
A Framework to Support the Development of
Self-adaptive Service-oriented Mobile Applications

William Filisbino Passini1 and Frank José Affonso2
Department of Statistics, Applied Mathematics and Computation

São Paulo State University – UNESP
PO Box 178, 13506-900, Rio Claro, SP, Brazil

1william.passini@gmail.com, 2frank@rc.unesp.br

Abstract—Today’s society is increasingly dependent on the use
of mobile devices, which have changed over these last 10 years the
way people perform their daily tasks. This can certainly be one of
the factors that has boosted the demand for development of high-
quality Mobile Applications (MobApps). In short, to improve
the efficiency of the development life cycle, these applications
often use third-party components (e.g., software components,
web services, and other mobile applications). Service-oriented
MobApps have been a feasible alternative to overcome hardware
limitations of these devices to increase the processing and storage
capacity. In another perspective, it is also noted a change in the
behavior of users of MobApps and their needs, which require
applications capable of modifying their structure and/or behavior
at runtime. Thus, this paper presents a framework to support
the development of Self-adaptive Services-oriented MobApps
(Self-MobApps), which enable adaptation of services at runtime.
To show the feasibility of our framework, a case study for a
smart restaurant was conducted. The results of this study enable
us to create a positive perspective on the contribution of our
framework to the research communities involved.

Index Terms—Framework; Mobile Applications; Service Com-
puting.

I. INTRODUCTION

The complexity of software systems and their computational
environments has increased in the last years. Nowadays, our
society has become increasingly dependent of such systems,
which must be able to work in 24/7 mode (i.e., 24 hours
per day, seven days per week). Thus, it can be noted that
most human daily tasks are managed by applications em-
bedded (i.e., Mobile Applications – MobApps) into mobile
devices (e.g., smartphones or tablets), which allow on-line
access to information regardless of the users’ location [1],
[2], [3]. Regarding the development, such applications can
have, at the same time, some items: (i) ad-hoc components and
applications developed by third-party; (ii) on-line services; and
(iii) platform-dependent components to access device-specific
hardware (e.g., camera, GPS – Global Positioning System,
microphone, among others) [4].

Mobile devices have some physical limitations (e.g., pro-
cessing and storage) compared to personal computers. For
these reasons, research has been boosted to minimize the
impact of such limitations and, at the same time, to facilitate
access to information providing mobility to their users. Based
on the presented context, the integration of MobApps into
SOA-based (Service-Oriented Architecture) systems have been
a feasible alternative to overcome these limitations. In short,
SOA provides an architectural model that enables services to
be published by service providers, discovered and consumed

by the stakeholders (i.e., client applications, other services,
among others) by means of platform-independent communi-
cation process based on set of XML-based (eXtensible Markup
Language) standards [1], [5], [6].

SOA-based systems have played an important role in the
development of distributed applications over the Internet. In
this context, web services can be considered elements of
first class to support the development of applications based
on services in heterogeneous environments. Moreover, such
applications, regardless of type (e.g., distributed, mobile, or
web), must be prepared to deal with the changes at runtime,
which can be performed to meet the user’s new needs (e.g.,
new requirements) or autonomously react to modifications
in their execution environment (e.g., services unavailability).
Therefore, services that enable adaptation at runtime can be
classified as self-adaptive service [4], [7].

Based on presented context, a framework to support the de-
velopment of Self-adaptive Services-oriented MobApps (Self-
MobApps) is proposed in this paper. In short, this framework
enables services to be monitored by a supervisor system
and adapted at runtime. Such system was designed by our
research group in previous work [8] and enables to classify
and analyze sensory data to autonomously detect and mitigate
faults at runtime (e.g., service unavailability, failures, or high
response time). Moreover, this framework aims to support
the development of Self-MobApps by means of a dynamic
approach for service deployment. In other words, unavailable
services can be replaced by a similar one in a transparent
way without the perception of their stakeholders (i.e., client
applications). For reasons of scope, our framework addresses
only services based on JAX-WS (Java API for XML Web
Services) [9].

The paper is organized as follows: Section II presents
the background and related work; Section III provides a
description of our framework; Section IV presents a case study
to show the applicability of our framework; and Section V
summarizes our findings, conclusions, and perspectives for
further research.

II. BACKGROUND AND RELATED WORK

This section presents the background (i.e., concepts and
definitions on self-star software and self-adaptive services)
and related work that contributed to the development of our
framework.

