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Abstract— Hybrid systems, especially in the form of cyber 
physical systems, have become ubiquitous and are playing critical 
roles in the functioning of society, however their design and 
implementation are extremely difficulty, especially regarding 
their dependability. In this paper, we propose a hybrid high level 
Petri net formalism, hybrid predicate transition nets (HPrTNs), 
for modeling and analyzing hybrid systems. We discuss some 
critical concepts and features of HPrTNs. We demonstrate the 
applicability of HPrTNs through several well-known benchmark 
hybrid systems and compare our results with other relevant 
methods. HPrTNs are fully supported in the tool environment 
PIPE+. 

Keywords— formal methods; high-level Petri nets; hybrid Petri 
nets, differential Petri nets 

I. INTRODUCTION 

Hybrid systems refer to the systems that arise out of the 
interaction of continuous dynamics and discrete dynamics. 
Many modern embedded systems, especially cyber physical 
systems are hybrid systems that contain physical devices having 
continuous dynamics and computational control processes with 
discrete behaviors. Hybrid systems have become ubiquitous and 
are playing critical roles in the functioning of society, however 
their design and implementation are extremely difficulty, 
especially regarding their dependability. 

Hybrid systems have been the focus of intense research in 
the past few decades since they provide a convenient framework 
to accurately model a wide range of engineering systems and 
provide the flexibility to abstract complex physical behaviors 
away and to model dynamics having varying scales. Following 
the early works on the verification of digital circuits, many 
formalisms, methods and tools have been proposed to model and 
verify more complex embedded systems such as air traffic 
control systems, automotive control, bioengineering, process 
control, real-time communication protocols, manufacturing 
control, etc. One early prominent work is the hybrid automata 
[1] that provided a concrete mathematical framework for the 
analysis and verification of hybrid systems. Hybrid automata 
integrate diverse models such as differential equations and state 
machines in a single formalism with a uniform mathematical 
semantics and novel algorithms for multi-modal control 
synthesis and for safety and real-time performance analysis [2]. 
However, despite providing powerful methods to analyze hybrid 

systems, the major inconvenience of hybrid automata is the 
dramatical increase of model dimensions for complex systems 
due to the intrinsic global state configurations and sequential 
behaviors of automata. 

Petri nets, a concurrent and distributed formal models, 
provide a great flexibility to model complex systems. Petri nets 
have evolved in the past half century in many directions: 
including continuous Petri nets [3], fluid stochastic Petri nets 
[4]. Continuous Petri nets have further been extended to hybrid 
Petri nets [5] for modeling hybrid systems. Hybrid Petri nets  
inherit all the advantages of the Petri net model such as the 
ability to capture distributed behaviors, concurrency, 
synchronization and conflicts. Similar concepts have also been 
extended to high-level Petri nets [6, 7, 8] to model data 
dependent hybrid systems.  

In this paper, we present our results in introducing 
continuous features into predicate transition nets (PrTNs) [9] for 
modeling hybrid systems. Specifically, we introduce two 
different kinds of places and transitions namely continuous 
places and continuous transitions with differential and 
difference equations. Our approach has a well defined priority 
rule to resolve the conflict of firing enabled discrete and 
continuous transitions. We have implemented the whole hybrid 
PrTN framework in our modeling tool PIPE+ [9]. We 
demonstrate how to model some classic examples of hybrid 
systems using PIPE+ and compare the modeling and simulation 
experience and performance with some existing and well known 
hybrid Petri net modeling tools.    

II. RELATED WORK 

The concept of extending Petri net formalism to provide 
means to model continuous and hybrid systems was first 
presented in [10]. Based on this concept, several other extended 
Petri net formalisms were proposed. In the following 
subsections some of related formalisms and their applications 
and supporting tools are discussed. 

