
Helpful or Not? An investigation on the feasibility
of identifier splitting via CNN-BiLSTM-CRF

Jiechu Li∗,† Qingfeng Du∗†, Kun Shi∗†§, Yu He∗† Xin Wang∗‡ and Jincheng Xu∗†
∗School of Software Engineering, Tongji University

†Software Engineering R&D Centre, Jishi Building, Tongji University
‡Smart City Labotary, Jishi Building, Tongji University
§Shanghai Research and Development Center, Baidu Inc.

Email: {lijiechu, Du cloud, skyline, rainlf, wangxin16, xujincheng}@tongji.edu.cn

Abstract—We recently introduced a new technique to handle
source code identifier splitting. The proposed technique, denoted
as CNN-BiLSTM-CRF[a neural network composed of a convolu-
tional neural network(CNN), bidirectional long short-term mem-
ory networks(BiLSTM) and conditional random fields(CRFs)]
enables us to obtain a model that splits identifiers correctly and
effectively. This technique combines the use of a CNN layer with
the mature BiLSTM-CRF model. The experimental results indi-
cate that CNN-BiLSTM-CRF delivers outstanding performance
on all four of the evaluation oracles. More importantly, we
endeavored to provide insight into the practical feasibility of
this technique by considering the aspects of generality, data size
in demand and construction cost, etc. Finally, we reasoned out
that CNN-BiLSTM-CRF should be helpful and improvable for
identifier splitting in practical works in terms of the accuracy
and feasibility. This was validated by multifaceted experiments.

Index Terms—identifier splitting, source code mining, program
comprehension, CNN, BiLSTM-CRF, feasibility investigation

I. INTRODUCTION

The rapid development of natural language processing
(NLP) and machine learning has derived many prominent tech-
niques[e.g., information retrieval(IR) model and deep learn-
ing] to support software engineering (SE) tasks[1], [2], [3],
[4](e.g., feature location and traceability link recovery). These
techniques extract domain concepts of corresponding software
projects by analyzing textual information mined from software
repositories.

Source code identifiers1, occupying most of the characters2

insides programs[6], are one of the critical components that
can be mined from software artifacts. To our knowledge, this
is owing to the fact that strong consistency is always reflected
between the source code and other software artifacts (e.g., doc-
umentation). However, the definitions of identifiers are strictly
constrained by the syntax rules of programming languages,
complicating not only the manual recognition process but also
the automatic NLP tokenization process on them.

1Source code identifiers are tokens that name language entities including
variables, types, functions, and packages in programming languages. These
tokens represent different meanings, according to their naming purposes.

2An identifier id is normally in the form of (s0, s1, s2, ..., sn), where si
is a letter, digit, or special character[5].

To be specific, an appointed source code identifier must be
composed of a series of terms without explicit blanks (e.g.,
XMLParser1, dorapntr, and treeNode) in which the terms are
normal dictionary words (e.g., Parser) and acronyms (e.g.,
XML), abbreviations or, even worse, unmeaningful vocabs.
Directly performing NLP procedures (e.g., word embedding)
on these irregular strings inevitably degrades the performance
of ongoing or upcoming concept-comprehension tasks. Hence,
normalizing identifiers into their constituent parts is crucial
when leveraging NLP techniques on SE tasks.

Identifier splitting is the first and highly critical step of
identifier normalization, with the subsequent step of mapping
or expanding the correct split terms into their original dic-
tionary words[7], [8]. Identifier splitting is also considered
as an indispensable procedure after tokenization[9], [10]. In
fact, existing techniques have already been put forward with
the aim to efficiently and correctly split identifiers, including
the investigated approach in our study: identifier splitting via
a trained CNN-BiLSTM-CRF model(CNN-BiLSTM-CRF is
used to represent this approach itself in the following literature
for short).