DOI reference number: 10.18293/SEKE2018-163



Self-star software. Self-adaptive Software (SaS) has spe-
cific characteristics compared to a traditional one because this
type of software enables structural, behavioral, or contextual
changes at runtime. Among these changes, some of them
deal with management of complexity, robustness in handling
unexpected conditions (e.g., failure), changing priorities and
policies governing the goals, and changing conditions (e.g., ex-
ecution environment). According to Salehie & Tahvildari [10],
“SaS is expected to fulfill its requirements at runtime in
response to changes. To achieve this goal, software should
have certain characteristics, known as self-* properties (...).
These properties provide some degree of variability, and conse-
quently, help to overcome deviations from expected goals (e.g.,
reliability)”. To manage the changes at runtime, feedback-loop
proposed by IBM [11] has been a good alternative, since all
decisions are taken based on a plan established in the data
collected from execution environment.

Self-adaptive service. Li et al. [12] proposed a self-healing
framework for QoS-aware (Quality of Service) web services
composition. Self-healing is a self-property that provides spe-
cial ability to software systems, which can perceive that they
are not operating correctly and, without human intervention,
make the necessary adjustments to restore them to normal op-
eration. To do so, this framework uses Case-Based Reasoning
(CBR) for using previous experiences to understand and solve
new problems by means of service similarity. A knowledge-
based approach for Service Composition based on self-healing
was developed by Angarita et al. [5]. SC is an application
composed of a service set that interacts with each other and is
invoked on the Web. This type of service can be classified in
two categories: (i) static, which represents the aggregation of
services taken place at design time; and (ii) dynamic, which
enables determining and replacing services at runtime [13].

As related work, Sefid-Dashti & Habibi [14] proposed
a mobile SOA Reference Architecture (RA) based on 26
mobile SOA patterns and introduced a new domain specific
layer. This RA enables reaction to changes in infrastructure
in order to streamline a service, which can be realized by
several mobile SOA patterns. A SOA-based platform-specific
framework for context-aware MobApps was developed by
Daniele et al. [15]. This framework was based on a RA
composed of components typically used by MobApps by
means of automated design approach. Moreover, the design
of context-aware MobApps is platform-independent and can
be realized with different specific target implementations.
Cherif et al. [6] proposed a Reference Model for specifying
Self-adaptive Service-based Applications (ReMoSSA). This
model was based on FORMS model [16] and the auto-
mate element proposed by IBM [11]. Moreover, costs and
efforts of maintenance can be minimized, since this model
enables to inspect if the dynamic monitoring and the dy-
namic adaptation are being considered in the design phase. A
declarative approach called SelfMotion (Self-Adaptive Mobile
Application) was designed by Cugola et al. [4]. In short,
applications based on SelfMotion can be performed by a
middleware that enables to create at runtime the best sequence

of abstract actions (i.e., service orchestration) to achieve the
goals, mapping them to the concrete actions to execute in
accordance with the specified QoS Policy. Such sequences
are elaborated by automatic planning techniques, which enable
the service changes without perception of their stakeholders.
Finally, Nasridinov & Byun [17] proposed a framework named
WS–DIRECT (Web Service–DIscoverability, REcoverability,
Classifiability and Trustworthiness). This framework provides
a set of mechanisms to deal with service adaptations at
runtime, such as: (i) semantic discovery; (ii) self-healing, i.e.,
monitoring, diagnosis and repair; (iii) classification of QoS;
and (iv) ontology-based security. Li et al. [12] designed a
framework QoS-aware web service composition based on self-
healing property and CBR. This framework enables to propose
solutions for detected problems, to make assumptions and
predictions based on previous experiences, and to adapt to
changes of the environment.

III. FRAMEWORK FOR SELF-MOBAPPS

According to Erl [18] and OASIS [19], SOA is composed of
three elements: (i) web service provider, which is responsible
for providing the services that will be executed; (ii) web
service repository, which is responsible for describing, pub-
lishing, and finding services; and (iii) web service client, which
represents the consumers of such services. Regarding the
second element, it represents an XML-based standard called
UDDI (Universal Description, Discovery, and Integration). In
short, it enables the registry of all web service’s metadata,
including a pointer to the WSDL (Web Service Description
Language) description of a service, beyond a set of WSDL port
type definitions for manipulating and searching such registry.
Figure 1 shows the general representation of SOA.

