
An Empirical Study on the Impact of Android Code Smells on Resource Usage

Johnatan Oliveira1, Markos Viggiato2, Mateus Santos1,
Eduardo Figueiredo2, Humberto Marques-Neto1

1Department of Computer Science, Pontifical Catholic University of Minas Gerais (PUC Minas)
2Department of Computer Science, Federal University of Minas Gerais (UFMG)

Belo Horizonte, Brazil
{johnatan.oliveira,mateus.freira}@sga.pucminas.br, {markosviggiato, figueiredo}@dcc.ufmg.br,

humberto@pucminas.br

Abstract

Code smells are symptoms that something may be wrong
with the app. Aiming at removing code smells and improv-
ing the maintainability and performance of the app, we may
apply the refactoring technique, which could reduce hard-
ware resource use, such as CPU and memory. However, a
few studies have evaluated the impacts of the refactoring in
Android. This paper presents a study to assess the effects of
smartphone resource use caused by refactoring of 3 classic
code smells: God Class, God Method, and Feature Envy. To
this purpose, we selected 9 apps from GitHub. The results
show that refactoring used in desktop software may not be
appropriate for Android apps. For example, the refactoring
of God Method had increased CPU consumption by more
than 47%, while the refactoring of the 3 code smells reduced
memory consumption in average 6.51%, 8.4%, and 6.37%,
respectively, in one app. Our results can support the com-
munity in conducting research and future implementation of
new tools. Also, it guides app developers in refactoring and
thus improving the quality of their apps.

keywords: Code Smells, Android Smells, and Consump-
tion of Smartphone Resources

1 Introduction
In recent years, mobile applications (apps) have become

one of the most popular and profitable software products in
society, especially context-aware apps that are pervasive in
people’s lives [10]. Applications developed for the Android
platform are mainstream [13]. This platform has around
80% of the market for mobile Operating Systems (OS), and
it has far surpassed its main competitor Apple [10]. One of
the critical factors for the success of this software segment
is related to the ease of rapidly developing and making the
apps available to millions of users with lower costs [12].

Mobile app development is different from desktop soft-
ware development since the mobile devices, like smart-
phones and tablets, have limited resources, such as CPU,
battery, and memory [10]. Furthermore, app development
is affected by deadlines even more restricted than those for
desktop, once apps are usually designed for many users that

get used to regular addition of new features and high speed
in the correction of flaws [1, 7]. Mobile apps of context-
aware can identify the context in which they are inserted and
adapt their behavior according to the environment [4, 12].

When these apps are erroneously programmed, they can
quickly drain device resources, such as the memory and
CPU [13]. The presence of code smells can lead to poor
software quality, which makes the evolution of features
harder, deteriorated quality, and therefore, causes a bad ex-
perience for the final user [9]. In the literature, the pres-
ence of these issues in Android apps is known as Android
smells [3].

Performance and optimization of the resources are cru-
cial factors for the success of mobile apps [10]. Users can
uninstall the app from the device if it starts to lock-in or
drains resources quickly [3, 10]. Therefore, correction of
Android smells can not only improve the performance of
the apps without affecting their behavior and also improve
user experience [3, 9, 10]. For this reason, applying refac-
toring techniques in Android smells could contribute to the
evolution and maintenance of these apps.

Previous works [1, 2, 10] investigated the impact of re-
sources usage, such as memory, battery, and CPU. However,
we still lack empirical study on the effect of fixing Android
smells through refactoring, mainly concerning memory and
CPU usage. Studies regarding automatic detection and anal-
ysis of the impact of the refactoring on the Android platform
are still premature [5].

This paper starts to fill this gap by analyzing the impacts
caused by the adoption of refactoring in the Android plat-
form. For this purpose, we selected 100 mobile apps from
GitHub and filtered this data set to choose the most rep-
resentative apps, because the focus this paper are context-
aware apps. After the filtering process, 9 apps remained to
be analyzed. To detect code smells in the Android platform,
we rely on JDeodorant tool, and 3 classic code smells for
analysis: God Class, God Method, and Feature Envy. We
believe our results might better support the community in
conducting researches about Android smells and also guide
app developers in refactoring activity, aiming to improve the
quality of the mobile apps.

