collect user’s phone number and location information
in both custom code and TPLs. Most of the apps in the
same cluster have embedded the ad libraries that share similar
sensitive behaviors. The malicious behaviors in the custom
code will be more obvious after removing the impact of TPLs.

B. The Behaviors of Outliers

We further explore the research question: whether our
approach could be used to identify malicious behaviors of
Android apps? For this purpose, we first manually inspect
the top outliers as produced by our technique and classified
them as malicious or normal. Then we upload all the identified
outliers (2,274 apps in total) to VirusTotal3 to check how many
of them are flagged as malicious.

1) Manually Inspection: Only human can interpret properly
what is in an app description. Therefore, we manually inspect
the top 10 outliers for each cluster (290 apps in total). We first
examine their descriptions, the list of sensitive APIs used, and
the corresponding decompiled code. Then we install them on
a real smartphone (nexus 5) and manually test it. Here we use
TCPDump4 to collect and analyze the network traffic.

Note that some outliers may not be malicious due to
the inadequate descriptions. We would classify an app as
malicious if: (1) the app collects user’s privacy information
(e.g., phone number and location) and uploads it to a remove
server without explicit advertise the sensitive behaviors either
in its description or in its privacy policy. For example, the app
“com.appblast.popclock” is a simple alarm clock app, whereas
it collects user’s phone number and uploads it to a remote
server. Another Android app “com.yoursite.lockfingerscanner”
claims that it is able to achieve finger unlock function, whereas
it is a grayware that only contains download links of other
apps. (2) the app is reported as malware by the pre-installed

3virustotal.com
4http://www.tcpdump.org

anti-virus tool5 if we install it on the smartphone. For example,
after the app named “TouchNPaint” (with package name
“game.child.paint”) is installed, the AVL engine will report
it as malware with family name “a.gray.mfpad”. The result
of manually analysis is shown in Table III. After eliminating
TPLs, we could identify more malicious outlier apps.

TABLE V
DETECTION RESULT OF VIRUSTOTAL.

“False Positive”
Apps

“False Negative”
Apps

Common

Flagged by VT 205 359 434

Total 830 723 721

Percentage 24.70% 49.65% 60.19%

2) Detection Result of VirusTotal: We then upload all the
identified outliers (with and without TPLs, 2,274 apps in total)
to VirusTotal to check how many of them are flagged by
current anti-virus engines. As shown in Table V, 639 apps
are labeld as malicious by at least one engines before filtering
TPLs, and the number rised to 793 apps if we removed the
impact of TPLs. It is also interesting to note that, although
roughly 25% of the “false positive” apps are flagged by
VirusTotal, most of them are labeld as “AdWare”, which means
that the malicious behaviors are introduced by ad libraries that
embedded in the app. This result suggests that removing the
impact of TPLs could help to better pinpoint the malicious
behaviors of custom code.

IV. DISCUSSION

In this paper, we revisit the study of checking app behavior
against app description in the context of TPLs. We use several
heuristic methods similar with that used in CHABADA [11]
to identify the topics and clusters, which could be potentially
improved. Moreover, we mostly rely on manually efforts to
analyze the results, which may exist bias.

Our study suggests that TPLs play an important role in
mobile app analysis, which could be potentially used to
enhance a variety of mobile app analysis tasks, e.g., malware
detection and app clone analysis [12], [35].

V. RELATED WORK

A large mount of related work focus on bridging the gap
between app description and user expectation. WHYPER [9]
and AutoCog [10] use NLP techniques to infer permission use
from app descriptions. Yu et al. [30] revisited this approach
and revealed that using description and permission will lead

5AVL for Android, com.antiy.avl

to many false positives. Thus they proposed exploiting the
privacy policy and its bytecode to enhance the malware
detection based on app description. Our work is motivated
by CHABADA [11], which uses LDA on app descriptions
to identify the main topics of each app, and then clusters
apps based on related topics. By extracting sensitive APIs
used for each app, it can identify outliers which use APIs
that are uncommon for that cluster. Ma et al. [29] extended
CHABADA by proposing an active and semi-supervised ap-
proach to detect malware using both known benign and
malicious apps. Wang et al. [15], [36], [37] proposed to infer
the purpose of permission use. However, all of the previous
studies do not consider the impact of TPLs when checking
whether the app behaves as it advertised.

VI. CONCLUDING REMARKS

In this paper, we present a study to show that TPLs play
an important role in pinpointing the inconsistence between
app description and app behavior. Based on the extensive
experiment on more than 400K apps, we show that more
than half of the apps are no longer identified as outliers after
filtering TPLs, and we could identify more new outliers. The
results in this paper could shed a light on a new perspective
for researchers that TPLs could be potentially used to enhance
a variety of mobile app analysis tasks.

VII. ACKNOWLEDGEMENT

This work is supported by the science and technology
project of State Grid Corporation of China: “Research on Key
Technologies of Security Threat Analysis and Monitoring for
Power Mobile Terminals” (Grant No. SGRIXTKJ[2017]265).