A. Hybrid Petri net Formalism 

In [10], the authors combined a continuous Petri net 
representing continuous dynamics with a discrete Petri net 
capturing discrete behaviors. Subsequently, the authors 
extended their formalism to provide distinction between 
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autonomous and timed hybrid Petri nets and provided rules to 
resolve conflicts between continuous and discrete part [5, 11]. 
Hybrid Petri nets are based on low level Petri nets where tokens 
in continuous places are numerals and change rates associated 
with continuous transitions are simple difference equations. A 
slightly different approach was introduced in [12]. Here new 
kind of places and transitions were introduced, namely 
differential places and differential transitions. Differential 
places constitute the continuous state of the system being 
modeled. Differential transitions are always enabled and 
associated with a firing frequency, where first-order ordinary 
differential equations are used to represent the evolution rules. 
Another class of hybrid Petri nets is fluid stochastic Petri nets 
introduced in [4], which extended stochastic Petri nets to model 
hybrid stochastic systems. Apart from these, several other 
prominent works were published to extend other classes of Petri 
nets, batch Petri nets, hybrid flow nets, etc., to support modeling 
of hybrid systems. 

Along with the research on the extension of the low-level 
Petri nets, several classes of high-level Petri nets have also been 
extended for modeling hybrid systems. One of such early 
approaches was proposed in [8], where a method was presented 
to extend timed hierarchical object-related nets (THORNs). In 
this extension, the author introduced real data type to THORNs 
to represent the continuously changing state variable and 
continuous transitions to capture the continuous evolution. In 
this approach, a continuous transition was enabled or disabled 
by inhibitor arcs and the evolution was specified using ordinary 
differential equations. However, this approach was not fully 
developed and supported by any tool. Among other classes of 
high-level Petri nets, Colored Petri nets were studied extensively 
and several approaches for extending them to model hybrid 
systems were proposed in [6, 7, 8, 13]. 

B. Modeling and Analysis Tools 

Although, both low-level and high-level Petri nets have been 
undergone rigorous studies and many extensions are proposed 
to model hybrid systems, not many efforts are made to provide 
proper tool support. Among low-level hybrid Petri net tools 
HYPENS [14], SimHPN [15] and HISim [16] are worth 
mentioning. Both HYPENS and SimHPN are not native Petri 
net tool, and are based on MATLAB and Simulink. They do not 
provide proper net editing capabilities. A user needs to use 
MATLAB/Simulink components to specify the semantics of the 
Petri net model of the system being modeled. HISim on the other 
hand integrates modeling and simulation in a unified tool but is 
functionally incomplete. In [7], the authors proposed a different 
approach to create a model using MATLAB components for 
simulation and provided a methodology to translate that into 
CPN for analysis. Among the tools in this context, Snoopy [13, 
17] provides a unified experience of creating graphical model, 
simulation and analysis; but focuses on modeling biological 
systems. This tool supports several hybrid low-level and high-
level Petri nets. 

Our work provides a unified framework for system modeling 
and analysis using Hybrid high-level Petri nets leveraging our 
tool environment PIPE+.  

III. HYBRID PREDICATE TRANSITION NETS 

In the following sections, we provide a formal definition of 
hybrid predicate transition nets (HPrTNs) by extending the 
definitions of PrTNs [18]. 

Definition 1. A HPrTN is a tuple  𝑁𝑁 =
(𝑃𝑃, 𝑇𝑇, 𝐹𝐹,Σ, 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝑀𝑀0), where  

(1) 𝑃𝑃 = 𝑃𝑃𝑑𝑑 ∪ 𝑃𝑃𝑐𝑐  is a non-empty finite set of discrete places 𝑃𝑃𝑑𝑑 
and continuous places 𝑃𝑃𝑐𝑐  (graphically represented by 
circles and double circles respectively); 

(2)  𝑇𝑇 = 𝑇𝑇𝑑𝑑 ∪ 𝑇𝑇𝑐𝑐 is a non-empty finite set of discrete transitions 
𝑇𝑇𝑑𝑑  and continuous transitions 𝑇𝑇𝑐𝑐  (graphically represented 
by bars and boxed bars respectively), which disjoins 𝑃𝑃, i.e. 
𝑃𝑃 ∩ 𝑇𝑇 = ∅; 