DOI reference number: 10.18293/SEKE2018-157



2 Background
This section presents an overview of the main concepts

used in this paper. Section 2.1 introduces the 3 selected
code smells. Section 2.2 describes some the tools able de-
tect and refactor code smells.

2.1 Code Smells

A code smell is any symptom that may indicate a deeper
quality problem in the software [9]. The code smells doc-
umented by Fowler [9] are considered classic in object-
oriented software. In this study, we evaluated 3 types of
code smells, God Class, God Method and Feature Envy,
mainly because of two reasons. First, these code smells
are classic in software engineering. Second, several tools
are able to detect these code smells. However, a few tools
can detect and automatically apply refactoring. Next, we
present the selected code smells.

God Class occurs when a class has many attributes or
methods in its interface, and it does not use all of them [9].
Usually, in this kind of situation, it is possible to extract part
of these attributes or methods to another class, thus sepa-
rating responsibilities and leaving them more coherent [11].
God Method can be described as a long method or a method
that does more than a task. Therefore, it is not related only
to the size of the method itself [9]. This code smell might
get solved by creating smaller methods and moving code
from the main method to others, keeping the same behav-
ior [11]. Feature Envy is a code smell that occurs when a
method uses more attributes or methods from another class
than from its own class [9]. The suggested refactoring for
this code smell is to move the envy method, replacing then
a large number of calls to the other class by only one call to
the moved method [9].

2.2 Automated Code Smell Detection and Refactoring

Several tools have been developed to automate the pro-
cess of detecting code smells. For instance, PMD [8], which
is a general purpose tool for code smells detection in some
languages, such as Java and JavaScript. However, a few
tools are able to apply refactoring technique automatically.
Therefore, we selected JDeodorant tool because it is able to
detect and apply the refactoring technique automatically to
the 3 kinds of code smells selected.

Some tools are specific to Android platform, such as
aDoctor [14]. Rigid Alarm Manager, Durable Wake lock,
and Debuggable Release are some examples of code smells
detected by aDoctor. These code smells would not occur on
other platforms because they refer to Android-specific prob-
lems. We have not analyzed these Android-specific code
smells because our goal is to target well-known code smells
as discussed in Section 2.1. Besides, aDoctor cannot per-
form refactoring automatically.

3 Study Settings
This section describes the evaluation settings. Section

3.1 presents the study goal and the research questions. Sec-
tion 3.2 presents the evaluation steps. Section 3.3 presents
our data set.

3.1 Goal and Research Questions

The primary goal of this study is to evaluate whether
refactoring in Android improves the source code concern-
ing the use of mobile devices resources. In particular, we
aim to verify if this technique can reduce the consumption
of CPU and memory. Based on this goal, we also conceived
the following research questions (RQs) to guide our study.

RQ1. Does the refactoring of Android code smells im-
prove the CPU consumption of the Smartphone?

RQ2. Does the refactoring of Android code smells im-
prove the memory consumption of the Smartphone?

3.2 Evaluation Steps

We analyze the impacts of applying the refactoring in
Android from a set of 9 apps. To minimize the risk of bias
in our study, we executed each app 18 times, and we use
the arithmetic mean (and its standard deviation) to evaluate
the impact of refactoring. The executions were conducted
3 times for each code smell before applying the refactoring
(resulting in 3*3=9 executions) and 3 times for each code
smell after using the refactoring, i.e., a total of 18 perfor-
mances for each app. Since we ran each app 18 times and
given that we have 9 apps, we performed a total of 162 exe-
cutions. Due to the high number of executions and the fact
that all tests are performed manually, it would not be feasi-
ble to investigate a higher number of apps at this moment,
and therefore we kept our data set with the selected apps.

