A Topic Modeling Approach for Code Clone Detection

Sandeep Reddivari
School of Computing
University of North Florida
Jacksonville, FL, USA 32224

ABSTRACT

In this paper we investigate the potential benefits of Latent
Dirichlet Allocation (LDA) as a technique for code clone de-
tection. Our objective is to propose a language-independent,
effective, and scalable approach for identifying similar code
fragments in relatively large software systems. The main
assumption is that the latent topic structure of software ar-
tifacts gives an indication of the presence of code clones. In
particular, we hypothesize that artifacts with similar topic
distributions contain duplicated code fragments. To test this
novel hypothesis, we conduct an experimental investigation
using multiple datasets from different application domains.
Preliminary results show that, if calibrated properly, topic
modeling can deliver satisfactory performance in capturing
different types of code clones. It also achieves levels of accu-
racy adequate for practical applications, showing compara-
ble performance to already existing tools that adopt different
clone detection strategies.

Keywords
Refactoring, Topic Modeling, Code Clones

1. INTRODUCTION

Code clones are similar code fragments that appear in a
software system [10]. It is estimated that a typical mid-size
industrial system contains up to 20% of duplicated code [4,
15, 24]. Clones are often produced by the copy-&-paste prac-
tice of programmers [16]. Rather than rewriting working
code fragments from scratch, programmers prefer to copy,
and perhaps slightly modify, working code that has already
been tested before [9]. The main assumption is that, sim-
ply making a copy of a working code is faster and is less
likely to introduce new bugs, especially when a deadline
is approaching [29]. However, from a refactoring perspec-
tive, code clones are considered a major code smell [3, 10].
They significantly increase the maintenance cost and the
error proneness of the code [14, 20]. For instance, incon-
sistent changes to code duplicates can lead to unexpected
behavior [24]. Therefore, clones must be kept in sync dur-
ing maintenance [21]. In particular, when a bug is fixed in
an instance of a cloned code, all other duplicates must be
altered as well. In addition, clones decrease the modularity
of the system and its level of encapsulation, as well as unnec-
essarily increase the size of the code which can complicate
future maintenance tasks and reduce understandability [9].

DOI reference number: 10.18293/SEKE2018-179

Mohammed Salman Khan
School of Computing
University of North Florida
Jacksonville, FL, USA 32224

Therefore, code clones have to be refactored whenever de-
tected [18, 30]. Based on the notion of similarity established
between code fragments, various types of code clones can be
identified. Clones can range from exact matches where the
same code fragment is copied, to functional clones where
two code fragments perform the same operation but they
are syntactically and semantically different [30, 4, 19]. A
plethora of clone detection tools have been proposed in the
literature [8, 30]. Such tools often support a large variety
of programming languages, and adopt different clone detec-
tion strategies, at different levels of complexity, designed
to target various types of clones. Despite these advances,
the usage of clone detection tools is still not pervasive in
industry [14]. In general, most of these tools are still far
from achieving optimal accuracy. This requires developers
working with such tools to manually classify and verify the
detected candidate clones [8, 30], a process that is often
described as time-consuming and error-prone [25]. In addi-
tion, there is still a lack of adequate support for large-scale
systems, where clones are likely to spread over several code
modules [13, 21].

In an attempt to address these issues, in this paper we
propose a novel approach, based on topic modeling, to facil-
itate a more accurate, language-independent, and scalable
clone detection process. In particular, we experiment with
Latent Dirichlet Allocation (LDA), the most commonly used
technique for topic modeling in Natural Languages Process-
ing (NLP) [7]. LDA is a probabilistic statistical approach
for estimating a topic distribution over a text corpus [7].
Our main conjuncture is that, the topic distribution over a
code base gives an indication of the presence of code clones.
Our contributions in this paper are the following. First,
we propose an effective, language independent, and scalable
approach for detecting code clones based on topic model-
ing. Second, we provide an experimental benchmark for
calibrating LDA parameters and evaluating its performance
in detecting various types of code clones.

The rest of the paper is organized as follows. Section 2
briefly introduces the background and related work. Section
3 introduces our research methodology. Section 4 presents
our experimental analysis and results. Section 5 presents
threats to validity and finally Section 6 concludes the paper
and discusses the future work.