The mentioned CNN-BiLSTM-CRF, is derived from our
early research achievements. It is proposed under the mo-
tivation for better identifier splitting techniques that better
contribute to related SE tasks[11]. Our pioneering research and
initial experimental results showed that the CNN-BiLSTM-
CRF significantly outperforms other state-of-the-art tech-
niques. However, it remains certain thoughtlessness before we
resolve to apply this technique to split identifiers in practical
SE tasks. These issues certainly exist and are determined by
the methodology of CNN-BiLSTM-CRF, which takes samples
of manually built oracles as input for training, then tunes
and evaluates the outcome model with the rest of the oracle
samples. In terms of practical feasibility, there are concerns
regarding the generalization capability (refers to the ability
to correctly split identifiers outside of the oracle with which
it was trained) and the training cost of the model in addition
to the superficial outstanding performance.

In this study, our specially designed experiments and qual-
itative analysis on the obtained results lead to the conclusion
that splitting identifiers via CNN-BiLSTM-CRF is helpful and
absolutely feasible in terms of the above indicated facets.DOI reference number: 10.18293/SEKE2018-167



In summary, we make the following contributions:

• We prospectively present a new and novel identifier split-
ting method called CNN-BiLSTM-CRF, which possesses
great ability to split source code identifiers accurately.

• We systematically investigate and inspect the practica-
bility of the CNN-BiLSTM-CRF approach regarding its
comprehensive aspects.

• We offer evidence that the investigated approach is not
only superior to other state-of-the-art identifier splitting
techniques but also of enough generality and feasibility
based on empirical evaluations performed on a maximum
of four benchmark oracles.

• We provide the publicly available package and imple-
mented code for researchers to adopt, replicate, or further
explore our work.

The remainder of this paper is structured as follows: Section
II presents some significant related work on identifier splitting
and concisely describes the mechanism of our proposed CNN-
BiLSTM-CRF approach. Section III demonstrates the process
of setting up our experiments and discusses the results. Section
IV is a deeper discussion of our achieved results and of threats
to the validity of this method. Section V concludes this study.

II. BACKGROUND AND RELATED WORK

A. Previous Work on Identifier Splitting

Ideally, identifiers in recognizable forms such as the well-
known CamelCase and UnderscoreCase can be effortlessly
split by explicit rules (splitting at underscores or changes from
lower case to upper case). However, extra strategies still need
to be considered to effectively solve the splittings on identifiers
in more sophisticated forms (e.g., all characters are in single
case or containing digits). In this case, researchers are spurred
to promote the performance of identifier splitting, and hence
many innovative techniques have been introduced(e.g., [5],
[12], [13], [14], [15] and etc.).

Here, we selectively and briefly introduce several of these
state-of-the-art identifier splitting techniques. Field et al.[12]
first attempted to split identifiers with a simple greedy algo-
rithm and used a simple artificial neural network approach.
DTW[14] is based on a modified version of Dynamic Time
Warping. The fundamental idea behind this approach is to
determine the optimal matching of two series of characters
(x1, x2, ..., xn) and (y1, y2, ..., ym). GenTest[7] attempts to
score all possible splits for an identifier with a series of
handcrafted metrics, and the one with the highest score is con-
sidered to be the correct split. LINSEN[15] uses an efficient
approximate string-matching algorithm, BYP, in conjunction
with nested context-based dictionaries.

A number of man-made oracles for identifier splitting were
created from past accomplishments. Thereupon then previous
studies could evaluate their techniques on these available ora-
cles. In our study, four frequently used oracles namely Bink-
ley[16](containing 2,663 samples), BT11[17](21,122), Jhot-
draw(974), and Lynx(3,085)[14], will be applied.

B. Reformulating Identifier Splitting as a Sequence Labeling
Task

The essence of splitting an identifier is to determine at
which adjacent positions to insert splits. Thus, we can draw
on the experience of the advancing thought to solve Chinese
word segmentation[18]–sequence labeling. Similarly, identi-
fier splitting can be subtly mapped to a sequence labeling task:

For a given identifier id with characters sequence
(c1, c2, ..., cn), we label each ci with a corresponding tag.

The set of candidate tags contains only B, M, E, S, and N.