(3) 𝐹𝐹 ⊆ 𝑃𝑃 × 𝑇𝑇 ∪  𝑇𝑇 × 𝑃𝑃 is a flow relation (the arcs of N) such 
that ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑 . ((𝑝𝑝, 𝑡𝑡) ∈ 𝐹𝐹⇔(𝑡𝑡, 𝑝𝑝) ∈ 𝐹𝐹); 

(4)  Σ = (𝑆𝑆𝑡𝑡, 𝑂𝑂𝑝𝑝, 𝐸𝐸𝐸𝐸) is the underlying algebraic specification 
with sorts 𝑆𝑆𝑡𝑡, operations 𝑂𝑂𝑝𝑝, and equations 𝐸𝐸𝐸𝐸. Σ  defines 
the set Token of tokens, the set Label of labels, and the set 
Constraint of constraints of N. In our tool environment, the 
Σ-algebra is instantiated with a subset of Java data types and 
their associated operations and laws; 

(5)  𝛼𝛼: 𝑃𝑃 → ℘(𝑆𝑆𝑡𝑡) associates each place p in P with a subset 
of sorts in 𝑆𝑆𝑡𝑡  such that 𝑝𝑝 ∈ 𝑃𝑃𝑑𝑑  ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∉𝛼𝛼(𝑝𝑝)  and 𝑝𝑝 ∈
𝑃𝑃𝑐𝑐  ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝛼𝛼(𝑝𝑝). The above constraints refer to projected 
component when 𝛼𝛼(𝑝𝑝) is a composite type; 

(6) 𝛽𝛽: 𝑇𝑇 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶𝑡𝑡 associates each transition t in T with a 
first order logic formula that defines the enabling condition 
(precondition) and the processing result (post-condition) of 
t; 

(7) 𝛾𝛾: 𝐹𝐹 → 𝐿𝐿𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟 associates each flow relationship f in F with 
a label denoting the data flow of a relevant transition 
satisfying  ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑 . (𝛾𝛾(𝑝𝑝, 𝑡𝑡) = 𝛾𝛾(𝑡𝑡, 𝑝𝑝)) and ∀𝑝𝑝 ∈
𝑃𝑃𝑑𝑑 , 𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐 . (𝛾𝛾(𝑝𝑝, 𝑡𝑡) = 𝛾𝛾(𝑡𝑡, 𝑝𝑝)) , i.e. discrete transition can 
only read but not change continuous place, and continuous 
transition cannot change discrete place. Thus, this 
restriction corresponds to the concept of elementary hybrid 
Petri nets in [11], which does not allow the conversion 
between discrete and continuous markings; 

(8) 𝑀𝑀0: 𝑃𝑃 → ℘(𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟𝐶𝐶) is a sort-respecting initial marking 
such that ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 . (𝑀𝑀0(𝑝𝑝) ≠ ∅∧|𝑀𝑀0(𝑝𝑝)| = 1) , i.e. each 
continuous place contains one and only one token. 

The dynamic semantics of HPrTNs are defined on the 
concept of markings (states) 𝑀𝑀: 𝑃𝑃 → ℘(𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟𝐶𝐶) that are 
mappings from places to tokens.  

Definition 2. A transition t in T is enabled in a marking M if 
∀𝑝𝑝 ∈ 𝑃𝑃. (�̅�𝛾(𝑝𝑝, 𝑡𝑡): 𝜃𝜃⊆𝑀𝑀(𝑝𝑝)∧𝛽𝛽(𝑡𝑡): 𝜃𝜃) , where �̅�𝛾(𝑝𝑝, 𝑡𝑡) is a 
generalization of 𝛾𝛾 such that (𝑝𝑝, 𝑡𝑡)∉𝐹𝐹⇒�̅�𝛾(𝑝𝑝, 𝑡𝑡) = ∅. 𝑟𝑟: 𝜃𝜃 is the 
result of instantiating all arc variables with tokens in p according 
to substitution 𝜃𝜃.  

The enabling condition of a continuous transition here is 
similar to the strongly enabled concept in [11]. 