To performer our study, we used a smartphone running
Android OS version 5.1, model Moto G XT1032, equipped
with a quad-core CPU of 1.2 GHz. The smartphone consists
of 1 GB DDR3 of RAM and 16 GB of disk. The original
OS of this smartphone was Android 4.3, called Jelly Bean,
with later updates to 5.1. We considered this smartphone
suitable for our experiments, mainly because there is a lot
of apps compatible with it from Google Play Store1. We
used in our work a smartphone with only essentials apps of
the Android OS to avoid interference in the results of other
apps. Moreover, for each execution, the app was uninstalled
and installed again with the Android APK of the version un-
der analysis. By following this procedure, all user data were
erased at the beginning of a new test, and each execution of
the test had a similar initial state. In our study, we per-
formed five steps to analyze the adopted refactoring. These
steps are illustrated in Figure 1 and described as follows.

(1) Code smell detection – We run the selected tool
called JDeodorant to detect the 3 types of code smells. In

1https://play.google.com/store



Figure 1: Evaluation Steps

this step, each app was imported into Eclipse, because the
detection tool is a plug-in exclusive for this IDE. After im-
porting these apps, we identified the 3 types of code smells
in each app. We create a list of classes, methods, and code
smells of each analyzed app.

(2) Running apps with code smells in Android – From
the data obtained in the previous step, we run each app in-
dividually, 18 times on the smartphone. At the end of the
18 tests per app, we achieve the results of memory use and
CPU use through the mean of 3 executions in each app. We
collect the data about use of CPU and memory through an
app named AnotherMonitor, version 3.1.0. AnotherMonitor
was selected for several reasons. First, this app is compat-
ible with the Android version evaluated. Second, it has an
excellent reputation in Play Store with more than 4 stars.
Third, it is possible to export the results about CPU and
Memory usage to a CSV file.

(3) Refactoring using JDeodorant –After the previous
steps, we obtained the consumption of the apps in the smart-
phone, such as CPU and memory. In this step, we re-import
the apps to Eclipse, similar to Step 1, to apply the automated
refactoring with JDeodorant to the 3 selected code smells.

(4) Running of the Apps after of the Refactoring – Af-
ter applying the automated refactoring using the JDeodorant
tool, we evaluated whether the consumption of memory and
CPU improved or deteriorated. These characteristics of us-
age can be assessed based on the access provided by An-
droid. To this goal, we run again each app 18 times and
compute the average memory and CPU consumption.

(5) Result analysis – At the end of all the previous
steps, we obtained the data regarding the consumption of
resources in Android before and after refactoring. Through
these results, it is possible to compare the feasibility of this
technique in mobile devices.

3.3 Corpus of Android Apps

In order to investigate the impacts caused by Android
smells and refactoring techniques on resource consumption,
we chose only apps from the context-aware domain for sev-
eral reasons. First, there are many apps available for down-
load on GitHub. Second, these apps are actively used. Also,
the authors of this paper believed that it would be easy to
find code smells in this app domain. The reason might be
because this type of app can contain source code with high
complexity caused by the use of several sensors to identify
characteristics of the context [16]. Third, one of the features

of this type of app is the need to use various hardware re-
sources to identify the context, such as GPS and movement
sensors [6].

The apps that compose our data set were retrieved from
GitHub in November 2017. We searched for apps of
context-aware sorted by stars. To retrieve apps, we used the
following keywords related to the context-aware domain:
context-aware, context awareness, and pervasive computer.

To minimize the risk of biasing our results, we apply a
strict set of criteria for defining our data set as illustrated in
Figure 2 and described by the three phases as follows.

Figure 2: Phases for Collecting Apps from GitHub

Phase 1: Preliminary Search – We performed a pre-
liminary search in GitHub to evaluate the feasibility of col-
lecting these apps of the context-aware domain. We con-
ducted this phase manually to identify the diversity of apps
on GitHub. Also, this pre-evaluation was necessary to ob-
tain the domain variation names.

Phase 2: Automated Download – We implemented an
algorithm to clone the apps from GitHub automatically.
This phase is necessary because we know that several apps
it are hosted on GitHub, and manual cloning would be un-
feasible. In this phase, we obtained 100 apps.

Phase 3: Filtering – From the cloned apps, we used the
following exclusion criteria to filter these apps: i) non-Java
app, once the chosen tool requires apps developed in Java,
ii) apps with less than 1k lines of code (LOC), because we
considered that these apps might represent only toy apps,
iii) apps that are not compatible with Eclipse, since the se-
lected tool requires the use this IDE, and iv) all apps that
required login due to evaluation convenience. After apply-
ing all these filters, we obtained 9 apps able to be evaluated.