Assuming the unified max-length of the accepted identifier
is T, the interpretation of each tag is as follows: B, denoting
the beginning of a term; E, denoting the end of a term; M,
denoting the position between the beginning and end of a term;
S denoting a term with only one character; and N, denoting
the spare positions of an identifier if its length is less than T.

After tagging all ci of id, we subsequently insert splits
between any adjoining cn and cm with successive tags EB,
ES, SB, or SS. For instance, we input identifier nthreadpool
and obtain the output SBMMMMEBMME. Based on the rules
summarized above, two splits are inserted between n and t,
and d and p, respectively. Consequently, we obtain the splitting
result n-thread-pool.

C. CNN-BiLSTM-CRF Model

According to the above discussions, the oracles of identifier
splitting can be transferred into the form of sequence labeling
accordingly. On this basis, we are able to train a deep model
for labeling newly input identifiers, and then infer correct
splittings of them. The considered deep model is actually our
proposed CNN-BiLSTM-CRF model.

We vary the basic BiLSTM-CRF[19] network by adopting
an additional CNN layer with the aim to extract finer-grained
morphology features inside identifiers.

The architecture of CNN-BiLSTM-CRF is illustrated in Fig.
1, showing a slice of the entire network. The left side of Fig. 1
shows the general framework of BiLSTM-CRF. It differs from
the traditional framework because the input layer of BiLSTM-
CRF takes the replaced CNN-processed char representation of
the identifier as input.

In particular, Ct denotes the input character at time t
encoded using one-hot encoding3, and Convt denotes the tth

vector after convolution on the original input layer. To en-
sure one-to-one correspondence, we alternatively add padding
around the beginning and end of the original input char
representation. After that, we concatenate the output of the
convolution layer and the original char representation to gener-
ate the final CNN-processed char representation. This gives the
interpretation of Conct, which denotes the tth concatenated
vector. It is also worth mentioning that we skip the pooling
layer with the aim of preserving all information of the input
identifier in our task.

3We perform character-level embedding on each input character with a one-
hot vector (with shape 1×n). This means there is only one component equal
to 1 in this vector. For example, Ct can be [0, 1, 0, ..., 0].



Fig. 1. Architecture of CNN-BiLSTM-CRF. Red rectangles indicate the padding for the CNN layer.

Suppose that K is the convolution core with shape m×n (n
is equal to the length of dimensionality of the one-hot encoded
vector). The convolution layer is calculated as follows:

Convi = f(
∑
i

C ′i+m ◦Km) (1)

where symbol f denotes the activation function of convolution
layer (normally the Relu function), the ◦ operation produces
the Hadamard product of two vectors, and C ′i denotes the ith

vector of padded matrix C, defined as the original input layer
in Fig.1.

Consequently, the concatenated representation of an input
char is expressed by merging two corresponding vectors of
Convi and Ci, as shown in Equation 2.

Conti(2×n)
=
(
Convi(1×n)

Ci(1×n)

)
(2)

With regard to the remaining BiLSTM-CRF, CRF on the
top of BiLSTM takes the final softmax layer of the BiLSTM
layer as input. The softmax layer produces the probability
distribution over labels (i.e., B, M, E, S, and N). The CRF layer
calculates the emission scores and transition scores based on
the probability. The emission score of a label can be directly
expressed by reusing its output probability, while the transition
score is a bit difficult to deduce. This requires us to maintain
a 5× 5 matrix (5 meaning the number of all possible labels),
which records the transition score from one label to another
label. In nature, the matrix is randomly initialized with small
values. To elaborate, for a given output path p of an identifier
B ⇒M ⇒ E ⇒ S, we have

EmissionScorep = X0,B +X1,M +X2,E +X3,S (3)

TransitionScorep = TB,M + TM,E + TE,S (4)

Therefore, for a path p, the final score of p is calculated as

Scorep = EmissionScorep + TransitionScorep (5)

The final scores of other possible paths besides p are
calculated in the same way. Among all paths, the path with
the highest final score is actually thought to be the real path
(i.e., correct path). After determining how to calculate the final
score for each possible path, we are now able to define the
CRF loss function:

LossFunction = −log(ScoreRealpath∑N
n=1 Scoren

) (6)

During the training process, the parameter values (including
the transition score matrix) of our BiLSTM-CRF model are
updated repeatedly to continue increasing the percentage of
the score of the real path. Because only bigram interactions
between outputs are being modeled, the total scores for all pos-
sible paths can be computed using dynamic programming[20].
The log probability of the correct tag sequence is maximized
by automatically reducing the loss of Equation 6. When the
model is ready, we can infer the labels for the input identifier
by using a Viterbi decoding algorithm based on the transition
score matrix and the output of the BiLSTM layer.

III. EXPERIMENTAL VALIDATION

In this section, we describe the series of experiments con-
ducted on the four oracles mentioned previously. We chose 30
to be the unified length of the input layer because we found
that identifiers with the length less than 30 occupy more than
96% of the samples on average for all datasets.

In addition, approximately 5,000 manually constructed iden-
tifiers4 were collected as extra training materials, with which
we could optionally supplement the training set partitioned
from a given oracle. Specifically, these fake-identifiers were
used in ExperimentIII−B and ExperimentIII−C to further
enhance the performance of trained models.

The hyperparameters in use and details of the proposed
CNN-BiLSTM-CRF structure are summarized in Table I.

4They were generated with the aid of SCOWL – http://wordlist.aspell.net/



TABLE I
THE HYPERPARAMETERS & STRUCTURAL DETAILS TO CONSTRUCT

OUR PROPOSED CNN-BILSTM-CRF MODELS

Component Hyperparameter Value (Option)

CNN layer

Number of layers 1
Filter shape 3× n1

Filter stride 1
Activation function Relu

BiLSTM layer
Number of layers 2
Dropout probability 0.0

Fully connected layer
Number of layers2 1
Activation function None

General settings
of training process

Initial learning rate 1.0
Learning rate decay3 0.5
Max gradient norm 5
Max training epoch 13
Batch size 25

1 As mentioned in Section II.C, the n is equal to the length of dimensionality
of the one-hot encoded vector.

2 The number of nodes of the hidden layer is set to 200.
3 The learning rate will decay dynamically from one training epoch to next

epoch based on an exponential decay model.

A. Evaluation Measures

We use the measure Accuracy to evaluate the performance
of our trained models. To calculate the accuracy, we need to
measure whether every predicted split of an identifier is exactly
equal to the corresponding correct split in the oracle (i.e., the
percentage of correct splitting). Thus, it is simply calculated
as follows:

Accuracy =
Num(correctly split identifiers)

Num(all identifiers)
(7)

Several previous studies (e.g., [8], [13]) additionally used
Precision, Recall, and F-measure to measure the local ability
of evaluating techniques. However, we posit that these mea-
sures always follow the same trend with accuracy and behave
extremely congruously, based on observations of our early
research and previous experimental results. In addition, most
other studies highly related to this topic used no other kinds
of measures (e.g., ROC-AUC and Cohen’s kappa5). Therefore,
we pretermit considering other metrics in order to make our
outcomes clear.

B. Investigation of the ability to split identifiers

This experiment was set up to validate the effectiveness of
our proposed technique intuitively.

5There are two reasons for the unsuitablility of applying Cohen’s kappa
or ROC-AUC to this multiclass classification task: 1) Our task additionally
concerns the sequential relatedness of labels, and 2) other baseline techniques
used as benchmarks in this study infer identifier splitting on the word level,
whereas our proposed technique is on a different character level.

TABLE II
ACCURACY OF IDENTIFIER SPLITTING COMPARED WITH OTHER

STATE-OF-THE-ART APPROACHES

Splitting Approach Oracle

Binkley BT11 Jhotdraw Lynx
CNN-BiLSTM-CRF 0.817 0.936 0.912 0.876
GenTest 0.701 0.723 0.795 0.489
INTT 0.774 0.820 0.844 0.625
LIDS 0.713 0.811 0.903 0.542
DTW - - 0.931 0.703
LINSEN - - 0.949 0.803

To assess the prediction performance of our trained models
in a general and proper way, a 10-Time Hold-out Validation6

based on Train/Validation/Test Set Splitting7 was used in
this experiment. In other words, for every specific oracle,
we iteratively trained and evaluated models 10 times, and
the average of all results was subsequently used as the final
estimation result on our models.

