
Modeling and Analyzing Hybrid Systems Using
Hybrid Predicate Transition Nets

Dewan Mohammad Moksedul Alam
Xudong He

School of Computing and Information Sciences
Florida International University

Miami, Florida 33199, USA
dalam004@fiu.edu, hex@cis.fiu.edu

William (Cheng-Chung) Chu
Department of Computer Science

TungHai University, Taichung, Taiwan
cchu@thu.edu.tw

Abstract— Hybrid systems, especially in the form of cyber
physical systems, have become ubiquitous and are playing critical
roles in the functioning of society, however their design and
implementation are extremely difficulty, especially regarding
their dependability. In this paper, we propose a hybrid high level
Petri net formalism, hybrid predicate transition nets (HPrTNs),
for modeling and analyzing hybrid systems. We discuss some
critical concepts and features of HPrTNs. We demonstrate the
applicability of HPrTNs through several well-known benchmark
hybrid systems and compare our results with other relevant
methods. HPrTNs are fully supported in the tool environment
PIPE+.

Keywords— formal methods; high-level Petri nets; hybrid Petri
nets, differential Petri nets

I. INTRODUCTION

Hybrid systems refer to the systems that arise out of the
interaction of continuous dynamics and discrete dynamics.
Many modern embedded systems, especially cyber physical
systems are hybrid systems that contain physical devices having
continuous dynamics and computational control processes with
discrete behaviors. Hybrid systems have become ubiquitous and
are playing critical roles in the functioning of society, however
their design and implementation are extremely difficulty,
especially regarding their dependability.

Hybrid systems have been the focus of intense research in
the past few decades since they provide a convenient framework
to accurately model a wide range of engineering systems and
provide the flexibility to abstract complex physical behaviors
away and to model dynamics having varying scales. Following
the early works on the verification of digital circuits, many
formalisms, methods and tools have been proposed to model and
verify more complex embedded systems such as air traffic
control systems, automotive control, bioengineering, process
control, real-time communication protocols, manufacturing
control, etc. One early prominent work is the hybrid automata
[1] that provided a concrete mathematical framework for the
analysis and verification of hybrid systems. Hybrid automata
integrate diverse models such as differential equations and state
machines in a single formalism with a uniform mathematical
semantics and novel algorithms for multi-modal control
synthesis and for safety and real-time performance analysis [2].
However, despite providing powerful methods to analyze hybrid

systems, the major inconvenience of hybrid automata is the
dramatical increase of model dimensions for complex systems
due to the intrinsic global state configurations and sequential
behaviors of automata.

Petri nets, a concurrent and distributed formal models,
provide a great flexibility to model complex systems. Petri nets
have evolved in the past half century in many directions:
including continuous Petri nets [3], fluid stochastic Petri nets
[4]. Continuous Petri nets have further been extended to hybrid
Petri nets [5] for modeling hybrid systems. Hybrid Petri nets
inherit all the advantages of the Petri net model such as the
ability to capture distributed behaviors, concurrency,
synchronization and conflicts. Similar concepts have also been
extended to high-level Petri nets [6, 7, 8] to model data
dependent hybrid systems.

In this paper, we present our results in introducing
continuous features into predicate transition nets (PrTNs) [9] for
modeling hybrid systems. Specifically, we introduce two
different kinds of places and transitions namely continuous
places and continuous transitions with differential and
difference equations. Our approach has a well defined priority
rule to resolve the conflict of firing enabled discrete and
continuous transitions. We have implemented the whole hybrid
PrTN framework in our modeling tool PIPE+ [9]. We
demonstrate how to model some classic examples of hybrid
systems using PIPE+ and compare the modeling and simulation
experience and performance with some existing and well known
hybrid Petri net modeling tools.

II. RELATED WORK

The concept of extending Petri net formalism to provide
means to model continuous and hybrid systems was first
presented in [10]. Based on this concept, several other extended
Petri net formalisms were proposed. In the following
subsections some of related formalisms and their applications
and supporting tools are discussed.