Definition 3. An enabled transition t in marking M with 
substitution 𝜃𝜃 can fire and results in a new marking 𝑀𝑀′ defined 
by: ∀𝑝𝑝 ∈ 𝑃𝑃. (𝑀𝑀′(𝑝𝑝) = 𝑀𝑀(𝑝𝑝) ∪  �̅�𝛾(𝑡𝑡, 𝑝𝑝): 𝜃𝜃 − �̅�𝛾(𝑝𝑝, 𝑡𝑡): 𝜃𝜃). 

Two enabled transitions may fire at the same time as long as 
they are not in conflict, i.e. the firing of one them disables the 
other. Furthermore, a discrete transition has priority over a 
continuous transition if they are in conflict. All enabled 
continuous transitions are fired in a single round to reflect a 
snapshot of the time passage. The dynamic semantics (behavior) 
of a HPrTN is the set of all possible transition firing sequences 
starting from the initial marking. Various conflict situations 
involving continuous transitions are further discussed in the 
following sections. 

IV. MODELING HYBRID SYSTEMS 

In this section, we present new features implemented in 
PIPE+ to model hybrid systems. PIPE+ provides full support to 
model, simulate, and model check (using external dedicated 
model checkers) discrete event systems [9]. In the following 
sub-sections, we discuss only the features related to modeling 
continuous and hybrid systems. 

A. Modeling Continuous Components 

To provide support for modeling continuous components, 
two different elements, continuous places and continuous 
transitions, are introduced, which are significant different from 
their discrete counterparts in terms of both structure and 
dynamic semantics.  

1) Continuous Places 
As in [5], continuous places represent the continuous part of 

the state space of the hybrid system being modeled. However, it 
is possible to design these places to represent more than one 
continuous attributes in HPrTNs. In other words, during 
modeling the continuous dynamics, the modeler can design 
these places to represent as many continuous dynamics as 
needed as long as they satisfy the constraints imposed on the 
dynamic semantics of the continuous components. This 
capability is quite useful to group together related dynamics 
instead of scattering those across multiple continuous places. 
We provide more insights on this in section V. 

Continuous places share similar behavior as discrete places. 
The only differences between these are their data types. The data 
type of a continuous place (1) must be a singleton (or not a 
power set in our implementation), and (2) must have at least one 
number element. Thus, a continuous place can hold only one 
token and at least one element of this token is a numeral 
capturing the dynamic changing value of the system. A useful 
guideline is that a continuous place is modified by only one 
continuous transition. This helps to avoid (1) conflict between 
continuous transitions, and (2) inconsistent behavior. This 
restriction may be overcome by using more efficient scheduling 
mechanism of continuous transitions. Finally, continuous places 
are represented by double circle in PIPE+.     

2) Continuous Transition 
Continuous transitions are used to model the continuously 

changing behavior of the hybrid system being modeled. Unlike 
other hybrid Petri nets, the behavior of continuous transitions in 

HPrTNs is strategically different in many ways, including (1) 
continuous transitions are always enabled unless the discrete 
parts are a part of their preconditions, (2) the continuous 
transitions can modify discrete places, (3) the marking of the 
continuous places can control the speed of changes made by the 
continuous transitions. These strategies offer several benefits. 
The first strategy allows us to map the behavior of the 
continuous transitions analogous to the semantics of the hybrid 
systems, where the continuous part continuously changes the 
state of the system and the discrete part only controls the speed 
of the change. For example, when a car is stopped, the engine is 
running and consumes fuel and produces power; but its speed 
and acceleration remain zero since the transmission is detached. 
Thus, depending on the discrete control, some part produces 
positive/negative changes while other parts do not change. The 
second strategy provides modeling flexibility and the third 
allows us to model feedback mechanism. As an example, 
consider the movement of a pendulum. At every point, the 
dynamics (acceleration and speed) of the next depends on the 
dynamics of the current. 

 In HPrTNs, the constraints of continuous transitions are 
defined the same way as discrete transitions, and consist of 
preconditions and post-conditions specified in a first order logic 
formula. Generally, the preconditions of the continuous 
transitions consist of the data flow of the discrete input places 
attached to the transition in question. However, there is no 
restriction to use tokens from continuous places in the 
precondition, which is needed to model conditional branches 
(emulating if-else conditions) to compute new marking.  This 
flexibility keeps the overall net size smaller. 