Several techniques (listed in Table II) were selected for
benchmarking and were applied to split these oracles at the
same time. Slightly different from our proposed technique,
these compared techniques performed on all samples of the
four oracles because no training processes were used in their
cases. Specifically, we implemented LIDS[13], GenTest[7],
and INTT[17] because they are provided with publicly avail-
able tools. For those that do not have publicly available tools,
i.e., DTW and LINSEN, we tried obtaining their experimental
results from study[15].

The experimental results are listed in Table II, with the best
accuracies among all compared approaches in bold. The results
show the following: On the Binkley dataset, CNN-BiLSTM-
CRF achieves the highest accuracy (81.7%). On the Jhotdraw
dataset, our proposed technique is suboptimal (91.2%) among
all techniques. LINSEN seems to perform best on Jhotdraw
since it has the highest accuracy (94.9%). However, on BT11
and Lynx, oracles with relatively more samples for training,
the performance of our proposed technique is vastly superior to
that of all other techniques. In particular, in terms of accuracy,
CNN-BiLSTM-CRF outperforms the second best technique by
more than 7%–11%.

We conducted a hypothesis test (Pearson chi-square test
and odds-ratio) to investigate whether the difference in per-
formance between CNN-BiLSTM-CRF and other state-of-the
art techniques varies significantly. To simplify our results and

6One round of the k-time hold-out validation (a.k.a. Monte Carlo Cross
Validation[21]) involves randomly partitioning samples into disjoint subsets,
of which at least one is used as training set and at least one is used as test
set. Then, the model fit by the training set is evaluated with the test set. This
process is independently repeated k times, where the partitions of samples are
accomplished in the same random manner for each run.

7In this three-way split, the original dataset is randomly partitioned into
three parts at each time: 70% for the training set, 15% for the validation set
to help avoid overfitting during the training process, and the remaining 15%
to evaluate the performance of the model.



TABLE III
SIGNIFICANCE TEST FOR DIFFERENCE IN ACCURACY BETWEEN CNN-

BILSTM-CRF AND OTHER STATE-OF-THE-ART APPROACHES

Oracle
Compared
Approach

Chi-square Test Odds-ratio

Binkley
INTT p=0.03750(Significant) 1.35(Better)
LIDS p<0.00001(Significant) 1.80(Better)

BT11
INTT p<0.00001(Significant) 3.21(Better)
LIDS p<0.00001(Significant) 3.41(Better)

Jhotdraw
DTW p=0.4951 0.80(Worse)
LINSEN p=0.1069 0.59(Worse)

Lynx
DTW p<0.00001(Significant) 2.95(Better)
LINSEN p<0.00001(Significant) 1.71(Better)

*1 The difference between two approaches is significant if the adj. p-value
statistic is less than the significance level (0.05).

*2 Odds-ratio greater than one means the treatment approach (CNN-
BiLSTM-CRF) performs better than the compared control approach.

make things clearer, we chose only the top two well perform-
ing techniques except CNN-BiLSTM-CRF for comparison.
The statistical results of the hypothesis test are listed in Table
III, from which we learn the following:
• CNN-BiLSTM-CRF performs significantly more accurately

than other techniques on the Binkley, BT11, and Lynx
datasets.

• Even though CNN-BiLSTM-CRF achieves lower accuracy
than LINSEN on Jhotdraw, there is no significant difference
between them with the p-value of a chi-square test of 0.1069,
which does not exceed the critical value of 0.05. This
means our technique, for Jhotdraw, performs at least in line
with LINSEN (i.e., the technique with the best performed
accuracy on Jhotdraw).