A. Hybrid Petri net Formalism

In [10], the authors combined a continuous Petri net
representing continuous dynamics with a discrete Petri net
capturing discrete behaviors. Subsequently, the authors
extended their formalism to provide distinction between

hex
Typewritten Text
DOI reference number: 10.18293/SEKE2018-158

autonomous and timed hybrid Petri nets and provided rules to
resolve conflicts between continuous and discrete part [5, 11].
Hybrid Petri nets are based on low level Petri nets where tokens
in continuous places are numerals and change rates associated
with continuous transitions are simple difference equations. A
slightly different approach was introduced in [12]. Here new
kind of places and transitions were introduced, namely
differential places and differential transitions. Differential
places constitute the continuous state of the system being
modeled. Differential transitions are always enabled and
associated with a firing frequency, where first-order ordinary
differential equations are used to represent the evolution rules.
Another class of hybrid Petri nets is fluid stochastic Petri nets
introduced in [4], which extended stochastic Petri nets to model
hybrid stochastic systems. Apart from these, several other
prominent works were published to extend other classes of Petri
nets, batch Petri nets, hybrid flow nets, etc., to support modeling
of hybrid systems.

Along with the research on the extension of the low-level
Petri nets, several classes of high-level Petri nets have also been
extended for modeling hybrid systems. One of such early
approaches was proposed in [8], where a method was presented
to extend timed hierarchical object-related nets (THORNs). In
this extension, the author introduced real data type to THORNs
to represent the continuously changing state variable and
continuous transitions to capture the continuous evolution. In
this approach, a continuous transition was enabled or disabled
by inhibitor arcs and the evolution was specified using ordinary
differential equations. However, this approach was not fully
developed and supported by any tool. Among other classes of
high-level Petri nets, Colored Petri nets were studied extensively
and several approaches for extending them to model hybrid
systems were proposed in [6, 7, 8, 13].

B. Modeling and Analysis Tools

Although, both low-level and high-level Petri nets have been
undergone rigorous studies and many extensions are proposed
to model hybrid systems, not many efforts are made to provide
proper tool support. Among low-level hybrid Petri net tools
HYPENS [14], SimHPN [15] and HISim [16] are worth
mentioning. Both HYPENS and SimHPN are not native Petri
net tool, and are based on MATLAB and Simulink. They do not
provide proper net editing capabilities. A user needs to use
MATLAB/Simulink components to specify the semantics of the
Petri net model of the system being modeled. HISim on the other
hand integrates modeling and simulation in a unified tool but is
functionally incomplete. In [7], the authors proposed a different
approach to create a model using MATLAB components for
simulation and provided a methodology to translate that into
CPN for analysis. Among the tools in this context, Snoopy [13,
17] provides a unified experience of creating graphical model,
simulation and analysis; but focuses on modeling biological
systems. This tool supports several hybrid low-level and high-
level Petri nets.

Our work provides a unified framework for system modeling
and analysis using Hybrid high-level Petri nets leveraging our
tool environment PIPE+.

III. HYBRID PREDICATE TRANSITION NETS

In the following sections, we provide a formal definition of
hybrid predicate transition nets (HPrTNs) by extending the
definitions of PrTNs [18].

Definition 1. A HPrTN is a tuple 𝑁𝑁 =
(𝑃𝑃, 𝑇𝑇, 𝐹𝐹,Σ, 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝑀𝑀0), where

(1) 𝑃𝑃 = 𝑃𝑃𝑑𝑑 ∪ 𝑃𝑃𝑐𝑐 is a non-empty finite set of discrete places 𝑃𝑃𝑑𝑑
and continuous places 𝑃𝑃𝑐𝑐 (graphically represented by
circles and double circles respectively);

(2) 𝑇𝑇 = 𝑇𝑇𝑑𝑑 ∪ 𝑇𝑇𝑐𝑐 is a non-empty finite set of discrete transitions
𝑇𝑇𝑑𝑑 and continuous transitions 𝑇𝑇𝑐𝑐 (graphically represented
by bars and boxed bars respectively), which disjoins 𝑃𝑃, i.e.
𝑃𝑃 ∩ 𝑇𝑇 = ∅;

(3) 𝐹𝐹 ⊆ 𝑃𝑃 × 𝑇𝑇 ∪ 𝑇𝑇 × 𝑃𝑃 is a flow relation (the arcs of N) such
that ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑 . ((𝑝𝑝, 𝑡𝑡) ∈ 𝐹𝐹⇔(𝑡𝑡, 𝑝𝑝) ∈ 𝐹𝐹);