Publishes

Noti
fie

s

Req
ue

sts

IoT

Browse

Mobile

Web Services Client Web Services Provider

Web Services Repository

WSDL

Developers
Development
Environment

Exchange of messages

Legend:

WSDL file

Semantic
description file

Request

Response

Figure 1. Service-oriented Architecture (Adapted from [19])

Based on these concepts, this section presents a framework
to support the development of Self-MobApps. This framework
enables services to be monitored at runtime and replaced in
case of problems (e.g., service unavailability, failures, or high
response time). With regard to the replacement of services, two
possibilities are allowed by our framework: design time and
runtime. The first uses a list of preferred services defined by



the developers in the design phase of a primary service. The
second uses an automatic mechanism of search to find a similar
service in the web service repository. Finally, our framework
addresses only services based on JAX-WS and simplifies
creating and deploying web services and web services clients.
Figure 2 shows the general representation of our framework,
which is composed of a core for adaptation (dotted line) and
four additional modules: development, search, action plan,
and deploy. Next, a brief description of this architecture is
addressed.

Action Plan Module

WSDL Parser

Se
ar

ch
 M

od
ul

e

Web Service Model

Choreography Model Choreography Manager

Service Adaptation

D
eploy M

odule

Development Module

Figure 2. Framework for Self-MobApps

Development module. This module provides a set of
guidelines for Self-MobApps development. Web services are
designed by the developers and registered into environment
execution (i.e., Web Service Repository – Figure 1). These
services are composed of WSDL and semantic description
files. The first one provides to our framework technical de-
scription about operations embedded into a service that will
be used by our “WSDL Parser” for parameter matching.
The second one contains textual description of a service that
will be used by “Search Module” when a new service is
requested. Moreover, it is noteworthy that when a composition
of services (i.e., primary and preferred services) is developed,
the software engineer can associate a list of alternative services
to each preferred service of this composition. This list must
be used when the primary service presents execution problems
(e.g., unavailability, poor performance, among others) and a
preferential service can assume its role.

Search module. This module aims to assist in the search
of services in the repository when an adaptation activity
is invoked (Figure 1). To do so, three search methods are
provided: (i) semantic, which can be defined as a search query
by means of contextual meaning for services. This type of
search provides more meaningful results by finding the most
relevant service in the repository; (ii) technical, which can
be specified only with service information in template format,
which is converted as input parameters to search in the service
repository for matching operation; and (iii) quality, which can
be defined as the description or measurement of the overall
performance of a service. According to [20], unresolved QoS
issues may cause serious problems in relation to execution
(e.g., unacceptable levels of performance degradation). Thus,
our framework addresses seven quality attributes [20], [21]:
availability, accessibility, integrity, performance, reliability,

regulatory, and security. These attributes represent minimal
quality of a service. However, other attributes can be found
in the literature.

Action plan module. This module aims at assisting in
the adaptation activity of services providing means to control
dynamic behavior, individual reasons, and execution state of
each service in relation to the execution environment. To do
so, a framework for decision-making in SaS developed by
Affonso et al. [8] in previous work was used. In short, such
framework is composed of two modules: classification and
recommendation. The main purpose of the first module is to
present a classification for a data set collected via sensors from
execution environment. The second module aims to present
a solution set ranked by statistical measures for a problem
reported by the classification module.

Deploy module. This module aims to support the deploy-
ment process for Self-MobApps. In other words, a service
can be deployed, undeployed, and redeployed. To do so, we
have used jUDDI implementation [22], which is an open
source Java implementation of OASIS’s UDDI specification
for Web Services. When a service is inserted into repository
(Figure 1), its WDSL file is parsed into a structure that aims to
provide information about services and the operation of such
services. Then, for each operation, its parameters and types
are retrieved. In addition, technical service information (e.g.,
namespace and URL (Uniform Resource Locator) service)
must also be obtained.

Core of adaptation. This structure can be considered the
“heart” of our framework, since enables managing service
adaptation at runtime. Basically, this core is organized in
five modules: (i) Web Service Model, (ii) WSDL Parser,
(iii) Choreography Model, (iv) Choreography Manager, and
(v) Service Adaptation. Figure 3 shows the UML model for
core of service adaptation. Next, a brief description of each
module is reported.

Web Service Model. This module contains the model elab-
orated for the representation of a web service (parser-
Manager.model package – Figure 3). From this point
onwards, this model may be also referred to as WSModel
(Web Service Model). The WebService class is composed
of five attributes that describes a service. Each web method of
a service has none or many parameters (Parameter class).

WSDL Parser. This module (parserManager.parser
package – Figure 3) contains a set of classes responsible
for transforming a WSDL document (i.e., file or URL) into
WSModel (parserManager.model package). Thus, from
such document, relevant information of a service is extracted
by means of DOM (Document Object Model) API. The main
purpose of this operation is to read an XML file and parse its
content into a tree structure, where each node is composed of
XML document tags.