C. Investigation of external generality

This part of experiments was set up to explore the extensive
feasibility of applying the CNN-BiLSTM-CRF model to split
identifiers outside of the original oracle with which it was
trained. Hence, to realize this aim, we trained models on
four training sets, namely, Binkley, BT11, Jhotdraw, and Lynx.
Then, we evaluated the accuracies of trained models by other
evaluation sets.

The experimental results are shown in Table IV. The top
header of Table IV lists the training sets with which we
trained the models. The sidebar lists all evaluation sets. Hence,
each cell inside the table refers to the average accuracy we
obtained from the models that were trained and estimated with
a specific pair of training and evaluation sets. It illustrates
that the performance of models on other oracles which they
were not trained with, by and large, approaches to the ideal
performance reported in Table II (despite declines at different
degrees). We even see a slight improvement in Jhotdraw from
the model trained with BT11. Not surprisingly, the models
trained with Jhotdraw perform worst since Jhotdraw contains
a limited number of samples (only 974).

TABLE IV
EXTERNAL PERFORMANCE (i.e., ACCURACY OF SPLITTING) OF

CNN-BILSTM-CRF MODELS

SEvaluation

STraining Binkley BT11 Jhotdraw Lynx

Binkley - 0.760 0.655 0.703
BT11 0.833 - 0.796 0.814
Jhotdraw 0.896 0.936 - 0.883
Lynx 0.782 0.844 0.709 -

Total Avg. 0.829 0.825 0.773 0.805

Fig. 2. Effect of training set size on model performance.

D. Investigation of effect of training set size

By picking and training samples with sizes from small to
large in every fixed intervals from all datasets, we built CNN-
BiLSTM-CRF models and then evaluated them by recording
the related data of the accuracies. Similarly, for each size,
we trained 10 models and acquired their average results. The
results are shown in Fig. 2, which indicates that models trained
on all different datasets follow the same trend. This reveals
that as the size of training set increases, the performance of
the model improves.

On the largest dataset BT11, however, it is noteworthy
that the increment gradually slows down when the size of
the training sets exceeds 6,000. It seems that 6,000 could
be an appropriate size of training sets if we want to strike
a compromise between the model performance and training
cost under this circumstance.

E. Investigation of training cost

We determined four categories of training set size, namely
2000, 8000, 15000, and 27000, to survey whether our proposed
technique is time-consuming. Specifically, we conducted 10
groups of experiments on four randomly constructed oracles
which are corresponding to the above-mentioned four sizes.
For each group, we separately trained four models on these
oracles, and respectively recorded their training times (graph-
ically provided in Fig. 3). Experiments from group No. 1 to
No. 10 were carried out independently, but the plotting line
of each corresponding size revealed strong consistency and
stability on the training time.

To deeply inspect whether the computational time would be
influenced by different constructions of samples, we randomly



Fig. 3. Computational time of training models on training sets of different
sizes. The No. on the x-axis represents that it is the ith group of experiment.
The value on the y-axis represents computational time of training a specific
model once.

Fig. 4. Training cost of five sets of data with 15,000 samples.

constructed four extra training sets, all with a size of 15,000, to
perform similar experiments. We used the box plot to measure
the dispersion of the computational time of each set. The
results are shown in Fig. 4, of which each horizontal line in
a box refers to the average training time. We found out that
models on all sets of samples finished their training with a
nearly identical median of training time (13.7 min).

From all the illustrated results, we concluded that

There is not a significant amount of time for training (It
takes about, on average, 10 minutes to train a model with
8,000 samples and 31 minutes with 27,000 samples.). In

addition, the training time is shown to be sufficiently stable.

These data were produced and collected from a PC with 1*
NVIDIA P100, Octa-core 2.5-GHz CPU and 16 GB of RAM.

IV. DISCUSSION

A. Deeper insight into CNN-BiLSTM-CRF approach

We determined that the CNN-BiLSTM-CRF model is suit-
able for handling identifier splitting after pondering the rela-
tionship between this adopted model and domain-specific data
(i.e., identifiers).

