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Abstract—Growing evidence suggests the DevOps approach
enables faster development and deployment, and easier mainte-
nance of applications. Still, the efficiency of DevOps is constrained
by long cycle times. This paper presents the approach for
improving time-efficiency in DevOps, and in particular con-
tinuous integration testing, using continuous test optimization.
The approach uses test redundancy analysis to discover test
overlap with respect to feature interaction coverage, and based
on detected redundancy to reduce the size of a test suite. Smaller-
size test suites execute faster and enable shorter test cycles, which
further enables shorter release cycles. The approach has been
experimentally evaluated using an industrial case study, against
three metrics: industry practice of test selection for continuous
integration testing, retest-all approach, and random test selection.
The results suggest that the proposed test redundancy detection
and reduction efficiently reduces test cycles in CI compared to
industry practice and retest-all approach, and improves fault-
detection effectiveness compared to random test selection'.

Index Terms—DevOps, Continuous integration, Continuous
integration testing, Test optimization, Test redundancy

I. INTRODUCTION

DevOps is a growing development practice that promises
to enable faster development and efficient deployment of
applications without compromising on quality. The main prin-
ciple underlaying DevOps is increased communication and
collaboration between development, testing, and operations,
which makes it possible to minimize the time between making
a change and deploying the change into production. Further,
this makes it possible to respond faster to new and rapidly
changing requirements, and thus remain agile. However, in-
creased communication and collaboration do not suffice in
reaching this goal on their own. A key aspect is enabling
an efficient and optimized continuous integration practice.
Continuous integration is a software development model of
frequent integration and testing of source code to detect defects
early in development. This practice has been associated with
benefits such as improved code quality, more frequent releases,
improved development productivity, less-costly development,
and easier code maintenance [2], [3], [4]. The major bottleneck
however in making continuous integration efficient is long-
running testing of code changes after integration. In particular,
after a change is made to the code, a set of automated tests
are run to verify the change. As changes in DevOps are
made frequently, testing of changes before integration runs
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frequently, which amplifies the need for time-efficiency in
testing. This implies that for each integration cycle test suites
need to be optimized for short run-time and maximized fault-
detection.

Existing techniques to improve the efficiency of software
testing in continous integration include test selection and
prioritization [7], [8], [9], which aim to find an optimal
combination and order of tests for achieving faster test runs.
However, techniques that optimize testing for low run-time
often compromize the ability of tests to detect faults [11], [12],
[13], [14]. We argue that for DevOps, this aspect becomes
especially important. It is essential that testing in DevOps
is time-efficient, at the same time as being able to detect
the most critical faults. Another issue that creates challenges
for efficient testing in DevOps is the size of test suites. In
particular, iterative feature requests and frequent changes of
requirements constantly drive a test suite size larger and larger,
while its quality is not maintained simultaneously. When test
suites grow in size, the containing test cases start overlapping,
covering the same features (parts of functionality) multiple
times in different test instances. This effect is known as test
redundancy, and it negatively affects time-efficiency of testing
in DevOps. Besides directly increasing test effort (if all related
test cases are post for running), test redundancy also increases
test maintenance costs.

In this paper we propose an approach for improving time-
efficiency of DevOps by continuously optimizing long running
test cycles based on test redundancy detection and reduction.
Specifically, for each test cycle we analyze test overlap with
respect to changes and feature interaction coverage in a test
suite, and then detect and remove tests that do not contribute to
increased unique feature interaction coverage. We validated the
approach in one industrial case study, comparing with industry
practice and with the state of the art techniques. The approach
demonstrated the improvement in time-effectiveness and fault
detection effectiveness of CI testing in DevOps compared to
industry practice.

The paper is organized as follows. In Section II we provide
background and related work, as well as some challenges of
efficient testing in DevOps in the presence of test redundancy.
In Section III, we describe our approach for improving time-
efficiency of DevOps with continuous test optimization based
on redundancy detection. In Section IV we give results of the
experimental study evaluating the approach against industry



practice. We draw the conclusion in Section V.

II. BACKGROUND AND RELATED WORK

In the following we revisit the key concepts underlying our
work on making DevOps practices more cost-effective. We
also summarize some of the critical challenges for effective
testing in continuous integration and DevOps.

A. DevOps

DevOps is defined as a set of software engineering practices
that aim to build an agile relationship between development
and operations. A key principle is constant communication and
collaboration between development and operations, enabling
benefits such as faster development and deployment of features
into production, faster detection and correction of issues, and
cost-effective running of dependable software with minimal
risks. Existing approaches for improving testing in DevOps
are still narrow. There is an approach reported for run-time
monitoring and reporting to developers, referred to as the
filling-the-gap tool, which enhances and automates the delivery
of application performance information to the developer, with
the goal of improving the quality of service or reducing
maintenance cost [20]. However, more approaches addressing
various other challenges in continuous integration testing for
DevOps are missing, and such limited state of the art in this
field gives even more motivation for our research.