Choreography Model. This module has the model elaborated
for the representation of a choreography that must be executed
in the service (wsManager.model package – Figure 3). The
WebService class represents the list of web methods that
can be executed by a service and the respective parameters



Figure 3. UML model for core of service adaptation

that must be provided to each method at runtime.
Choreography Manager. This module has only the

WSOperation class (wsManager.ws package – Figure 3),
which is responsible for acting as a client application in the
communication process via web service. In short, this class
has only the operation method that enables executing a
web method of a service via parameters.

Service Adaptation. This module can be considered as
RA4Self-MobApps “orchestrator”, since it performs calls and
coordinates all activities of the other modules (i.e., Core of
adaptation). In short, this module can be defined as a super-
visor system of web services, monitoring their requisitions in
the execution environment. To do so, this module implements
a well-defined process to adapt a web service at runtime.
Finally, this process must be performed automatically by soft-
ware engineering tools, intending to reduce implementation
complexity and minimize uncertainties generation.

IV. CASE STUDY

To evaluate the applicability, strengths, and weaknesses of
our framework this section presents a case study we have
conducted. As subject application of our empirical analysis,
we have selected an application addressed to the management
of a smart restaurant called App2Rest. This restaurant provides
a table set for its customers, which are equipped with a device
set that aims to automate the restaurant service from orders to

payments. Next, a brief description of our subject application
and the empirical strategies adopted for conducting this case
study is presented.

Subject Application. The App2Rest was organized in two
layers: (i) Devices, which represent the means of access to the
clients (i.e., front-end side) of this application, which can use
mobile devices equipped with the Android operating system
(i.e., smartphones and tablets) and personal computers via the
Web; and (ii) Web Server, which represents an application
composed of a service set (i.e., back-end side). Regarding
the exchange of information between these two layers, a
subsystem was developed to serialize application models via
JSON (JavaScript Object Notation) and facilitate the exchange
of information between these layers (i.e., client and server).
For instance, when a menu is requested by the client side, a
query is performed on the server side and a model composed
of several classes (i.e., data) is instantiated. Next, such model
is serialized to a String (i.e., JSON format) and transferred to
the client side. The inverse process is also considered.

Empirical research strategy. Figure 4 illustrates the
generic structure of our application, which is organized in a
client-server architecture composed of two layers. Regarding
the operation of this application, all requests of the “Devices”
layer (i.e., client side) are sent to the “Web Server” layer,
whose purpose is to intermediate the communication (i.e.,
message exchange) between customer or restaurant devices



and requested web services of such application. The web
services contained in the App2Rest can be classified in two
levels of complexity: (i) simple service, which represents the
encapsulation of a functionality to be made available to its
customers (i.e., “Devices” layer); and (ii) service composed
of services, which represents the encapsulation of more than
one functionality of the restaurant application to be made
available to its customers. This service type executes a call
set to other services by means of a choreography (i.e., action
sequences and conditions) for its functionality to be fulfilled.
For instance, the authentication of a customer in the restaurant
application is a simple service. Customers request orders (i.e.,
items for an order) can be characterized as a composite service.

Regardless of the complexity level, the App2Rest has a
“Service Monitor” component in each service to monitor its
execution status (Figure 4). In a first analysis, this monitor will
determine if the web service that is being requested is available
to be accessed by a customer application (i.e., “Devices”
layer). In a more refined analysis, the quality of such services
can also be assessed. In both analyzes, one service can be
replaced by another equivalent at runtime without client’s
perception. In this sense, to present the details of this last
phase, the WS_01 service will be considered, which enables
customers to make orders for the restaurant. This service is
designed based on three services (WS_A, WS_B, and WS_C)
by means of a service composition. The first service (WS_A)
aims to authenticate the customer in restaurant application via
“E-MAIL” or “GOOGLE SIGN IN”. Once authenticated, the
App2Rest displays the main screen and the meal of the day
is suggested. Next, the customer can accept this suggestion or
select another dish via left side menu. To select another dish,
the customer must access the Menu option in the side menu
so that the dishes and all items available in the restaurant are
displayed. The restaurant menu is performed by the second
service (WS_B), which enables select some items by category.
When selecting a dish (add button), an order pad is initialized
and many items can be added to it (third service – WS_C).
Next, a brief description of each phase is addressed.