(4) Σ = (𝑆𝑆𝑡𝑡, 𝑂𝑂𝑝𝑝, 𝐸𝐸𝐸𝐸) is the underlying algebraic specification
with sorts 𝑆𝑆𝑡𝑡, operations 𝑂𝑂𝑝𝑝, and equations 𝐸𝐸𝐸𝐸. Σ defines
the set Token of tokens, the set Label of labels, and the set
Constraint of constraints of N. In our tool environment, the
Σ-algebra is instantiated with a subset of Java data types and
their associated operations and laws;

(5) 𝛼𝛼: 𝑃𝑃 → ℘(𝑆𝑆𝑡𝑡) associates each place p in P with a subset
of sorts in 𝑆𝑆𝑡𝑡 such that 𝑝𝑝 ∈ 𝑃𝑃𝑑𝑑 ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∉𝛼𝛼(𝑝𝑝) and 𝑝𝑝 ∈
𝑃𝑃𝑐𝑐 ⇒ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∈ 𝛼𝛼(𝑝𝑝). The above constraints refer to projected
component when 𝛼𝛼(𝑝𝑝) is a composite type;

(6) 𝛽𝛽: 𝑇𝑇 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝐶𝐶𝐶𝐶𝑡𝑡 associates each transition t in T with a
first order logic formula that defines the enabling condition
(precondition) and the processing result (post-condition) of
t;

(7) 𝛾𝛾: 𝐹𝐹 → 𝐿𝐿𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟 associates each flow relationship f in F with
a label denoting the data flow of a relevant transition
satisfying ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑 . (𝛾𝛾(𝑝𝑝, 𝑡𝑡) = 𝛾𝛾(𝑡𝑡, 𝑝𝑝)) and ∀𝑝𝑝 ∈
𝑃𝑃𝑑𝑑 , 𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐 . (𝛾𝛾(𝑝𝑝, 𝑡𝑡) = 𝛾𝛾(𝑡𝑡, 𝑝𝑝)) , i.e. discrete transition can
only read but not change continuous place, and continuous
transition cannot change discrete place. Thus, this
restriction corresponds to the concept of elementary hybrid
Petri nets in [11], which does not allow the conversion
between discrete and continuous markings;

(8) 𝑀𝑀0: 𝑃𝑃 → ℘(𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟𝐶𝐶) is a sort-respecting initial marking
such that ∀𝑝𝑝 ∈ 𝑃𝑃𝑐𝑐 . (𝑀𝑀0(𝑝𝑝) ≠ ∅∧|𝑀𝑀0(𝑝𝑝)| = 1) , i.e. each
continuous place contains one and only one token.

The dynamic semantics of HPrTNs are defined on the
concept of markings (states) 𝑀𝑀: 𝑃𝑃 → ℘(𝑇𝑇𝐶𝐶𝑇𝑇𝑟𝑟𝐶𝐶) that are
mappings from places to tokens.

Definition 2. A transition t in T is enabled in a marking M if
∀𝑝𝑝 ∈ 𝑃𝑃. (�̅�𝛾(𝑝𝑝, 𝑡𝑡): 𝜃𝜃⊆𝑀𝑀(𝑝𝑝)∧𝛽𝛽(𝑡𝑡): 𝜃𝜃) , where �̅�𝛾(𝑝𝑝, 𝑡𝑡) is a
generalization of 𝛾𝛾 such that (𝑝𝑝, 𝑡𝑡)∉𝐹𝐹⇒�̅�𝛾(𝑝𝑝, 𝑡𝑡) = ∅. 𝑟𝑟: 𝜃𝜃 is the
result of instantiating all arc variables with tokens in p according
to substitution 𝜃𝜃.

The enabling condition of a continuous transition here is
similar to the strongly enabled concept in [11].

Definition 3. An enabled transition t in marking M with
substitution 𝜃𝜃 can fire and results in a new marking 𝑀𝑀′ defined
by: ∀𝑝𝑝 ∈ 𝑃𝑃. (𝑀𝑀′(𝑝𝑝) = 𝑀𝑀(𝑝𝑝) ∪ �̅�𝛾(𝑡𝑡, 𝑝𝑝): 𝜃𝜃 − �̅�𝛾(𝑝𝑝, 𝑡𝑡): 𝜃𝜃).