2. BACKGROUND AND RELATED WORK

2.1 Latent Dirichlet Allocation
LDA was first introduced by David Blei et al. [7] as a sta-

tistical model for automatically discovering topics in large
corpus of text documents. The main assumption is that doc-
uments in a collection are generated using a mixture of latent
topics, where a topic is a dominant theme that describes a
coherent concept of the corpus’s subject matter. In recent
years, LDA has been utilized heavily to aid several essential
software engineering activities. For instance, Andrzejewski
et al. [1] proposed an approach based on LDA to support sta-
tistical debugging tasks in software systems. Results showed
that LDA-based approach outperformed existing methods
for bug cause identification. In addition, Thomas et al. [31]
used LDA to study source code evolution. Analysis showed
that evolution caused by change activity was often reflected
in the topic mixture of the system.

LDA takes the documents collection D, the number of top-
ics K, and a and 8 as inputs. Each document in the corpus is
represented as a bag of words d =< w1, wa,...,w, >. Since
these words are observed data, Bayesian probability can be
used to invert the generative model and automatically learn
¢ values for each topic ¢;, and 6 values for each document d;.
In particular, using algorithms such as Gibbs sampling [28],
an LDA model can be extracted. This model contains for
each ¢t the matrix ¢ = {¢1,¢2,...,¢Pn}, representing the
distribution of ¢ over the set of words < wi,ws,...,w, >,
and for each document d the matrix 6 = {01,02,...,0,},
representing the distribution of d over the set of topics <
ti,t2,...,t, >. Several methods have been proposed in the
literature to approximate near-optimal combinations of LDA
parameters («, 8, K) in source code. Asuncion et al. [2] and
Oliveto et al. [26] proposed the usage of LDA to automati-
cally capture traceability links in software systems. Maskeri
et al. [23] proposed a human assisted approach based on
LDA to extract business domain topics from source code.

2.2 Code Clones

Four types of clones can be identified based on the notion
of similarity considered between code fragments [4, 19, 30].
These types include:

Type I: Exact clones in which the same fragment of code
is copied without modification in its semantic or syntactic
structure (except for spacing and comments).

Type II: Clones that are syntactically identical fragments
except for slight variations, such as different identifiers names,
literals, types or spacing.

Type III: Clones that have been slightly changed by added,
removed or re-ordered statements, in addition to Type I and
Type II modifications.

Type IV: Functional clones which refer to code fragments
that perform similar operations but their syntactic and se-
mantic structures are different.

Detecting different types of clones requires different levels
of sophistication. While Type I and Type II can be relatively
easy to detect using lexical-based techniques, other types
(especially Type IV) require a higher level of complexity to
match operationally identical code fragments.

3. RESEARCH METHODOLOGY
3.1 Datasets

To conduct our experimental analysis, we used four soft-
ware systems from different application domains. Table 1
describes the characteristics of these systems including: the
size of the system in terms of lines of source code (SLOC),

Table 1: Experimental Datasets

Dataset VER. CLS. LANG. SLOC CLOC
1 Trust 15.0 299 Java 20.7K 9.6K

Apache Ivy 2.3.0 451 Java 49.9K 16.7K
QuantLib 1.3.0 874 C++4 1788K 223K

lines of comments (CLOC), implementation language (LANG.)
version (VER.) and number of classes (CLS).

3.2 Implementation and Tool Support

In this paper we use JGibbLDA, a Java implementation of
LDA . This particular implementation uses Gibbs Sampling
for parameter estimation and inference [12]. To integrate
JGibbLDA in our analysis, a C# prototype is implemented
upon the current Java implementation. We refer to this pro-
totype as CloneT M, a code Clone detection tool based on
Topic Modeling. Our interface provides options to tune the
underlying LDA model (a, 8, K), as well as visualization
support for LDA results. For instance, stacked charts and
bar charts are available for visually comparing topic distri-
butions of multiple artifacts.

3.3 Dominant Topic Analysis

We start our analysis by investigating the effect of dif-
ferent values of K over the topic distribution generated for
each artifact in each of our experimental systems. It is im-
portant to point out that the complexity of the study grows
exponentially with the inclusion of other LDA parameters
such as a and . Therefore, at this stage of our analysis,
we fix the the values of these parameters. This strategy is
often used in related research to control for such variables’
effect [11, 22, 31]. In particular, values of « = 50/K and
B = 0.1 are used. These heuristics have been shown to
achieve satisfactory results in the literature [12, 32].