B. Continuous Integration

Continuous integration (CI) is a practice deemed a key
enabler for DevOps. CI is a technique that continuously inte-
grates code changes from all team members, merges them with
the mainline, and verifies the changes against regressed aspects
of the modified code (for unintended effects) with automated
tests. The CI practice prevents working on isolated branches
for too long, which over time start diverging from each other,
leading to high effort of integrating such multiple branches
into the mainline. An important aspect of CI is enabling
rapid automated regression testing of code changes, which
will give quick feedback to developers on the correctness
of their changes. Since CI runs frequently, if it takes long
time, it introduces time-inefficiency in DevOps. To support
rapid regression testing in CI, we explore the concept of test
optimization. Similarly, to improve CI testing, one approach
was proposed combining test selection in the pre-commit stage
with test prioritization in the post-commit stage [7]. However,
this approach does not investigate the effect of test redundancy
on the time-effectiveness of CI testing, which is one key focus
of our work.

C. Test Redundancy

Test redundancy can be defined with respect to coverage
metrics, for example pairwise feature coverage, such that if
two tests check interaction between the same pair of features,
then one of these tests is redundant with respect to one
another. Features represent smaller units of software-under-
test functionality that are self-contained. Considering pairwise

feature coverage in the example provided below, two tests
TestA and TestB cover the identical feature set {b,c}. As
the pairwise feature set covered by T'estA is a proper subset
of the pairwise feature set covered by TestB, we say that
TestA is redundant with respect to TestB.

TestA = [b,c] — {b,c}
TestB = [a, b, c] = {a,b}, {b,c}, {a,c}

Test redundancy can be caused by multiple factors, such as
test reuse in manual test specification, when existing tests are
modified for testing new similar functionality, unintentionally
leaving parts of already tested functionality. Other causes
include incomplete requirements specification, redundancy of
requirements, legacy, static test suites, parallel testing, or dis-
tributed testing [6]. In this work we are interested in analyzing
test redundancy in integration tests, which test varying number
of feature interactions to expose any faults in interaction
between integrated individual code components.

D. Regression Test Optimization

DevOps promotes iterative development, where smaller self-
contained changes are made to software frequently. Every
change is regression tested to check whether it introduces
any faults caused by the interaction of integrated components.
Since speed is one of the key requirements of efficient DevOps,
regression testing requires only a set of relevant test cases.
This is especially important in fast-evolving systems where
test suites used for validating the correctness of systems
grow quickly. Previous studies have shown that test suite size
has a large impact on the overall test cost in the software
development lifecycle [12], [15], [16]. Therefore, finding such
a set of relevant test cases is the goal of regression test
optimization. Specifically, regression test optimization aims to
find an optimized set and order of regression tests that satisfy
predefined optimization objectives. This includes selecting a
relevant set S’ based on S, known as test selection [17],
and finding the execution order of tests in S/, known as test
prioritization [19]. In this work we focus on test optimization
guided by the analysis of test redundancy. i.e feature interac-
tion overlap among different tests. Existing test optimization
approaches have not been targeted towards DevOps and CI,
and specifically have not been investigating the impact of test
redundancy on the performance of CI testing in DevOps.

E. Challenges of Testing in CI

Testing in continuous integration and DevOps is amenable
to a number of challenges. First, it is highly sensitive to long
runtime, since feedback on source code integration needs to
be provided as rapidly as possible. Fast feedback enables faster
test cycles, which further enable faster release cycles. Second,
test effort needs to be steered towards achieving just the
quality required for deployment to staging or production.
If more effort is put into testing, this may negatively affect
time- and cost-efficiency of testing. Third, since testing is time-
limited in CI and DevOps, testing process (and in particular



test selection) should be continuously optimized, guided by
risk analysis, based on the type of code changes made and
their impact. Risk-analysis would enable defining a dynamic
regression scope for each build and test iteration, with mul-
tiple layers of tests to enable iterative, and faster feedback.
Fourth, as test suites grow overtime, to cover new functionality
added to the codebase, tests start to overlap, building fest
redundancy. This creates the risk of increased test effort as
many similar tests may seem relevant, and therefore selected
for running. Therefore, the key challenge lies in identifying
test redundancy and selecting test cases so that redundancy is
minimized. This will help reduce long test runtime, and will
enable reaching just the required level of quality. Furthermore,
high levels of test automation are needed, in test selection and
optimization (apart from test execution, where automation is
considered a prerequisite for CI and DevOps).