Two enabled transitions may fire at the same time as long as
they are not in conflict, i.e. the firing of one them disables the
other. Furthermore, a discrete transition has priority over a
continuous transition if they are in conflict. All enabled
continuous transitions are fired in a single round to reflect a
snapshot of the time passage. The dynamic semantics (behavior)
of a HPrTN is the set of all possible transition firing sequences
starting from the initial marking. Various conflict situations
involving continuous transitions are further discussed in the
following sections.

IV. MODELING HYBRID SYSTEMS

In this section, we present new features implemented in
PIPE+ to model hybrid systems. PIPE+ provides full support to
model, simulate, and model check (using external dedicated
model checkers) discrete event systems [9]. In the following
sub-sections, we discuss only the features related to modeling
continuous and hybrid systems.

A. Modeling Continuous Components

To provide support for modeling continuous components,
two different elements, continuous places and continuous
transitions, are introduced, which are significant different from
their discrete counterparts in terms of both structure and
dynamic semantics.

1) Continuous Places
As in [5], continuous places represent the continuous part of

the state space of the hybrid system being modeled. However, it
is possible to design these places to represent more than one
continuous attributes in HPrTNs. In other words, during
modeling the continuous dynamics, the modeler can design
these places to represent as many continuous dynamics as
needed as long as they satisfy the constraints imposed on the
dynamic semantics of the continuous components. This
capability is quite useful to group together related dynamics
instead of scattering those across multiple continuous places.
We provide more insights on this in section V.

Continuous places share similar behavior as discrete places.
The only differences between these are their data types. The data
type of a continuous place (1) must be a singleton (or not a
power set in our implementation), and (2) must have at least one
number element. Thus, a continuous place can hold only one
token and at least one element of this token is a numeral
capturing the dynamic changing value of the system. A useful
guideline is that a continuous place is modified by only one
continuous transition. This helps to avoid (1) conflict between
continuous transitions, and (2) inconsistent behavior. This
restriction may be overcome by using more efficient scheduling
mechanism of continuous transitions. Finally, continuous places
are represented by double circle in PIPE+.

2) Continuous Transition
Continuous transitions are used to model the continuously

changing behavior of the hybrid system being modeled. Unlike
other hybrid Petri nets, the behavior of continuous transitions in

HPrTNs is strategically different in many ways, including (1)
continuous transitions are always enabled unless the discrete
parts are a part of their preconditions, (2) the continuous
transitions can modify discrete places, (3) the marking of the
continuous places can control the speed of changes made by the
continuous transitions. These strategies offer several benefits.
The first strategy allows us to map the behavior of the
continuous transitions analogous to the semantics of the hybrid
systems, where the continuous part continuously changes the
state of the system and the discrete part only controls the speed
of the change. For example, when a car is stopped, the engine is
running and consumes fuel and produces power; but its speed
and acceleration remain zero since the transmission is detached.
Thus, depending on the discrete control, some part produces
positive/negative changes while other parts do not change. The
second strategy provides modeling flexibility and the third
allows us to model feedback mechanism. As an example,
consider the movement of a pendulum. At every point, the
dynamics (acceleration and speed) of the next depends on the
dynamics of the current.

 In HPrTNs, the constraints of continuous transitions are
defined the same way as discrete transitions, and consist of
preconditions and post-conditions specified in a first order logic
formula. Generally, the preconditions of the continuous
transitions consist of the data flow of the discrete input places
attached to the transition in question. However, there is no
restriction to use tokens from continuous places in the
precondition, which is needed to model conditional branches
(emulating if-else conditions) to compute new marking. This
flexibility keeps the overall net size smaller.

The post-conditions of continuous transitions are similar to
those of discrete transitions. However, some new concepts are
introduced. First order ordinary differential equations can be
used to compute continuous dynamics. These equations are used
as part of integral operator. Listing A shows the format of ODE
used with integral operation. One example of integral equation
is shown there with changing variable q. The lower and upper
limits of the equation is specified using the tokens of some place.