One interesting observation of our topic analysis is that for
each artifact d; € D, regardless of K, there is always a few
number of topics that stand out from the rest of the topics
in the document-topic matrix. Such topics have relatively
larger 6; values. To demonstrate this effect, we run LDA
using K=40 over our iTrust experimental dataset. For each
artifact d in the document-topic matrix of ¢Trust, we sort the
40 topics in a descending order according to their 6; value,
so that topics at rank (r = 1) have the highest 6 value. We
then average these values for all artifacts (N) in iTrust over
each rank 7, producing A, (Eq. 1).

N
A= () D2 di(0) V=120 S
j=0

The results are shown in Fig.1 which shows that in the
topic distribution of each artifact, only a small portion (= 5)
of the topics has a 0 value larger than a certain threshold
value (A). These topics with relatively large 6 values are
known as dominant topics [22, 27]. In an attempt to spec-
ify A, we conduct further empirical analysis over our open
source experimental systems using different values of K. Re-
sults show that topic probability distribution for each arti-
fact seems to always follow a regular distribution. In general,

http://jgibblda.sourceforge.net/

iTrust
---- Ivy
QuantLib

S L -
)

)

&

g

>
<

30 40

Number of Topics (K)

Figure 1: Average 0 values in the document-topic
matrix arranged in a descending order (K=40).

three categories of topics, based on the empirically observed
A, can be identified as follows:

e \1(0 < 0.01): Most of the topics in the document-topic
distribution of each artifact fall under this category.

e)\2(0.1 > 6 =>.01): Dominant topics, an average of 4
to 8 topics for each document.

e \3(0 => 0.1): Absolute dominant topics, usually one
or two topics are classified under this category.

We use these observations about dominant topic distri-
butions to derive our main hypothesis in this paper. In
particular, we assume that the presence of code clones can
be reflected in the dominant topic distribution of software
artifacts. Our main assumption is that documents sharing
similar code fragments might also share a similar dominant
topic distribution. Next we test these assumptions.

4. DETECTING CODE CLONES

To test the hypothesis, we devise an experimental bench-
mark to analyze the performance of LDA in detecting code
clones. In particular, we manually inject code clones of
Types I, II, and III in each of our experimental datasets.
We exclude Type IV refactoring in this study. Manually in-
jecting and verifying code smells for refactoring studies is a
common practice in related research, especially in proof-of-
concept studies [18, 6, 17, 8]. Also, since we are working with
class granularity level, we limit our analysis in this paper to
cross-class or cross-file clones.

Table 2 shows characteristics of our injected clones, in-
cluding the number of clones injected of each type in each
system (NO. C) and the number classes affected (CLS). Since
QuantLib is a relatively larger system, we were able to inject
more clones in it. Injecting Type I and II is a straightfor-
ward process. In particular, to produce Type I clones, a
method call is simply replaced by the method itself, changes
in spacing and comments are made. When injecting Type
II clones, parameters names are changed. Injecting Type
IIT clones was challenging as code statements have to be
reordered, added, and removed. To achieve this, we apply
random sequences of certain operation-preserving transfor-
mations into copied code fragments. These transformations
include:

e Conditional Statements: Break and merge certain if
and while statements into if else statements and
vice versa. For example, the code segment:

If (validteUsrNm(uName) && validPwd(uPwd))
return true;

can be broken down into:
If (validteUsrNm(uName))

if (validPwd (uPwd))
return true;

e Loops: Certain for statements were converted into
WHILE loops and vice versa. For example, the following
loop statement:

for(line=br.readLine(); line!=null; line=br.readLine())

is transformed to the following while statement:
line = br.readLine();
while (line != null)
line = br.readLine()

e Re-order: certain statements were reordered in such a
way that does not change the structure of the code.
For example, in the following code segment, variable
fBloodPressure declaration can be moved above the
method call setPatientRecords(patientID) without
affecting the functionality of the code.

setPatientRecords(patientID);
float fBloodPressure = 0.0;
fBloodPressure = pm.getPressure(patientID)

The Second step is to define the notion of matching be-
tween dominant topics. In general, we follow a set-matching
procedure, if any two classes have the same topic appearing
in their set of topics with 8; > .01, we consider this case to be
a candidate instance of code clones. We use the word “can-
didate” since we suspect that in some cases, matching also
might happen without the presence of cloning. In that case
we get a false positive. The procedure for our LDA-based
clone detection technique can be described as follows.