4 Results and Discussion
This section discusses the results obtained in this study.

Section 4.1 presents of amount of code smells detected in
each app. Section 4.2 focuses on answering each research
question. Section 4.3 presents some guidelines to support
future implementation of tools.

4.1 Detection of Code Smells

In this section, we present the results about code smells
detected by JDeodorant tool in our data set. Table 1 shows
the occurrences for each code smell investigated in this
study. In the last column of Table 1, we show the total num-
ber of code smells for each app, and the last line presents
the total number of occurrence of each code smell across all



the apps. By looking at the column Total, we note that Run-
nerUp was the app with the highest number of code smells.
Besides, in the line Total, it is possible to identify that the
code smells Feature Envy and God Class occurred most fre-
quently, with 102 and 94 occurrences, respectively. For in-
stance, Feature Envy appeared 34 times in RunnerUp and
27 times in Activity Tracker, while God Class showed up
50 times in RunnerUp and 15 times in Calendula.

Table 1: Code Smells Detected

App God Class God Method Feature Envy Total
Activity Tracker 4 0 27 31
Calendula 15 8 14 37
CycleStreets 13 2 8 23
Forecastie 3 0 1 4
NoiseApp 0 1 1 2
Pedometer 1 2 3 6
RunnerUp 50 16 34 100
Steptastic 5 2 3 10
Travel-Mate 3 1 11 15

Total 94 32 102

4.2 Answering the Research Questions

In a first moment, we present the results regarding the
CPU use. Therefore, we answer RQ1 as follows. Does the
refactoring technique of Android code smells improve the
CPU consumption of the Smartphone?

Tables 2 to 4 present some descriptive statistics of the ex-
periments results. The column Mean (x̄) presents the mean
of the analyzed data. A Standard Deviation is represented
by σ. Also, all columns have letter S or R. S means app
with code smells, and R stands refactored apps

Table 2 shows a particular case of the one app named
CycleStreets that before refactoring the average use of CPU
was 26.2% and it started to use 32.47% of CPU after the
refactoring. The consumption of CPU increased by more
than 6%. This number may seem somewhat small, but we
are investigating code smells on a platform that already has
limited resources, and any unnecessarily consume harm-
fully. It is also possible to observe that from 9 apps eval-
uated, the consumption of CPU increased in 7 apps and
drastically decreased in only one app (Steptastic). Also,
the standard deviation changed from 11.64 to 14.11 in Cy-
cleStreets, an increase of 2.47%.

Table 2: Descriptive Statistics for CPU (God Class)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 17.07 20.01 6.42 4.8
Calendula 16.35 17.44 7.74 9.2
CycleStreets 26.2 32.47 11.64 14.11
Forecastie 17.07 20.01 6.42 4.8
NoiseApp 22.55 23.65 12.66 12.54
Pedometer 19.47 21.17 9.75 10.43
RunnerUp 14.26 17.33 7.34 9.42
Steptastic 24.77 15.12 13.23 9.27
Travel-Mate 19.7 19.61 10.01 10.34

Regarding God Method, Table 3 shows the results
achieved. In this table, we may highlight the Forecastie app,

in which the consumption of CPU almost doubled. As we
can observe, the use of CPU in this app soared from 25.43%
to 47.14%. However, for the app Steptastic, it was possi-
ble to reduce CPU consumption by more than 12% through
the refactoring technique. Finally, refactoring God Method
caused an increase in CPU consumption in 5 apps and a de-
crease in 3 apps.

Table 3: Descriptive Statistics for CPU (God Method)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 26 30.93 14.68 16.82
Calendula 20.97 26.08 13.23 15.51
CycleStreets 25.29 34.01 14.23 20.35
Forecastie 25.43 47.14 15.72 12.87
NoiseApp 26.49 26.24 16.18 15
Pedometer 32.98 28.17 19.3 16.3
RunnerUp 19.32 26.42 10.37 15.9
Steptastic 30.87 18.16 18.09 12.11
Travel-Mate 22.35 17.77 12.64 11.08

Table 4 presents the results for Feature Envy. In all apps,
but Travel-Mate it was possible to improve source code
quality through refactoring technique. Overall, it was pos-
sible to improve the source code quality with an average
increase of less than 1% of use of resources.