Table 1 – (A) Example of using differential equations

Format ∫(ode, lower_limit, upper_limit) ∂change_var

Example ∫(q/0.98,d1[1],d[1])∂q)

Post-conditions can be made dependent on time. An
approximation of logical time is introduced for this purpose
which is discussed in sub-section IV.C. A special operator, τ
(tau), is used to represent the current logical time. The following
expression shows an example of using logical time.

y=x+∫(5,τ-1,τ)∂τ

3) Dynamic Semantics
Historically, PrTN is assumed to be autonomous without

explicit timing information. HPrTNs follow the same concept.
The evolution of its discrete components is the same as that of
PrTNs. To compute the evolution of the continuous part, a
slightly different approach is adopted. Since the evolution of the
continuous part may depend on the time and/or other continually

changing components. Hence, some representation of time is
needed. We discuss the modeling of time in HPrTNs in the next
sub-section (IV.B).

 All the continuous transitions are assumed to be always
ready and to have equal firing speed. Thus, in each execution
step, all the continuous transitions are evaluated to test whether
they are enabled or not. All enabled continuous transitions are
fired in every execution step. However, this strategy may result
in conflict if two continuous transitions have the same input
places but have different enabling conditions. The resolution of
such conflict is discussed in sub-subsections (IV-C). The
evaluation of the preconditions and post-conditions are the same
as the discrete part as discussed in our earlier works [9].

Another interesting aspect of the dynamic behavior is the
execution order of discrete and continuous parts. The discrete
component takes the precedence. After all enabled discrete
transitions fire once, the enabled continuous transitions start
firing.

B. Modeling Time

The continuous dynamics of hybrid systems is generally
specified using differential or difference equations. To evaluate
these equations, a reference clock is needed. Continuous
dynamics is computed with respect to this reference clock. In
PIPE+ there are several ways to specify this reference clock.
This may be a random number, a function or a set of values
specified in a place. This can be achieved by adding a pair of
continuous place and a continuous transition. The place would
hold the reference clock value and the transition would be
responsible for the coherent evolution of the reference clock
value. One can choose whatever one needs as the basis of
change. Alternatively, a convenient and simple way is also
provided for the basis of change, which approximates a logical
clock. The clock simply counts the number of steps the
execution performed so far. The step size should be assumed by
the modeler, which can be an hour, one second, one milli-second
or even one Nano-second. The current time provided by the
clock can be accessed using the operator τ.

C. Conflict Resolution

In the context of Petri nets, a conflict arises when multiple
transitions are enabled and firing one of them disables others.
Conflicts can be categorized according to three common causes:
(1) between two discrete transitions, (2) between one discrete
and one continuous transitions and (3) between two continuous
transitions. The conflict between discrete transitions is resolved
using non-determinism. In this case, one of the enabled
transitions is chosen non-deterministically to be fired and it is
ensured that only one discrete transition is fired. This type of
conflicts is already discussed in our prior work. The other two
categories are interesting in the context of hybrid Petri net and
are discussed below.

1) Conflict Between Discrete and Continuous Transitions
This type of conflict arises when a discrete and a continuous

transition are connected to the same input place, either discrete
or continuous. In our approach, both discrete part and
continuous part have their own separate methods of execution
and we allow the execution of both these two parts in the same

step. We have a well-defined precedence between these two
components that ensures that these two components do not
modify the same place at the same time, which nicely resolves
this type conflict.

2) Between Continuous Transitions
There are three different ways that can lead to this type of

conflict: (1) the transitions have the same input discrete place,
(2) the transitions have the same input continuous place, and (3)
they both have same output place. In the first case, there is
conflict when any of the following conditions is true – (a) the
satisfiability of the preconditions depends on the token from the
common input place, and (b) the common place is a power set
and the token satisfying the preconditions of the conflicting
transitions is the same. To resolve this conflict, a token from a
discrete place used in the evaluation of the precondition of a
continuous transition must be returned to the place unaltered.
This means that continuous transitions cannot modify such
places. In the second case, since continuous places can hold only
one token, the removal of that token in the process of execution
of one of the conflicting transitions makes other transitions
disabled. To resolve this, a different method of executing
continuous transition is used. The output places of continuous
transitions are updated once the preconditions are evaluated and
post-conditions are computed for all the continuous transitions.
The third case is an undesired situation, and should be avoided.
It is the modeler’s responsibility to ensure that no unexpected
results can be produced. Although, the above is an undesired
situation, no restriction is implemented for simplicity.
Furthermore, it is very convenient when one continuous place is
designed to store multiple continuous attributes with separate
continuous transitions are used to access those attributes.