Detect Clones: INPUT D, «, 8
K = 40;
Doc_Topic_Metrix = Generate_Topic_Model(D, «, 8, K)
FOR EACH d; € D IN Doc_Topic_Merix
FOR EACH t; € di
IF 6; < .01 THEN Remove t;
FOR EACH d; € D
FOR EACH d,; € D
IF i #j
IF (Match (Doc_Topic_Merix(di, dj)) > 0)
RETURN TRUE

© ® N o ®N

_
e

11. K +=40
12. GOTO 2

To assess the effectiveness of LDA in capturing instances
of different types of clones. Standard recall and precision
metrics of information retrieval are used. Such metrics are
often used to assess the performance of clone detection tools [8,
6, 30]. Recall measures coverage and is defined as the per-
centage of clones that are correctly identified by the tool,
and precision measures accuracy and is defined as the per-
centage of identified clones that are correct.

Apachi_Ivy

QUANTLIB

Recall

T 1 T T

—+— TvypE II
—a— TypE II1

| | 0 |
160 200 80

k

0 |
80

|
120

| |
120 160

| |
200 80 120
k k

160 200 240

Figure 2: Recall values of different types of code clones at different values of K.

4.1 Model Calibration

To run our analysis, we initially set K to be 40 topics.
The document-topic distribution of each artifact in the sys-
tem is then generated. A pair-wise comparison is conducted
to capture matching in the latent topic structures of differ-
ent classes. Results are then evaluated against the answer
set using recall, or the number of injected clones the tool
managed to identify. The value of K is then increased by
40 and the process is repeated. This particular step size has
been found to yields noticeable changes in the recall values.
We follow a hill climbing approach to monitor the changes
in the recall. Our objective is to identify, or approximate,
near-optimal K settings to detect clones. We tie optimal-
ity in this paper to recall. Therefore, in our analysis we
emphasize recall over precision. The main rationale is that
errors of commission (false positives) are easier to deal with
than errors of omission (false negative). In other words, it
is easier for a developer to discard instances that were mis-
classified as clones, rather than deal with clones that were
not detected by the tool.

Since we have injected different types of clones, we were
able to produce a separate recall curve for each type (cf.
Fig 2). As for precision, a single precision chart, which shows
the percentage of misclassified cases, is produced for each
system (cf. Fig 3). The list of candidate clones generated
for each system was scanned for already existing cross-file
clones before injecting our clones, such clones were excluded
from our precision calculations. We implemented our evalu-
ation benchmark into CloneT M. Candidate clones are dis-
played to the user and the lines of code which include words
from the matching topics are highlighted in the class view
window of each class. Results show that in all three sys-
tems the recall seem to converge to a local maximum at
the range of K = [160, 200] topics for all systems. The
precision values also show satisfactory performance at this
level. This can be explained based on the observation that
at this range of K, topics tend to be more distinguishable
from each other which makes this particular number of top-
ics seem to be the most nearly optimal for code clone de-
tection. However, at lower values of K, topics tend to have
less density, generally spreading all over the class, and at
higher K values (i.e., > 200) topics tend to be very spe-
cific, not able to cover code fragments with meaningful size.
In general, the results show that our LDA-based approach
was able to capture most types of clones, showing particu-

Table 2: Injecting Code Clones into Our Systems

iTrust Ivy QuantLib
Type NO. ¢ CLS NO. C CLS NO. C CLS
Tyre I 20 42 20 85 40 86
TypE 11 20 44 20 17 40 92
TypE II1 15 30 15 45 25 50

larity good performance in detecting Type I and Type III
clones. Results also showed that the precision, while can be
considered satisfactory, is still far from being optimal. To
put the performance of CloneT'M in perspective, we com-
pare its recall and precision with other clone detection tools
such as CCFinder [15] and CloneDR [5]. Table 3 shows
the results of the tool comparison. For each type of clone
in each system we compare the recall values. Results show
that CloneT M is able to achieve comparable levels of recall
to other tools in all systems. In particular, results show that
our LDA-based approach managed to outperform CCFinder
in Type III refactorings. Which can be explained based on
the fact that the sequential analysis of code statements in
CCFinder makes it fragile to statement reordering and code
insertion. In general, many other token-based detection ap-
proaches do not detect clones with reordered statements [30].
However, the fact that LDA treats a class as a bag of words
makes it immune to such changes. In contrast, results show
that CCFinder was more successful in detecting Type II
clones, this can be explained based on the fact that token-
based methods are immune to name changing. On the other
hand, LDA can be very sensitive to the information value
embedded in the identifiers names and comments, so incon-
sistency in such information is expected to lower the accu-
racy. Results also show that, in comparison to CloneT M
and CCFinder, CloneDR captured the smallest number of
clones in all different types of clones. That might be ex-
plained based on the fact that this tool tends to do better
in cross-method rather than cross-file clones detection [8].