REFERENCES

[1] “2018 malware forecast: the onward march of android malware,”
https://nakedsecurity.sophos.com/2017/11/07/2018-malware-forecast-
the-onward-march-of-android-malware/, 2018.

[2] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day android malware detection,” in MobiSys
2012, pp. 281–294.

[3] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
Asia JCIS 2012. IEEE, 2012, pp. 62–69.

[4] M. Liu, H. Wang, Y. Guo, and J. Hong, “Identifying and analyzing the
privacy of apps for kids,” in Proceedings of the HotMobile 2016, pp.
105–110.

[5] Z. Kan, H. Wang, G. Xu, Y. Guo, and X. Chen, “Towards light-weight
deep learning based malware detection,” in The 42nd IEEE International
Conference on Computers, Software & Applications (COMPSAC 2018).

[6] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems, vol. 32, no. 2, p. 5, 2014.

[7] L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis.” in
USENIX security symposium, 2012, pp. 569–584.

[8] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are Android apps
removed from google play? a large-scale empirical study,” in 15th
International Conference on Mining Software Repositories (MSR 2018).

[9] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards
automating risk assessment of mobile applications,” in USENIX Security
2013), pp. 527–542.

[10] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applica-
tions,” in CCS 2014, pp. 1354–1365.

[11] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in ICSE 2014, pp. 1025–1035.

[12] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and
accurate two-phase approach to android app clone detection,” in ISSTA
2015, pp. 71–82.

[13] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, pp. 221–233,
Jun. 2014.

[14] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang,
“Expectation and Purpose: Understanding Users’ Mental Models of
Mobile App Privacy Through Crowdsourcing,” in UbiComp ’12, 2012,
pp. 501–510.

[15] H. Wang, Y. Li, Y. Guo, Y. Agarwal, and J. I. Hong, “Understanding
the purpose of permission use in mobile apps,” ACM Trans. Inf. Syst.,
vol. 35, no. 4, pp. 43:1–43:40, Jul. 2017.

[16] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investi-
gating user privacy in Android ad libraries,” in MoST 2012.

[17] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in WISEC’12, pp. 101–112.

[18] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do
mobile apps violate the behavioral policy of advertisement libraries?”
in Proceedings of the HotMobile 2018, pp. 75–80.

[19] H. Wang, Y. Guo, Z. Tang, G. Bai, and X. Chen, “Reevaluating android
permission gaps with static and dynamic analysis,” in Proceedings of
GlobeCom, ser. GlobeCom’15, 2015.

[20] “Language detection library for Java,” 2016. [Online]. Available:
https://github.com/optimaize/language-detector

[21] “Mallet: A machine learning for language toolkit,” 2002. [Online].
Available: http://mallet.cs.umass.edu

[22] “Snowball: A language for stemming algorithms,”
http://snowballstem.org, 2001.

[23] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, no. 2, pp. 95–99, Oct 1988.

[24] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyand, and J. Klein, “Char-
acterizing malicious android apps by mining topic-specific data flow
signatures,” Information and Software Technology, vol. 90, pp. 27 – 39,
2017.

[25] “Scikit-learn: Machine learning in Python,” http://scikit-learn.org, 2011.
[26] “Pyevolve: A complete genetic algorithm framework written in pure

Python,” 2009. [Online]. Available: http://pyevolve.sourceforge.net
[27] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of

mobile malware in the wild,” in Proceedings of SPSM 2011, pp. 3–14.
[28] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the

android permission specification,” in CCS 2012, pp. 217–228.
[29] S. Ma, S. Wang, D. Lo, R. H. Deng, and C. Sun, “Active semi-

supervised approach for checking app behavior against its description,”
in COMPSAC 2015, pp. 179–184.

[30] L. Yu, X. Luo, C. Qian, S. Wang, and H. K. Leung, “Enhancing the
description-to-behavior fidelity in android apps with privacy policy,”
IEEE Transactions on Software Engineering, 2017.

[31] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in ICSE ’16, 2016,
pp. 653–656.

[32] H. Wang and Y. Guo, “Understanding third-party libraries in mobile
app analysis,” in Proceedings of the 39th International Conference on
Software Engineering Companion, ser. ICSE-C ’17, 2017, pp. 515–516.

[33] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Automated detection and
classification of third-party libraries in large scale android apps,” Journal
of Software, vol. 28, no. 6, pp. 1373–1388, 2017.

[34] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 3:1–
3:39, Mar. 2012.

[35] W. HaoYu, W. ZhongYu, G. Yao, and C. XiangQun, “Detecting repack-
aged android applications based on code clone detection technique,”
SCIENCE CHINA Information Sciences, vol. 44, no. 1, pp. 142–157,
2014.

[36] H. Wang, J. I. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in The 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp 2015),
pp. 1107–1118.

[37] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, and J. Hong, “An
explorative study of the mobile app ecosystem from app developers’
perspective,” in Proceedings of the 26th International Conference on
World Wide Web (WWW 2017), pp. 163–172.