The post-conditions of continuous transitions are similar to 
those of discrete transitions. However, some new concepts are 
introduced. First order ordinary differential equations can be 
used to compute continuous dynamics. These equations are used 
as part of integral operator. Listing A shows the format of ODE 
used with integral operation. One example of integral equation 
is shown there with changing variable q. The lower and upper 
limits of the equation is specified using the tokens of some place.   

Table 1 – (A) Example of using differential equations 

Format ∫(ode, lower_limit, upper_limit) ∂change_var 

Example ∫(q/0.98,d1[1],d[1])∂q) 

Post-conditions can be made dependent on time. An 
approximation of logical time is introduced for this purpose 
which is discussed in sub-section IV.C. A special operator, τ 
(tau), is used to represent the current logical time. The following 
expression shows an example of using logical time. 

y=x+∫(5,τ-1,τ)∂τ 
 

3) Dynamic Semantics 
Historically, PrTN is assumed to be autonomous without 

explicit timing information. HPrTNs follow the same concept. 
The evolution of its discrete components is the same as that of 
PrTNs. To compute the evolution of the continuous part, a 
slightly different approach is adopted. Since the evolution of the 
continuous part may depend on the time and/or other continually 



changing components. Hence, some representation of time is 
needed. We discuss the modeling of time in HPrTNs in the next 
sub-section (IV.B). 

 All the continuous transitions are assumed to be always 
ready and to have equal firing speed. Thus, in each execution 
step, all the continuous transitions are evaluated to test whether 
they are enabled or not. All enabled continuous transitions are 
fired in every execution step. However, this strategy may result 
in conflict if two continuous transitions have the same input 
places but have different enabling conditions. The resolution of 
such conflict is discussed in sub-subsections (IV-C). The 
evaluation of the preconditions and post-conditions are the same 
as the discrete part as discussed in our earlier works [9].  

Another interesting aspect of the dynamic behavior is the 
execution order of discrete and continuous parts. The discrete 
component takes the precedence. After all enabled discrete 
transitions fire once, the enabled continuous transitions start 
firing. 

B. Modeling Time  

The continuous dynamics of hybrid systems is generally 
specified using differential or difference equations. To evaluate 
these equations, a reference clock is needed. Continuous 
dynamics is computed with respect to this reference clock. In 
PIPE+ there are several ways to specify this reference clock. 
This may be a random number, a function or a set of values 
specified in a place. This can be achieved by adding a pair of 
continuous place and a continuous transition. The place would 
hold the reference clock value and the transition would be 
responsible for the coherent evolution of the reference clock 
value. One can choose whatever one needs as the basis of 
change. Alternatively, a convenient and simple way is also 
provided for the basis of change, which approximates a logical 
clock. The clock simply counts the number of steps the 
execution performed so far. The step size should be assumed by 
the modeler, which can be an hour, one second, one milli-second 
or even one Nano-second. The current time provided by the 
clock can be accessed using the operator τ.   

C. Conflict Resolution 

In the context of Petri nets, a conflict arises when multiple 
transitions are enabled and firing one of them disables others. 
Conflicts can be categorized according to three common causes: 
(1) between two discrete transitions, (2) between one discrete 
and one continuous transitions and (3) between two continuous 
transitions. The conflict between discrete transitions is resolved 
using non-determinism. In this case, one of the enabled 
transitions is chosen non-deterministically to be fired and it is 
ensured that only one discrete transition is fired. This type of 
conflicts is already discussed in our prior work. The other two 
categories are interesting in the context of hybrid Petri net and 
are discussed below. 

1) Conflict Between Discrete and Continuous Transitions 
This type of conflict arises when a discrete and a continuous 

transition are connected to the same input place, either discrete 
or continuous. In our approach, both discrete part and 
continuous part have their own separate methods of execution 
and we allow the execution of both these two parts in the same 

step. We have a well-defined precedence between these two 
components that ensures that these two components do not 
modify the same place at the same time, which nicely resolves 
this type conflict. 