In the “design” phase, developers must select the preferred
services that will compose the primary service (e.g., WS_01).
These services are inserted into a dynamic list called “Pre-
ferred Services” (i.e., WS_A, WS_B and WS_C, and the position
of each service in such list is equivalent to its execution
order. More complex choreographies require an external file
to indicate the order of execution of each service. In addition,
for each preferred service there will be a list of “Alternative
Services”. For instance, for the preferred service WS_A, the
alternative services WS_A1, WS_A2 and WS_A3 were selected.

In the runtime phase, primary services are monitored by
the “Service Monitor” component. For instance, when the
monitoring activity detects problems in one of the preferred
services that compose a primary service, the list of alternative
services is consulted. Thus, three situations can be observed:
(i) the list has an alternate service that can replace a preferred
one; (ii) the alternative service list may be empty, i.e., the
developer has not prepared alternative services at the design

phase; or (iii) the list may be empty by attempts, i.e., services
have become unavailable over time. In the last two situations,
the “Service Monitor” component should launch a search in
the “Web Service Repository” to find a service of greater
similarity. Such search can return a service set ranked by statis-
tical measures in relation to the satisfaction of the parameters
initially provided.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a framework that intends to support the
Self-MobApps development. Such framework uses a dynamic
approach for service deployment. In other words, unavailable
services can be replaced by a similar one in a transparent
way without the perception of their stakeholders (i.e., client
applications). Moreover, our framework can classify and ana-
lyze sensory data to autonomously detect and mitigate faults at
runtime for a simple service or a composition of services [8].
As reported in Section I, our framework will address only
services based on JAX-WS [9]. Based on this scenario, the
main contributions of this article are: (i) for the SaS area
by providing a means (i.e., framework) that facilitates the
development of Self-MobApps; (ii) for the Service Computing
area, since we have proposed a framework that enables the
development of Self-MobApps or SOA-based systems by
means of a dynamic approach for service deployment; and
(iii) for both areas, since we have developed a means to replace
unavailable services at runtime without the perception of their
stakeholders. In this sense, the proposed mechanism based
on dynamic deploy for substitution of services (i.e., preferred
and alternative) must be highlighted. The previous selection
of services can further minimize the possible impacts (i.e.,
computational cost and time) caused by the deploy of services.

Regarding future work, at least two activities are intended:
(i) conduction of more case studies or proof of concepts
intending to completely evaluate our framework, including
different software domains; and (ii) use of this framework
in the industry, since it is intended to evaluate its behavior
when it is applied in larger real environment of development
and execution. Therefore, based on the content exposed in this
paper, a positive research scenario can be idealized, intending
to have this framework become an effective contribution to the
software engineering and SaS communities.

ACKNOWLEDGMENT

This research is supported by PROPe/UNESP and Brazilian
funding agencies (CNPq and CAPES).

REFERENCES

[1] J. Aghav and N. Sharma, “A software architecture for provisioning
of mobile services: An osgi implementation,” in MEMSTECH ’11.
Polyana, Ukraine: IEEE, May 2011, pp. 24–27.

[2] F. Gonçalves, C. E. T. Oliveira, I. Silva, and L. Moura, “An architectural
model for applications based on mobile services,” in ICCGI ’07.
Guadeloupe City, Guadeloupe: IEEE, March 2007, pp. 1–6.

[3] F. Gonçalves, C. E. T. Oliveira, I. Silva, L. Moura, and F. Franca, “A
software architecture for the provisioning of mobile services in peer-to-
peer environments,” in ICIW ’07. Morne, Mauritius: IEEE, May 2007,
pp. 1–6.

[4] G. Cugola, C. Ghezzi, L. S. Pinto, and G. Tamburrelli, “Selfmotion: A
declarative approach for adaptive service-oriented mobile applications,”
Journal of Systems and Software, vol. 92, pp. 32 – 44, 2014.



Web App

Web Services Repository

Service + WSDL + Semantic Information

Devices Web Server 

Web 
Service
(WS_01)

WS_A

WS_B

WS_C

WS_A1 WS_A2 WS_A3

WS_B1 WS_B2

WS_C1 WS_C2 WS_C3 WS_C4

Developers

Developers Automatic Search

Service Dynamic ListsService Composition

Preferred Services

Service
Selection

Service 
Sugestion

Alternative Services

Web 
Service
(WS_N)

WS_A

WS_B

WS_C

WS_A1 WS_A2 WS_A3

WS_B1 WS_B2

WS_C1 WS_C2 WS_C3 WS_C4

Developers

Service Dynamic ListsService Composition

Preferred Services Alternative Services

Web Service (...)