D. Analysis

In PIPE+, only simulation and evolution graph are supported
to analyze a hybrid system model. Model checking is not
supported yet due to complexity of numerical functions used in
modeling hybrid states. The simulator executes the net following
the dynamic semantics of HPrTNs, and stores the state
sequences of the system during the execution that can be used
later to analyze the evolution. Simulation can be done using one
step at a time for better understanding of the evolution or
multiple steps in a single run to quickly have an overall picture
of the system behavior. However, both these two-execution
methods support (1) configuring the evolution graphs, and (2)
exporting of the snapshots of the states for statistical analysis
using other sophisticated tools.

1) Evolution Graph
Evolution graphs show the evolution of the continuous

attributes over time. Before starting simulation, a chart
configuration UI is provided to select the attributes for evolution
to be shown in charts. For each of these attributes a separate
chart window is created. It is also possible to configure multiple
attributes to be shown in the same chart window for better
comparison. By default, the evolution of the attributes over time
is shown in the charts. It is also possible to configure the charts
to plot the evolution of one attribute again another.

2) Export of Results

Evolution graph provides simple means to show how the
value of some continuous attributes changes over time. It does
not provide support to generate any other insight. To address this
problem, simulation results can be exported for more
sophisticated analysis. Generally, after each simulation step the
state of the whole net along with the inputs and generated
outputs are stored in a file. These can be exported to some
external data analysis tools to better understand the behavior of
the system.

V. CASE STUDY

 We have applied HPrTNs to model and analyze several
well-known benchmark hybrid systems [19], including
bouncing ball, thermostat, robotic motion controller, and
obstacle avoidance. Due to space limit, we only show two
systems here.

A. Bouncing ball

In this model, the physics of a bouncing ball, i.e. its motion
before, during and after the impact against another surface is
modeled. In this model, the state of the ball is captured when it
falls freely from a place 10 meters above the surface assuming
0.75 coefficient of restitution. Here, only the effect of gravity is
considered. Figure 1 shows a pictorial diagram of the hybrid
Petri net model. Table 2 lists the inscriptions of the net. Here,
the continuous place Dynamics is used to store the velocity and
height, real valued numbers as reflected in its datatype definition
shown in Table 2. The continuous transition Compute computes
these dynamics by following the basic laws of motion of freely
falling objects as shown by 𝛽𝛽(Compute) in Table 2. The discrete
transition Change simply changes the direction of the motion by
negating the velocity whenever the height falls below zero.

Figure 1 – Pictorial diagram of the bouncing ball model

Table 2 – Net inscription of the model in Figure 1

𝛼𝛼(Dynamics) = ⟨number, number⟩
𝛽𝛽(Change) = d[2]≤0 ∧ d1[2]=0 ∧ d1[1]= -d[1]*0.75
𝛽𝛽(Compute) = d1[1]=d[1]-0.98*τ ∧ d1[2]=d[1]*τ - 0.49*τ*τ +
d[2]

This model is simulated with various initial conditions, i.e.
initial speed and height. Figure 2 shows the result of a simulation
run when a ball is dropped from a height of 10m. Initial marking
for this case is M0(Dynamics)= ⟨0, 10⟩. The left chart in the
figure shows the evolution of the velocity of the ball and the
right chart shows the evolution of height with respect to time.

Figure 2 – Simulation result of the model in Figure 1

B. Air Traffic Collision Avoidance

In air traffic control, collision avoidance maneuvers are used
to resolve conflicting flight paths that arise during free flight
[20]. These are very important and complex applications. A
great number of different successful maneuvers are proposed
and verified in the literature, many of them are also used in
practice. As a case study, we model one of these maneuvers –
straight line maneuver with instant turn. This maneuver involves
a series of linear movement of the aircrafts. These movements
can be controlled either from a central command center or from
the approaching aircrafts’ local control system. In our model, a
central control system is used. Figure 3(a) shows the required
movements of the aircrafts participating the straight-line
collision avoidance maneuver, and Figure 3(b) shows the
pictorial diagram of the hybrid PrTN model.