Through utilizing the characteristics of a CNN to perform
character-grained feature extraction, the model is capable of
learning the word morphology transformations. This provides
an expansion ability for our technique to effectively handle
multiple forms of a term. This will become more significant
if models are trained on large datasets. Furthermore, the
BiLSTM network enables the model to automatically learn
contextual information, i.e., whether to insert a split in the
current position according to characters in front and behind.
Third, the CRF layer helps to eliminate those candidates
splitting with few probabilities (e.g., tag M should never be
followed by B or S). By integrating all of the needed abilities,
our proposed technique certainly performs well.

We noticed from the above results that when our proposed
technique was applied to oracles with a sufficient number of
samples, the performance was significantly better than oracles
with fewer samples. This is because neural networks always
perform more poorly on small datasets. A larger training set
provides richer information for a neural network to learn and
to avoid overfitting. (Table II and Fig. 2 both strongly confirm
this point.)

B. Possibility for improvement

After observing 200 incorrectly split identifiers inferred by
our trained models, we figured out that a large proportion of
them (93/200) were caused by a lack of training materials.
This caused our models to fail to recognize terms inside these
identifiers (e.g., NXScanf, where Scanf is the name of a C
library function).

Given the extensibility of our technique, we are able to
address this problem easily by mining more complete iden-
tifiers or constructing more customized fake-identifiers. These
samples are then appended to the oracle before training a
model. In addition, we believe that some unused deep learning
or tuning skills provide the possibility of improving the
performance from the model itself.

C. Is CNN-BiLSTM-CRF really feasible?

We deduce the answer of this question to be yes, based
on all of the aforementioned outcomes. First, this proposed
approach is superior if the training samples are customized and
sufficient enough (according to the results in part B of Section
III). Second, the model is of great extensibility. The results
in Table IV indicate that most trained models achieve a total
average accuracy of 80% when splitting those identifiers which
they never met. This convinced us that it is entirely possible
to construct a model with sufficient generality. Although we
failed to obtain good performance on Jhotdraw, to some extent
this is insignificant because we will certainly ensure that our
models are trained on oracles with enough samples in practice.
Third, training the model is feasible with regard to time. Only
a little time is needed to construct an available CNN-BiLSTM-
CRF model, and this is within the acceptable range. (Samples
of all oracles are within 21,000 in our study, but all of them led
to good performance). The cost of inferring a newly received
identifier could even be omitted.



D. Threats to validity

The validity of our study has three major threats.
The threat to content validity is that using only four oracles

as in our study seems to be insufficient for the hypothesis tests
to be reliable. Although they contain identifiers that originated
from several kinds of programming languages (i.e., C, C++,
and Java), they still cannot represent all kinds of languages.
Moreover, some of these oracles may not contain enough
multiplex samples because of their small size.

Threats to internal validity include the hyperparameters of
constructing the CNN-BiLSTM-CRF network and the random-
ness of the training process of a neural network. We selected
the hyperparameters (e.g., the activation function and batch
size) based on practical experience from the academic area.

The threat to instrumental validity is that we merely obse-
rved accuracy data on the Jhotdraw and Lynx datasets of
LINSEN and DTW from a previous study. However, we still
made a strong effort to compare our proposed technique with
other state-of-the-art techniques on two other datasets.

We realized our approach with Tensorflow 1.4, a mature
deep learning framework maintained by Google. The ready-
made package to split identifiers, implemented code, oracles,
and indications to reproduce our experimental results can be
found in our Github repository8.

V. CONCLUSION

We described a completely new approach, CNN-BiLSTM-
CRF, to perform identifier splitting. In the premise of properly
setting up the model, this approach is superior to other state-
of-the-art techniques. We further investigated the feasibility
of the proposed technique. The experimental results jointly
demonstrated that the technique is practical and efficient with
regard to training cost and the demand on the size of the
training sets. The results also showed that this approach
exhibits good generalization performance on various datasets,
including splitting identifiers outside from trained-with ora-
cles. Ultimately, splitting identifiers via CNN-BiLSTM-CRF
is proven to be helpful in practice, in combination with all the
qualitative and quantitative analyses in this study.