III. IMPROVING THE EFFICIENCY OF CI WITH
CONTINUOUS TEST OPTIMIZATION

The approach for improving efficiency and effectiveness of
CI that is proposed in this paper exploits the idea of continuous
test optimization based on test redundancy analysis. As stated
previously, one critical challenge of CI and DevOps is enabling
short and effective test cycles given redundant test suites. A
redundant test suite contains test cases that overlap, given a
specific feature coverage criteria. In this context, cost-effective
testing entails a trade-off between the size of a test suite and
its comprehensiveness. Here, we refer to comprehensiveness as
the ability of a test suite to detect faults caused by interactions
between two features (pairwise coverage). For the sake of
simplicity, in this paper we will restrict our approach to
pairwise coverage only, while the proposed concept can be
extended to any-wise feature coverage (consequently entailing
some higher computational complexity). To better illustrate the
complexity of CI testing in the presence of redundant test case
with overlapped feature coverage, we present the following
example.

A. Illustrating Example

A software system under test consists of a set of
functionality modules, referred to as features FS =
{f1, f2y..-s fn}. Features are used to build a set of solu-
tion configurations for video conferencing. Some features
are f1 = wideo_resolution, fo = audio_resolution,
fs = audio_protocol, fy = point_to_point_calls, f; =
multi_party _calls. A test suite TS = {t1,t2,....t,} is
developed for testing these solution configurations, where
test cases partially cover the total set of features F'S in
different combinations. Cov(t;) = {f1, f2, ..., fn} denotes a
set of features tested by a test case ¢;. As the system under
test evolves incrementally through continuous development
and testing, 7'S evolves continuously and grows larger. New
test cases are added covering new functionality, but also
interactions between new and old functionality. The same
features become part of multiple tests, but because of large
size of a test suite, the same combinations of features often

become part of multiple tests. This in turn increases test
effort, as the same interactions between system functionality
are executed multiple times. In the example shown below,
four test cases ty, to, t3, and t4 cover a set of features
{f1, f2, f3, fa, f5} in different combinations. Considering a
pairwise interaction coverage as a criterion for test redundancy
analysis, the covering set of features for tests ¢; and t4
overlap with the covering set of features for tests 5 and 3
respectively. Since this overlap represents proper subsets i.e.
Cou(t1) C Cou(ta), Cov(ts) C Cov(ts), tests t1 and t4 are
redundant with respect to tests ¢, and ts.

Cov(t1) = {f1, f2}
Cov(t2) = {{f1, f2}. {f1, fs}, {f2, f3}}
Cov(ts) = {{f1, fa}, {f1, fs}, { fa, f5}}
Cov(ty) = {fs, f5}
Cov(t1) C Cov(ta), Cov(ty) C Cou(ts)

B. The Approach

Our approach to reducing test cycles with redundancy
detection and reduction explores the concept of fotal test
redundancy and partial test redundancy. To explain these
concepts, we introduce the following definitions.

Def 1: A test case t; is totally redundant of a test case to, if
Cov(t1) C Cov(ts).

Def 2: A test case t; is partially redundant of a test case to,
if Cou(ty) # Cou(tz) and Couv(t;) N Cov(tz) # 0.

In the first step of the approach, we address total redun-
dancy, by detecting test cases whose covering set of features
is fully covered by another test case. After such test cases
have been identified, we remove them from a test suite. In the
second step of the approach we address partial redundancy by
combining interaction coverage metrics with historical fault
detection effectiveness of tests obtained from test logs. The un-
derlying idea is that partially redundant test cases which have
historically exhibited good fault revealing performance can be
classified as non-redundant, and otherwise as redundant. This
idea is supported by studies showing that test execution history
can help improve cost-effectiveness of testing [7], [8], [9].
[21].

Step 1: Given the system under test and the changes to its
source code, as well as an existing test suite, we first find
a set of tests impacted by the changes. This is performed
automatically, using association links between test cases and
features (software functionality) covered by the test cases.
Next, for the obtained test suite, we analyze test overlap
between test cases to find those test cases whose covering
feature interactions are completely covered by other test cases.
We remove such test cases from a test suite, obtaining a test
suite with only non-redundant and partially redundant test
cases.

Step 2: Next, we look into partially redundant test cases
contained within the test suite. These are the test cases whose
covering feature interactions are partially covered by other
test cases. We obtain execution history for these test cases
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Fig. 1. Redundancy detection and reduction methodology.