2) Between Continuous Transitions 
There are three different ways that can lead to this type of 

conflict: (1) the transitions have the same input discrete place, 
(2) the transitions have the same input continuous place, and (3) 
they both have same output place. In the first case, there is 
conflict when any of the following conditions is true – (a) the 
satisfiability of the preconditions depends on the token from the 
common input place, and (b) the common place is a power set 
and the token satisfying the preconditions of the conflicting 
transitions is the same. To resolve this conflict, a token from a 
discrete place used in the evaluation of the precondition of a 
continuous transition must be returned to the place unaltered. 
This means that continuous transitions cannot modify such 
places. In the second case, since continuous places can hold only 
one token, the removal of that token in the process of execution 
of one of the conflicting transitions makes other transitions 
disabled. To resolve this, a different method of executing 
continuous transition is used. The output places of continuous 
transitions are updated once the preconditions are evaluated and 
post-conditions are computed for all the continuous transitions. 
The third case is an undesired situation, and should be avoided. 
It is the modeler’s responsibility to ensure that no unexpected 
results can be produced. Although, the above is an undesired 
situation, no restriction is implemented for simplicity. 
Furthermore, it is very convenient when one continuous place is 
designed to store multiple continuous attributes with separate 
continuous transitions are used to access those attributes.  

D. Analysis 

In PIPE+, only simulation and evolution graph are supported 
to analyze a hybrid system model. Model checking is not 
supported yet due to complexity of numerical functions used in 
modeling hybrid states. The simulator executes the net following 
the dynamic semantics of HPrTNs, and stores the state 
sequences of the system during the execution that can be used 
later to analyze the evolution. Simulation can be done using one 
step at a time for better understanding of the evolution or 
multiple steps in a single run to quickly have an overall picture 
of the system behavior. However, both these two-execution 
methods support (1) configuring the evolution graphs, and (2) 
exporting of the snapshots of the states for statistical analysis 
using other sophisticated tools. 

1) Evolution Graph 
Evolution graphs show the evolution of the continuous 

attributes over time. Before starting simulation, a chart 
configuration UI is provided to select the attributes for evolution 
to be shown in charts. For each of these attributes a separate 
chart window is created. It is also possible to configure multiple 
attributes to be shown in the same chart window for better 
comparison. By default, the evolution of the attributes over time 
is shown in the charts. It is also possible to configure the charts 
to plot the evolution of one attribute again another. 

2) Export of Results 



Evolution graph provides simple means to show how the 
value of some continuous attributes changes over time. It does 
not provide support to generate any other insight. To address this 
problem, simulation results can be exported for more 
sophisticated analysis. Generally, after each simulation step the 
state of the whole net along with the inputs and generated 
outputs are stored in a file. These can be exported to some 
external data analysis tools to better understand the behavior of 
the system.  

V. CASE STUDY 

 We have applied HPrTNs to model and analyze several 
well-known benchmark hybrid systems [19], including 
bouncing ball, thermostat, robotic motion controller, and 
obstacle avoidance. Due to space limit, we only show two 
systems here.  

A. Bouncing ball 

In this model, the physics of a bouncing ball, i.e. its motion 
before, during and after the impact against another surface is 
modeled. In this model, the state of the ball is captured when it 
falls freely from a place 10 meters above the surface assuming 
0.75 coefficient of restitution. Here, only the effect of gravity is 
considered. Figure 1 shows a pictorial diagram of the hybrid 
Petri net model. Table 2 lists the inscriptions of the net. Here, 
the continuous place Dynamics is used to store the velocity and 
height, real valued numbers as reflected in its datatype definition 
shown in Table 2. The continuous transition Compute computes 
these dynamics by following the basic laws of motion of freely 
falling objects as shown by 𝛽𝛽(Compute) in Table 2. The discrete 
transition Change simply changes the direction of the motion by 
negating the velocity whenever the height falls below zero.  