5. THREATS TO VALIDITY

This study has several limitations that might affect the
validity of the results. In terms of external validity, the
results of this study might not generalize beyond the under-
lying experimental settings. For instance, only four systems

Table 3: Comparing Recall Values of CloneT M, CCFinder, and CloneDR

Recall
TypE I TvypE II TypE III
System CloneTM CCFinder CloneDR | CloneTM CCFinder CloneDR | CloneTM CCFinder CloneDR
ITRUST 0.85 0.9 0.2 0.6 0.8 0.2 0.7 0.4 0.13
vy 0.8 0.8 0.2 0.65 0.85 0.15 0.73 0.67 0.27
QUANTLIB 0.775 0.7 0.35 0.575 0.7 0.25 0.68 0.53 0.32
1 observations related to the latent topic structure of the soft-
ware artifacts, and the effect code clones might have on that
0.8 * structure. In particular, we assume that matching on the
dominant topic distribution between individual artifacts in-
_5 0.6 dicates cloning. To test our research hypothesis, calibrate,
-8 & and evaluate our approach, we conducted an experimental
& = analysis using four software systems from different applica-
& 0.4
. I'TRUST tion domains. We also compared the performance of our ap-
0.2 A vy || proach with other popular clone detection tools that adopt
QUANTLIB different clone detection strategies including, CCFinder and
0‘ | | ‘ ‘ CloneDR. Results show that LDA can achieve satisfactory
40 80 120 160 200 240 levels of recall, showing particularly good performance in

Figure 3: Precision values different values of K.

were used in our analysis. Nevertheless, we believe that us-
ing four datasets from different domains, including a propri-
etary software product, helps to mitigate these threats. In
fact, we believe that using these heavily-used, open source
tools and systems increases the reliability of our results as
it makes it possible to independently replicate our results.
Other threats to the external validity might stem from spe-
cific design decisions, such as using heuristic values for «
and #. However, as mentioned earlier, due to the exponen-
tial complexity of the problem, it was not feasible to evaluate
the effect of all LDA parameters in this study. In addition,
the heuristics we used in our analysis have been proven to
achieve satisfactory performance in related research.

Internal validity refers to factors that might affect the
causal relations established in the experiment. A major
threat to our study’s internal validity is the fact that we
used manually injected clones to calibrate our model, in ad-
dition to manually verifying the candidate clones of different
tools. This can lead to an experimental bias due to the sub-
jectivity of this process. However, this particular experiment
design decision was necessary to gain more insight into our
procedure’s performance, in particular, its effectiveness in
detecting different types of clones. In addition, as reported
earlier, in the current state of research, human approval of
the outcome of the code clone detection tool or method is
inevitable.

6. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel approach based on topic
modeling for code clone detection. In particular, we in-
vestigated the potential benefits of using LDA to identify
cross-class similar code fragments in Object Oriented soft-
ware systems. We built our main research hypothesis upon

detecting Type III clones that other related tools usually
tend to miss. It also achieves levels of accuracy that can
be adequate for practical applications. In the future, we
plan to evaluate our approach by testing CloneTM using
open source software systems to assess the usefulness and
the scope of applicability of our approach. Also, we plan
to fully implement our finding in the tool and provide vi-
sualization support to allow users to visually compare topic
distributions of different classes as well as accept or reject
candidate clones. We also investigate the potential effect of
other code smells, such as God Class or Feature Envy, on
the latent topic structure of software artifacts.

7. REFERENCES

[1] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu.
Statistical debugging using latent topic models. In
FEuropean conference on Machine Learning, pages
6-17, 2007.

[2] H. Asuncion, A. Asuncion, and R. Taylor. Software
traceability with topic modeling. In International
Conference on Software Engineering, pages 95—104,
2010.

[3] L. Aversano, L. Cerulo, and M. Di Penta. How clones
are maintained: An empirical study. In European
Conference on Software Maintenance and
Reengineering, pages 81-90, 2010.

[4] B. Baker. On finding duplication and near-duplication
in large software systems. In Working Conference on
Reverse Engineering, pages 86—95, 1995.