Figure 3 –(a) The movement of the aircrafts in straight line maneuver
with instant turn. (b) A pictorial diagram of the hybrid PrTN model

In this model, two aircrafts A and B are participating the
straight line with instant turn collision avoidance maneuver.
Here, the place Controller stores the parameters to control the
directions of the aircrafts participating the maneuver. The
transition Control generates these control parameters depending
on the state. The control parameter here is basically an angle that
dictates the direction of the aircrafts. The place ParameterA
stores the velocity and the angle of direction of the aircraft A.
LocationA stores the location of A. The transition ComputeA
computes the location of A using its parameters and the control
parameter. ParameterB, LocationB and ComputeB do the same
for aircraft B. The place Parameter defines the safe horizontal
and vertical distances. Due to space limit, the detailed net
inscription is omitted here. We have simulated this model with
different sets of initial conditions, i.e. initial locations, velocity
and directions of the aircrafts, different safe distances. Figure 4

(a) (b)

shows the result of a simulation run where the aircraft A starts
from the location (0,0) along X-axis and aircraft B starts from
(18, 0) towards the opposite direction of A. Both have equal
ground speed of 200 m/s. The safe horizontal and vertical
distances are 12 and 2 kms respectively. In Figure 4, the charts
(a) and (b) show the entrance and exit of the collision avoidance
maneuver of the aircrafts A and B respectively. Initially both A
and B move towards each other, when A reaches just after 3 and
B reaches 15, the vertical distance falls below the safe distance.
Both planes turn left and follow that direction until they reach
the safe vertical distance. When the safe distance is reached, they
turn right and follow their own course. An error of 200m from
the original course is allowed as shown according to the
constraint of transition Controller.

Figure 4 – Simulation results of the model in Figure 3(b).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented hybrid predicate transition nets
(HPrTNs) to model and analyze hybrid systems. The whole
framework is implemented in our tool environment PIPE+. We
have shown how the new features of PIPE+ can be utilized to
model and analyze hybrid systems through several well-known
hybrid systems. We have studied several other tools providing
modeling and analyzing capability of hybrid Petri nets. Most of
these tools are tailored to specific applications such as bio-
medicine. Some of these tools use other modeling languages,
like MATLAB, to generate Petri net models. PIPE+ provides a
unified environment for modeling and analyzing high-level Petri
nets including HPrTNs.

This work is an initial attempt to extend PrTN towards
hybrid system modeling and analysis. We will study the explicit
time representation as in timed Petri nets. We will investigate
new and improved scheduling algorithms of discrete and
continuous transitions to cover more realistic and sophisticated
applications.

ACKNOWLEDGEMENT
Alam and He were partially supported by AFRL under FA8750-15-2-0106.

The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

REFERENCES
[1] Henzinger T.A., The Theory of Hybrid Automata. In: Inan M.K., Kurshan

R.P. (eds) Verification of Digital and Hybrid Systems. NATO ASI Series
(Series F: Computer and Systems Sciences), vol 170. Springer, Berlin,
Heidelberg, 2000.

[2] J. Lygeros, C. Tomlin, and S. Sastry, “Hybrid Systems: Modeling,
Analysis and Control”, December 2008, retrieved from http://www-
inst.cs.berkeley.edu/~ee291e/sp09/handouts/book.pdf

[3] H. Alla and R. David, “A modeling and analysis tool for discrete events
systems: continuous Petri net”, Performance Evaluation, 33(3), pp. 175-
199, August 1998.

[4] Trivedi, K. S. and Kulkarni, V. G. 1993. FSPNs: Fluid stochastic Petri
nets. 14th International Conference on Application and Theory of Petri
Nets, Chicago.

[5] R. David and H. Alla, “Discrete, Continuous, and Hybrid Petri Nets”,
Springer Berlin Heidelberg, Springer, 2010.

[6] M. Herajy, F. Liu and C. Rohr, “Coloured hybrid Petri nets for systems
biology”, Biological Process and Petri Nets, 1159, pp. 60-76, June 2014.