Table 4: Descriptive Statistics for CPU (Feature Envy)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 16.82 16.88 8.11 8.14
Calendula 19.14 20.82 10.35 9.33
CycleStreets 21.52 23.09 10.94 11.61
Forecastie 23.24 24 12.28 11.6
NoiseApp 20.02 22.86 10.55 12.11
Pedometer 25.13 23.84 12.52 13.07
RunnerUp 21.29 21.56 11.89 11.89
Steptastic 21.55 21.68 11.54 12.04
Travel-Mate 16.35 17.44 7.74 9.2

We believe that the refactoring technique adopted by
JDeodorant tool and as indicated by Fowler [9] is not ap-
propriate to use in Android since most apps consumed
more CPU after we performed refactoring. A potential rea-
son for the increase can be found in the Android’s site of
the excellent programming practice2. For instance, when
there are several recursive calls, it is necessary to call the
onDestroy() method more times, which may increase CPU
usage since it will be required to destroy more objects.

The refactoring adopted to solve this problem is Ex-
tract Method. This refactoring consists in splitting the God
Method and creating a new method [9]. Therefore, applying
the refactoring Extract Method may cause the app to invoke
these resources several times, increasing CPU consumption.
After presenting the use of CPU of each app under analysis,
we show the results concerning the memory consumption.
Therefore, we answer RQ2 as follows. Does the refactor-
ing technique of Android code smells improve the memory
consumption of the Smartphone?

2https://developer.android.com/training/best-performance.html



In general, the adoption of the refactoring increased the
memory usage, but in some cases, it can help to avoid un-
necessary use of resources. We believe that the refactor-
ing technique in the case of the app Steptastic decreases the
memory usage because of two main reasons. First, Steptas-
tic, for example, is smaller regarding LOC and their meth-
ods are well distributed among classes. Second, this app
has only one developer, which may be a indicate that the
number of developers may be correlated with the number of
code smells. Tables 5 to 7 presents the same configurations
presented in RQ1.

Table 5 presents a similar result of Table 4, but this ta-
ble shows the results regarding the code smell God Class
and usage of memory. For 7 apps, namely: Calendula,
CycleStreets, Forecastie, NoiseApp, Pedometer, RunnerUp,
and Steptastic, it was possible to reduce the use of memory
by 26, 26, 58, 13, 13, 7, and 33, respectively. These values
were measured in megabyte (MB).

Table 5: Descriptive Statistics for Memory (God Class)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 9.54 67.6 2.29 41.01
Calendula 60.45 34.24 17.89 12.55
CycleStreets 73.8 47.08 9.28 9.23
Forecastie 9.54 67.6 2.29 41.01
NoiseApp 145.22 159.02 24.29 21.09
Pedometer 144.82 158.24 24.63 20.86
RunnerUp 88.53 80.66 17.48 8.5
Steptastic 61.99 28.53 13.71 14.72
Travel-Mate 80.65 83.86 39.64 39.21

Table 6 shows the results of the use of memory concern-
ing God Method. Overall, it is possible to observe that
the results demonstrate an increase in memory usage af-
ter refactoring. Also, in this table, there is a specific case
in which the app (Travel-Mate) used 98.39 MB before we
apply refactoring and started to consume 625.58 MB after
the refactoring. This number represents an increase of ap-
proximately 500 MB, i.e., the app began to use an alarming
quantity of memory. Also, the app Activity Tracker had a
hight disparity regarding the standard deviation.

Table 6: Descriptive Statistics for Memory (God Method)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 94.38 268.38 22.17 148.84
Calendula 51.95 48.43 9.44 13.19
CycleStreets 74.1 47.91 10.65 11.05
Forecastie 93.49 41.46 15.36 0.04
NoiseApp 144.73 158.2 24.67 21
Pedometer 74.95 171.91 17.65 21.61
RunnerUp 87.38 81.09 17.49 9.33
Steptastic 61.95 29.89 13.48 15.45
Travel-Mate 98.39 625.58 28.34 13.64

In general, all descriptive statistics for memory showed
that standard deviation varied too much, except for code
smell Feature Envy. Table 7 presents, in general, a lower
variation in relation to the standard deviation. A low stan-
dard deviation shows that the data are clustered tightly

around the mean. Besides, in general, all apps started to
use more memory after the refactoring, such as the Activity
Tracker app.