Detailed heuristics and processes of constructing CNN-
BiLSTM-CRF models will be introduced in the next phase of
our research. In the future, we will also improve the feasibility
and generality of this approach by integrating transfer learning
techniques (e.g., investigation of cross-programming-language
identifier splitting).

ACKNOWLEDGMENT

Sincere appreciation to Li Sun, Juan Qiu, Robbie Xie, and
Kanglin Yin, who provided us with valuable comments and
tremendous encouragement. We are also grateful toward S.
Butler, D. Binkley, and Madani et al. because it would not have
been possible to complete this work without their previous
substantial efforts on the topic of identifier splitting and their
publicly available oracles.

8https://github.com/ jaki2012/ IdentifierSplitting-SEKE2018

REFERENCES

[1] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Mining Software Repos-
itories (MSR), 2015 IEEE/ACM 12th Working Conference on, pp. 334–
345, IEEE, 2015.

[2] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 87–98, ACM, 2016.

[3] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[4] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension,
pp. 279–290, ACM, 2014.

[5] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” in Mining
Software Repositories, 2009. MSR’09. 6th IEEE International Working
Conference on, pp. 71–80, IEEE, 2009.

[6] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261–282, 2006.

[7] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code vocab-
ulary,” in Reverse Engineering (WCRE), 2010 17th Working Conference
on, pp. 3–12, IEEE, 2010.

[8] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker, “An
empirical study of identifier splitting techniques,” Empirical Software
Engineering, vol. 19, no. 6, pp. 1754–1780, 2014.

[9] S. W. Thomas, A. E. Hassan, and D. Blostein, “Mining unstructured
software repositories,” in Evolving Software Systems, pp. 139–162,
Springer, 2014.

[10] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: An
enhanced tag recommendation system for software information sites,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pp. 291–300, IEEE, 2014.

[11] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can bet-
ter identifier splitting techniques help feature location?,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference on,
pp. 11–20, IEEE, 2011.

[12] H. Feild, D. Binkley, and D. Lawrie, “An empirical comparison of
techniques for extracting concept abbreviations from identifiers,” in Pro-
ceedings of IASTED International Conference on Software Engineering
and Applications (SEA’06), 2006.

[13] N. R. Carvalho, J. J. Almeida, P. R. Henriques, and M. J. Varanda, “From
source code identifiers to natural language terms,” Journal of Systems
and Software, vol. 100, pp. 117–128, 2015.

[14] N. Madani, L. Guerrouj, M. Di Penta, Y.-G. Gueheneuc, and G. An-
toniol, “Recognizing words from source code identifiers using speech
recognition techniques,” in Software Maintenance and Reengineering
(CSMR), 2010 14th European Conference on, pp. 68–77, IEEE, 2010.

[15] A. Corazza, S. Di Martino, and V. Maggio, “Linsen: An efficient
approach to split identifiers and expand abbreviations,” in Software
Maintenance (ICSM), 2012 28th IEEE International Conference on,
pp. 233–242, IEEE, 2012.

[16] D. Binkley, D. Lawrie, L. Pollock, E. Hill, and K. Vijay-Shanker, “A
dataset for evaluating identifier splitters,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, pp. 401–404,
IEEE Press, 2013.

[17] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” ECOOP 2011–Object-Oriented Pro-
gramming, pp. 130–154, 2011.

[18] N. Xue, “Chinese word segmentation as character tagging,” International
Journal of Computational Linguistics & Chinese Language Processing,
Volume 8, Number 1, February 2003: Special Issue on Word Formation
and Chinese Language Processing, vol. 8, no. 1, pp. 29–48, 2003.

[19] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for
sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.

[20] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint
arXiv:1603.01360, 2016.

[21] Q.-S. Xu and Y.-Z. Liang, “Monte carlo cross validation,” Chemometrics
and Intelligent Laboratory Systems, vol. 56, no. 1, pp. 1–11, 2001.