(for those that have been executed before) and analyze their
fault detection effectiveness in past executions. In particular,
we assign different weights to test cases chronologically,
based on how recently they detected faults. Those tests that
detected faults more recently have higher weight than those
that detected faults earlier. If n is the number of historical
test execution iterations, then the weight w is calculated as
follows:

=, [for test cases that have been executed before

1, for newly added test cases

w =

Next we sort the test cases based on w value, such that those
test cases with higher fault detection effectiveness are ordered
higher in the list of partially redundant test cases. The rationale
for sorting is that CI is bound by tight time constraints.
Therefore, we want to ensure that the most important test cases
are run first, in case that available time budget for testing is
smaller than the time required for running the whole test suite.

Step 3: Finally, the resulting test suite consists of test cases
that have been identified as non-redundant in Step I, which
come first in order, followed by a set of partially redundant
test cases, ordered based on their fault detection effectiveness.
The approach is schematically presented in Figure 1.

IV. EXPERIMENTAL CASE STUDY

We conducted a set of experiments to evaluate the ef-
fectiveness of the proposed approach for test redundancy
reduction in CI and DevOps. The approach was applied to
an industrial case study of optimizing CI development and
testing of video conferencing telepresence systems developed
by Cisco Norway. These systems enable full “in-person”
meeting experience with high-end video communication and
collaboration between multiple parties using cameras with eye-
tracking features and directional microphones which allow the
transmission of high definition video and audio, as well as
wireless sharing of presentations and other documents.

The objective of the experiments was to evaluate the fest
execution time and fault-detection effectiveness of CI testing
when using our approach for test redundancy reduction. We

compared the approach to existing industry practice of CI
testing, retest-all approach, and random test selection. Specif-
ically, we are interested in answering the following research
questions:

RQ1: What effect does the redundancy reduction approach
(RED) have on the duration of test cycles in CI
compared to industry testing practice (I P)?

What effect does the redundancy reduction approach
have on the duration of test cycles in CI compared to
retest-all (RA) approach?

What effect does the redundancy reduction approach
have on fault detection effectiveness of test suites
compared to random test selection (RS)?

RQ2:

RQ3:

A. Industrial System

The industrial system used in the experimental case study
represents a video conferencing system that is developed
following a DevOps practice. The system is highly complex,
implementing around one hundred features, which are used in
different combinations across different solution configurations
for video conferencing. As the system is developed in CI,
code updates are made frequently. Each update is followed by
integration testing cycle, to verify the correctness of newly
added functionality and to ensure that no regressions are
introduced in existing functionality. The test suite is developed
incrementally and is large in size, covering system features
in various combinations of interactions. Extensive test suites
for integration and configuration testing, together with the
requirements for short test cycles make cost-effective testing
of video conferencing systems in DevOps challenging. The
test data used in the experiments consists of 400 test cases.
Test execution history for these test cases is available for 6
last test execution runs, which gives 2400 test case executions.
Historical data includes test execution result (pass/fail) and test
execution duration.

B. Experiment Setup and Methodology

We address the posed three research questions RQ1-RQ3 in
experiments E1, E2, and E3, respectively.



In experiment E1, we compare RED with IP, in terms
of total test execution time. First, for the features affected
by changes, we select a set of impacted test cases. These
tests represent the initial test suite. Then we obtain execu-
tion history for these test cases, and apply our redundancy
reduction approach to the initial test suite. We analyze test
overlap in terms of pairwise feature coverage, and remove
test cases whose covering set of pairwise feature interactions
is completely contained within another test case(s). At this
point, the test suite contains non-redundant test cases and
partially redundant test cases. Next, for all partially redundant
test cases, we analyze which of them have shown good fault-
detection performance in the past. Based on this information,
we eliminate test cases that have not contributed to increased
fault detection effectiveness. Next, we calculate weights for the
rest of partially redundant test cases, rewarding more recent
fault detection higher. We sort these test cases according to
their weight, and append them to the previously identified
non-redundant test cases. For the resulting set of test cases,
we measure the percentage reduction of the test suite size
compared to the size of the original test suite (used by industry
practitioners for testing the changes). We run experiment E1l
5 times, for all available historical test execution data.