[5] I. Baxter, A. Yahin, L. Moura, M. SantAnna, and
L. Bier. Clone detection using abstract syntax trees.
In International Conference on Software Maintenance,
pages 368-377, 1998.

[6] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Transactions of Software
Engineering, 33(9):577-591, 2007.

[7] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
Allocation. Journal of Machine Learning Research,

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

3:993-1022, 2003.

E. Burd and J. Bailey. Evaluating clone detection
tools for use during preventative maintenance. In
International Workshop on Source Code Analysis and
Manipulation, pages 36-43, 2002.

S. Ducasse, M. Rieger, and S. Demeyer. Language
independent approach for detecting duplicated code.
In International Conference on Software Maintenance,
pages 109-118, 1999.

M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison—Wesley, 1999.

S. Grant and J. Cordy. Estimating the optimal
number of latent concepts in source code analysis. In
International Working Conference on Source Code
Analysis and Manipulation, pages 65—74, 2010.

T. Griffiths and M. Steyvers. Finding scientific topics.
In The National Academy of Sciences, pages
5228-5235, 2004.

Z. Jiang and A. Hassan. A framework for studying
clones in large software systems. In International
Working Conference on Source Code Analysis and
Manipulation, pages 203-212, 2007.

E. Juergens, F. Deissenboeck, B. Hummel, and

S. Wagner. Do code clones matter? In International
Conference on Software Engineering, pages 485—495,
20009.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
Software Engineering, 28(7):654-670, 2002.

M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In International Symposium on
Empirical Software Engineering, pages 83—92, 2004.
K. Kontogiannis. Evaluation experiments on the
detection of programming patterns using software
metrics. In Working Conference on Reverse
Engineering, pages 44-54, 1997.

R. Koschke, R. Falke, and P. Frenzel. Clone detection
using abstract syntax suffix trees. In Working
Conference on Reverse Engineering, pages 253-262,
2006.

J. Krinke. Identifying similar code with program
dependence graphs. In Working Conference on
Reverse Engineering, pages 301-309, 2001.

B. Lague, D. Proulx, J. Mayrand, E. Merlo, and

J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
International Conference on Software Maintenance,
pages 314-321, 1997.

Z. Li, L. Shan, S. Myagmar, and Y. Zhou. CP-Miner:
Finding copy-paste and related bugs in large-scale
software code. IEEE Transactions on Software
Engineering, 32(3):176-192, 2006.

Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimd6thy, and
N. Chrisochoides. Modelling class cohesion as mixtures
of latent topics. In International Conference on
Software Maintenance, pages 233—-242, 2009.

G. Maskeri, S. Sarkar, and K. Heafield. Mining
business topics in source code using Latent Dirichlet
Allocation. In India software engineering conference,

(24]

(25]

[26]

27]

28]

29]

(30]

(31]

(32]

pages 113-120, 2008.

J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In International
Conference on Software Maintenance, pages 244-253,
1996.

E. Murphy-Hill and A. P. Black. Breaking the barriers
to successful refactoring: Observations and tools for
extract method. In International Conference on
Software Engineeringl, pages 421-430, 2008.

R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De
Lucia. On the equivalence of information retrieval
methods for automated traceability link recovery. In
International Conference on Program Comprehension,
pages 68-71, 2010.

A. Panichella, B. Dit, R. Oliveto, M. Di Penta,

D. Poshyvanyk, and A. De Lucia. How to effectively
use topic models for software engineering tasks? an
approach based on genetic algorithms. In
International Conference on Software Engineering,
pages 522-531, 2013.

I. Porteous, D. Newman, A. Ihler, A. Asuncion,

P. Smyth, and M. Welling. Fast collapsed gibbs
sampling for Latent Dirichlet Allocation. In ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 569-577, 2008.

F. Rahman, C. Bird, and P. Devanbu. Clones: What
is that smell? In MSR, pages 72-81, 2010.

C. Roy and J. Cordy. A survey on software clone
detection research. Technical Report 541, School of
Computing TR 2007-541, Queens University, 2007.

S. Thomas, B. Adams, A. Hassan, and D. Blostein.
Validating the use of topic models for software
evolution. In IEEE Working Conference on Source
Code Analysis and Manipulation, pages 5564, 2010.
X. Wei and B. Croft. LDA-based document models for
ad-hoc retrieval. In ACM SIGIR conference on
Research and development in information retrieval,
pages 178-185, 2006.