Table 7: Descriptive Statistics for Memory (Feature Envy)

App x̄
(S)

x̄
(R)

σ
(S)

σ
(R)

Activity Tracker 94.82 264.83 21.49 150.22
Calendula 77.5 98.59 21.35 38.26
CycleStreets 62.51 46.78 22.15 11.26
Forecastie 93.26 41.43 14.63 0.02
NoiseApp 143.39 158.69 23.85 20.93
Pedometer 74.33 171.7 17.92 22.2
RunnerUp 87.86 80.42 18.28 9.17
Steptastic 61.23 28.36 13.58 15.22
Travel-Mate 60.45 34.24 17.89 12.55

4.3 Guidelines for Android Smell Tools

From this study, we uncover 2 guidelines (G1 and G2) to
support future implementation of tools for Android.

G1. In order to support results analysis through statis-
tical methods, graphical visualization or at least numerical
indicator, such as percentage – We identified that the eval-
uated tool does not show statistical numbers related to the
code smells for each type. Also, when using the detection
and refactoring tool in apps, we should be able to determine
if the refactoring will lead to more methods calls. Then, if
more method calls will be necessary, applying the refactor-
ing will probably imply in increasing the consumption as
the OS adds more data in the Android memory stack.

G2. In order to combine different techniques (token,
tree, etc.) [14, 8, 15] for detecting several codes smells in
Android – It could be interesting to combine different tech-
niques that can be more useful to detect code smells. This
characteristic may increase the precision of the tool, mainly
in refactoring technique. A solution to this problem is to
identify the number of cycles of the clock that refactoring
can cause.

5 Related Work
Studies have investigated code smells in Android [1,

2, 10, 13]. For instance, Boussaa et al.[2] proposed an
automated approach to generate rules based on software
quality metrics and threshold to detect code smells in An-
droid. This work argues that identifying Android code
smells is extremely important, since the presence them may
lead to higher use of CPU, memory, and battery. We also
found other of papers related to refactoring and energy ef-
ficiency, considering a different type of refactoring. For
instance, Banerjee and Roychoudhury [1] present a light-
weight refactoring technique to assist app development re-
garding energy efficiency. Their results show that refactor-
ing the app can reduce the energy consumption up to 29%.

Existing studies investigate the identification of code
smells in Android and how they relate to energy efficiency.
However, works to identify positive and negative impacts
of refactoring on code smells regarding resources usage are



premature. Furthermore, there is no study investigating both
memory and CPU usage before and after applying the refac-
toring. In this context, our study investigates how the refac-
toring of code smells usually common on desktop systems
may impact resources usage in Android.

6 Threats to Validity
We based our study on related works to support our re-

search. However, some threats to validity may affect our re-
search findings. We conducted careful filtering of context-
aware apps from GitHub. Considering that the exclusion
criteria for app selection were applied in an automatic pro-
cess, we may have discarded compatible apps. In our view-
point, the selected apps are representative, given that they
are well-defined regarding the diversity of use of resources.

We used defaults configuration of JDeodorant to detect
code smells and apply refactoring techniques automatically.
Besides, another threat is concerning the use of the apps.
We decided not to emulate them through Android Studio
to achieve more trusted results. To test these apps, we have
adopted a rigorous manual test script, whereby all apps have
been tested. For example, if the app requires GPS position-
ing and the user walks with the smartphone, all other apps
with the same characteristics have passed by the same route
without any interference with the time or distance covered.

7 Conclusion and Future Work
The empirical study reported in this paper evaluated 9

different apps from the context-aware domain. These apps
were tested 162 times. In particular, we analyzed 3 types of
smells, namely God Class, God Method, and Feature Envy.
We aimed to verify the possibility of improving the quality
of the source code through refactoring technique and reduce
the use of resources, such as memory and CPU.