 
Figure 1 – Pictorial diagram of the bouncing ball model 

Table 2 – Net inscription of the model in Figure 1 

𝛼𝛼(Dynamics) = ⟨number, number⟩ 
𝛽𝛽(Change) = d[2]≤0 ∧ d1[2]=0 ∧ d1[1]= -d[1]*0.75 
𝛽𝛽(Compute) = d1[1]=d[1]-0.98*τ ∧ d1[2]=d[1]*τ - 0.49*τ*τ + 
d[2] 

This model is simulated with various initial conditions, i.e. 
initial speed and height. Figure 2 shows the result of a simulation 
run when a ball is dropped from a height of 10m. Initial marking 
for this case is M0(Dynamics)= ⟨0, 10⟩. The left chart in the 
figure shows the evolution of the velocity of the ball and the 
right chart shows the evolution of height with respect to time.  

 
Figure 2 – Simulation result of the model in Figure 1 

B. Air Traffic Collision Avoidance 

In air traffic control, collision avoidance maneuvers are used 
to resolve conflicting flight paths that arise during free flight 
[20]. These are very important and complex applications. A 
great number of different successful maneuvers are proposed 
and verified in the literature, many of them are also used in 
practice. As a case study, we model one of these maneuvers – 
straight line maneuver with instant turn. This maneuver involves 
a series of linear movement of the aircrafts. These movements 
can be controlled either from a central command center or from 
the approaching aircrafts’ local control system. In our model, a 
central control system is used. Figure 3(a) shows the required 
movements of the aircrafts participating the straight-line 
collision avoidance maneuver, and Figure 3(b) shows the 
pictorial diagram of the hybrid PrTN model.  

 
Figure 3 –(a) The movement of the aircrafts in straight line maneuver 
with instant turn. (b) A pictorial diagram of the hybrid PrTN model 

In this model, two aircrafts A and B are participating the 
straight line with instant turn collision avoidance maneuver.  
Here, the place Controller stores the parameters to control the 
directions of the aircrafts participating the maneuver. The 
transition Control generates these control parameters depending 
on the state. The control parameter here is basically an angle that 
dictates the direction of the aircrafts. The place ParameterA 
stores the velocity and the angle of direction of the aircraft A. 
LocationA stores the location of A. The transition ComputeA 
computes the location of A using its parameters and the control 
parameter. ParameterB, LocationB and ComputeB do the same 
for aircraft B. The place Parameter defines the safe horizontal 
and vertical distances. Due to space limit, the detailed net 
inscription is omitted here. We have simulated this model with 
different sets of initial conditions, i.e. initial locations, velocity 
and directions of the aircrafts, different safe distances. Figure 4 

(a) (b) 



shows the result of a simulation run where the aircraft A starts 
from the location (0,0) along X-axis and aircraft B starts from 
(18, 0) towards the opposite direction of A. Both have equal 
ground speed of 200 m/s. The safe horizontal and vertical 
distances are 12 and 2 kms respectively. In Figure 4, the charts 
(a) and (b) show the entrance and exit of the collision avoidance 
maneuver of the aircrafts A and B respectively. Initially both A 
and B move towards each other, when A reaches just after 3 and 
B reaches 15, the vertical distance falls below the safe distance.  
Both planes turn left and follow that direction until they reach 
the safe vertical distance. When the safe distance is reached, they 
turn right and follow their own course. An error of 200m from 
the original course is allowed as shown according to the 
constraint of transition Controller. 

 
Figure 4 – Simulation results of the model in Figure 3(b).  

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we presented hybrid predicate transition nets 
(HPrTNs) to model and analyze hybrid systems. The whole 
framework is implemented in our tool environment PIPE+. We 
have shown how the new features of PIPE+ can be utilized to 
model and analyze hybrid systems through several well-known 
hybrid systems. We have studied several other tools providing 
modeling and analyzing capability of hybrid Petri nets. Most of 
these tools are tailored to specific applications such as bio-
medicine. Some of these tools use other modeling languages, 
like MATLAB, to generate Petri net models. PIPE+ provides a 
unified environment for modeling and analyzing high-level Petri 
nets including HPrTNs. 

This work is an initial attempt to extend PrTN towards 
hybrid system modeling and analysis. We will study the explicit 
time representation as in timed Petri nets. We will investigate 
new and improved scheduling algorithms of discrete and 
continuous transitions to cover more realistic and sophisticated 
applications.     
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