In experiment E2, we compare RED with RA, in terms
of total test execution time. We chose RA as a comparison
metric because this is a commonly used approach to regression
testing in practice. Specifically, we modified the RA in a way
to include only the tests affected by changes, versus retesting
the entire test suite. Therefore, for the features affected by
changes, we select a set of impacted test cases. These tests
represent the initial test suite. Then we apply our redundancy
reduction approach to the initial test suite, and examine test
overlap in terms of pairwise feature coverage. We remove
redundant test cases base on this criterion, which gives a
test suite containing non-redundant test cases and partially
redundant test cases. Then we analyze execution history for
the partially redundant test cases, and eliminate those which
historically have not showed to increase fault detection. Next,
we order remaining partially redundant test cases based on
their recent fault detection performance and append them to
the previously identified non-redundant test cases. This gives
us the final test suite. For this test suite, we measure the
percentage reduction of the test suite size compared to the
size of the initial test suite.

In experiment E3, we compare RE D with RS, in terms of
fault-detection effectiveness. We compare with RS because
this is a commonly used alternative to automated guided test
selection and reduction, primarily driven by low cost and low
complexity. First, for the features affected by changes, we
select a set of impacted test cases, which represent the initial
test suite. Then we apply the same setup as in E1 to obtain the
set of non-redundant test cases followed by an ordered set of
partially redundant test cases, as the final reduced test suite.
Next we measure the total test execution time for the final
test suite (time limit), based on historical test execution time
of each test case. Afterwards, we start randomly selecting test

cases from the initial test suite, accumulating execution time
of each selected test case. We repeat this process until the
time limit is reached. The resulting test suite obtained in this
process is the randomly selected test suite. Now we measure
the loss of fault detection of the randomly selected test suite
compared to the fault-detection of the final test suite. The
measured value is the percentage of faults that were detected
by the final test suite and not by the randomly selected test
suite. Because of the randomness in RS approach, we repeat
the experiment 100 times.

C. Results and Analysis

In this section we present the results of the experiments
El, E2, and E3, addressing research questions RQ1, RQ2,
and RQ3, respectively. The results are graphically presented
in Figure 2, Figure 3, and Figure 4, respectively.

1) Time-effectiveness Compared with Industry Practice: In
the first experiment addressing RQ1, we compared RED and
IP in terms of test suite execution time. The results show
that RE'D was able to reduce test cycle by 30% on average
compared to I P. The results are shown in Figure 2. Y axis
corresponds to the percentage reduction of test execution time
of the reduced test suite compared to the test suite used by
practitioners.

2) Time-effectiveness Compared with Retest-All: In the
second experiment aimed to answer RQ2, we compared RED
and RA in terms of test suite execution time. In this experi-
ment, RA showed to reduce total test suite execution time by
35% compared to RA. The results are shown in Figure 3. Y
axis corresponds to the percentage reduction of test execution
time of the reduced test suite compared to retest-all approach.

3) Fault-detection Effectiveness Compared with Random
Selection: In the third experiment addressing RQ3, we com-
pared RED with RS in terms of fault detection effectiveness,
for the same (given) test budget. The results demonstrate that
RED can achieve up to 70% better fault detection compared
to randomly selected test cases, and 40% on average better
fault detection compared to randomly selected test cases, for
the test suites used in the experiment. The results are shown
in Figure 4. Y axis shows the distribution of the percentage
of fault detection effectiveness gain of the reduced test suite
compared to randomly selected test suite.

In summary, the results of the experiments E1, E2, and E3
demonstrate that the proposed approach can effectively reduce
test cycles in CI compared to industry practice of CI testing by
35% on average, and compared to retest-all approach by 30%
on average. The results further demonstrate that the proposed
approach can improve fault detection effectiveness of a test
suite compared to random test selection up to 70%, for the
same test time budget.

D. Threats to Validity

A threat to external validity of the results is the choice of the
industrial case study of continuous integration testing and the
test dataset. While the used industrial context is an example of
good industry practice, we cannot say that it is representative,
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and continuous integration testing can be applied differently
in different companies. More studies are needed to verify
whether our results generalize to other practices of CI and
DevOps. This is part of our future work. A threat to internal
validity could be potential faults in our implementations of the
optimization algorithms. We have thoroughly tested the code
to ensure that these threats are minimized.

effectiveness gain

50 *
* % Q
20

R1 R2 R3 R4 R5

Distribution of the percentage of fault detection

Fig. 4. Comparison of the proposed approach with random_test_selection
approach in terms fault detection effectiveness.

V. CONCLUSION

In this paper we proposed the approach for improving time-
efficiency of DevOps using continuous test optimization. The
approach is based on test redundancy analysis in terms of
feature interaction coverage. By reducing test redundancy, it
is possible to reduce CI test cycles and further release cycles
in DevOps. The approach has been evaluated and has demon-
strated improvement in time-efficiency compared to industry
practice, retest-all approach, and random test selection.
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