Service Monitor

Service Monitor

Client-Server Application

Web App composed of service

out

in

Web Service
(WS_02)

Web Service
(WS_N)

...

Web Service
(WS_01)

Service Monitor

in

out

Remote Server

Web Service

Legend:

Network / Internet

WDSL + Semantic Information

Web Service Information

Figure 4. Generic Representation of Service for Restaurant Application

[5] R. Angarita, M. Rukoz, M. Manouvrier, and Y. Cardinale, “A
knowledge-based approach for self-healing service-oriented applica-
tions,” in MEDES ’16, ser. MEDES. Biarritz, France: ACM, 2016,
pp. 1–8.

[6] S. Cherif, R. Ben Djemaa, and I. Amous, “Remossa: Reference model
for specification of self-adaptive service-oriented-architecture,” in AISC
’14, B. Catania, T. Cerquitelli, S. Chiusano, G. Guerrini, M. Kämpf,
A. Kemper, B. Novikov, T. Palpanas, J. Pokorný, and A. Vakali, Eds.
Cham: Springer International Publishing, 2014, pp. 121–128.

[7] D. Menasce, H. Gomaa, s. Malek, and J. Sousa, “Sassy: A framework
for self-architecting service-oriented systems,” IEEE Software, vol. 28,
no. 6, pp. 78–85, Nov 2011.

[8] F. J. Affonso, G. Leite, R. A. P. Oliveira, and E. Y. Nakagawa, “A
framework based on learning techniques for decision-making in self-
adaptive software,” in SEKE ’15. Pittsburgh, USA: Knowledge Systems
Institute, 2015, pp. 24–29.

[9] Oracle, “Java platform, enterprise edition: The java ee tutorial,” [On-
line], 2018, available: https://goo.gl/qGeGwd, Accessed on February 28,
2018.

[10] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1–42, 2009.

[11] IBM, “An architectural blueprint for autonomic computing,” [On-line],
2005, available: https://goo.gl/wawGvi, Third Edition, Accessed on
February 28, 2018.

[12] G. Li, L. Liao, D. Song, J. Wang, F. Sun, and G. Liang, “A self-
healing framework for qos-aware web service composition via case-
based reasoning,” in APWeb ’13, Y. Ishikawa, J. Li, W. Wang, R. Zhang,
and W. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 654–661.

[13] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,

“Web services composition: A decade’s overview,” Information Sciences,
vol. 280, pp. 218 – 238, 2014.

[14] B. Sefid-Dashti and J. Habibi, “A reference architecture for mobile soa,”
Systems Engineering, vol. 17, no. 4, pp. 407–425, 2014.

[15] L. M. Daniele, E. Silva, L. F. Pires, and M. van Sinderen, “A soa-based
platform-specific framework for context-aware mobile applications,” in
IFIP/IWEI ’09, R. Poler, M. van Sinderen, and R. Sanchis, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 25–37.

[16] D. Weyns, S. Malek, and J. Andersson, “Forms: a formal reference
model for self-adaptation,” in ICAC ’10. New York, NY, USA: ACM,
2010, pp. 205–214.

[17] A. Nasridinov and J. Byun, “Ws-direct: Web service—discoverability,
recoverability, classifiability and trustworthiness,” in CUTE ’12, Y.-H.
Han, D.-S. Park, W. Jia, and S.-S. Yeo, Eds. Dordrecht: Springer
Netherlands, 2013, pp. 879–887.

[18] T. Erl, Service-Oriented Architecture: Analysis and Design for Services
and Microservices, 2nd ed. Upper Saddle River, NJ, USA: Prentice
Hall Press, 2016.

[19] OASIS, “Reference architecture foundation for service oriented architec-
ture version 1.0,” OASIS Committee Specification 01, [On-line], 2012,
available: https://goo.gl/m2pEm4, Accessed on February 28, 2018.

[20] A. Mani and A. Nagarajan, “Understanding quality of service for web
services, improving the performance of your web services,” [On-line],
2002, available: https://goo.gl/TqkVtX, Published on January 01, 2002,
Accessed on February 28, 2018.

[21] A. Al-Moayed and B. Hollunder, “Quality of service attributes in web
services,” in ICSEA ’10, August 2010, pp. 367–372.

[22] jUDDI, “An open source implementation of oasis’s uddi v3 specifica-
tion,” [On-line], 2018, available: https://juddi.apache.org/, Accessed on
February 28, 2018.