[7] D. Bera, K. van Hee and H. Nijmeijer (2015), ”Modeling Hybrid Systems
with Petri Nets”, In: Obaidat M., Ören T., Kacprzyk J., Filipe J. (eds)
Simulation and Modeling Methodologies, Technologies and Applications.
Advances in Intelligent Systems and Computing, vol 402. Springer, Cham

[8] R. Wieting, "Modeling and Simulation of Hybrid Systems Using Hybrid
High-level Nets", In: Proceedings of the 8th European Simulation
Symposium (ESS'96), Vol. II, pages 158-162, October 1996, Genoa, Italy.

[9] D. Alam and X. He, “A method to analyze high level Petri nets using
SPIN model checker”, in Proceedings of the 29th International
Conference on Software Engineering & Knowledge Engineering, pp. 161-
166, July 2017.

[10] R. David, H. Alla, Continuous Petri nets, in: Proc. 8th European
Workshop on Application and Theory of Petri Nets, Zaragoza, Spain,
1987.

[11] R. David and H. Alla, "On Hybrid Petri Nets", Discrete Event Dynamic
Systems, 11, pp. 9-40. January 2001, doi: 10.1023/A:1008330914786

[12] I. Demongodin, N.T. Koussoulas, Differential Petri nets: Representing
continuous systems in a discrete-event world, IEEE Trans. Automat.
Control (1998).

[13] M. Heiner, M. Herajy, F. Liu, C. Rohr, M. Schwarick, "Snoopy – A
Unifying Petri Net Tool", Application and Theory of Petri Nets. PETRI
NETS 2012. Lecture Notes in Computer Science, vol 7347. Springer,
Berlin, Heidelberg, 2012.

[14] F. Sessego, A. Giua, C. Seatzu, ”Simulation and Analysis of Hybrid Petri
Nets using the Matlab Tool HYPENS”, SMC08: 2008 IEEE Int. Conf. on
Systems, Man, and Cybernetics (Singapore), October 2008.

[15] J. Júlvez, C. Mahulea, and C. R. Vázquez, "SimHPN: A MATLAB
toolbox for simulation, analysis, and design with hybrid Petri nets",
Nonlinear Analysis: Hybrid Systems, 6(2), pp. 806-817, March 2012.

[16] A. Amengual, “A Specification of a Hybrid Petri Net Semantics for the
HISim Simulator”, accessed from
http://www.icsi.berkeley.edu/pubs/techreports/TR-09-003.pdf, 2009.

[17] M. Herajy, F. Liu, C. Rohr and M. Heiner, "Snoopy’s hybrid simulator: a
tool to construct and simulate hybrid biological models", BMC Systems
Biology, 11:71, July 2017.

[18] X. He: “A Comprehensive Survey of Petri Net Modeling in Software
Engineering”, International Journal of Software Engineering and
Knowledge Engineering - IJSEKE, vol. 23, no. 5, 2013, 589-626

[19] R. Alur: “Principles of Cyber-Physical Systems”, The MIT Press, 2015.
[20] A. Platzer, “Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics”, Springer-Verlag Berlin Heidelberg 2010

(a)

(b)

http://www-inst.cs.berkeley.edu/%7Eee291e/sp09/handouts/book.pdf
http://www-inst.cs.berkeley.edu/%7Eee291e/sp09/handouts/book.pdf
http://www.icsi.berkeley.edu/pubs/techreports/TR-09-003.pdf

	I. Introduction
	II. Related work
	A. Hybrid Petri net Formalism
	B. Modeling and Analysis Tools

	III. Hybrid Predicate Transition Nets
	IV. Modeling Hybrid Systems
	A. Modeling Continuous Components
	1) Continuous Places
	2) Continuous Transition
	3) Dynamic Semantics

	B. Modeling Time
	C. Conflict Resolution
	1) Conflict Between Discrete and Continuous Transitions
	2) Between Continuous Transitions

	D. Analysis
	1) Evolution Graph
	2) Export of Results

	V. Case Study
	A. Bouncing ball
	B. Air Traffic Collision Avoidance

	VI. Conclusions and Future Directions
	Acknowledgement
	References