Our findings point that the refactoring technique, in gen-
eral, causes an increase in the use of resources. We also
observed that the JDeodorant is not able to adequately per-
form the refactoring in Android since techniques usually
adopted in desktop software are the opposite to the best-
practices indicated by Android developers site. The tool
used in this study was developed with the purpose of de-
tecting the code smells and apply refactoring in Java, the
same language used in the tested apps.

We believe that the results of this study will benefit
developers by helping them to avoid inappropriate use of
refactoring technique in the mobile device. Additionally,
we provide two guidelines for developing a new tool able to
detect code smells and apply refactoring. As future work,
we plan to extend our study to investigate other code smells
on Android. We also plan to develop an automated script
to test different apps in large-scale studies and implement a
tool based on the guidelines uncovered in this study.

8 Acknowledgments
This research was partially supported by Brazilian fund-

ing agencies: CAPES, CNPq (Grant 424340/2016-0),
FAPEMIG (Grant PPM-00651-17 and APQ-02924-16), and
FIP-PUC Minas.

References
[1] Abhijeet Banerjee and Abhik Roychoudhury. Automated refactoring

of Android apps to enhance energy-efficiency. In 38th Proc. of the
Int’l Conf. on Mobile Software Engineering and Systems (MOBILE-
Soft), 2016.

[2] Mohamed Boussaa, Wael Kessentini, Marouane Kessentini, Slim
Bechikh, and Soukeina Ben Chikha. Competitive Coevolutionary
Code-Smells Detection. Springer Berlin Heidelberg, 2013.

[3] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy.
Investigating the energy impact of Android smells. In 24th Proc. of
the Int’l Conf. on Software Analysis, Evolution and Reengineering
(SANER), 2017.

[4] L. Cruz and R. Abreu. Performance-based guidelines for energy ef-
ficient mobile applications. In 4th Proc. of the Int’l Conf. on Mobile
Software Engineering and Systems (MOBILESoft), 2017.

[5] L. Cruz, R. Abreu, and J. N. Rouvignac. Leafactor: Improving en-
ergy efficiency of Android apps via automatic refactoring. In 4th
Proc. of the Int’l Conf. on Mobile Software Engineering and Systems
(MOBILESoft), 2017.

[6] Quan Chau Dong Do, Guowei Yang, Meiru Che, Darren Hui, and
Jefferson Ridgeway. Mybatrecommender: Automated optimization
of energy consumption for android smartphones in software layer. In
13th Proc. of the Int’l Conf. on Software Engineering and Knowledge
Engineering (SEKE), 2016.

[7] Jacky Estublier. Software configuration management: A roadmap.
In 22nd Proc. of the Conf. on The Future of Software Engineering
(ICSE), 2000.

[8] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mntyl. Code smell
detection: Towards a machine learning-based approach. In 29th
Proc. of the Int’l Conf. on Software Maintenance (ICSM), 2013.

[9] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[10] Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. An empirical
study of the performance impacts of Android code smells. In 3th
Proc. of the Int’l Conf. on Mobile Software Engineering and Systems
(MOBILESoft), 2016.

[11] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize, Evaluate, and Im-
prove the Design of Object-Oriented Systems. Springer Publishing
Company, Incorporated, 2010.

[12] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and
C. Jensen. Understanding code smells in Android applications. In
4th Proc. of the Int’l Conf. on Mobile Software Engineering and Sys-
tems (MOBILESoft), 2016.

[13] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Anto-
niol. Anti-patterns and the energy efficiency of Android applications.
ArXiv e-prints, 2, 2016.

[14] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De
Lucia. Lightweight detection of android-specific code smells: The
adoctor project. In 24th Proc. of the Int’l Conf. on Software Analysis,
Evolution and Reengineering (SANER), 2017.

[15] Santiago A. Vidal, Claudia Marcos, and J. Andrés Dı́az-Pace. An ap-
proach to prioritize code smells for refactoring. Automated Software
Engineering, 23, 2016.

[16] H. Zhu, H. Xiong, Y. Ge, and E. Chen. Discovery of ranking fraud
for mobile apps. IEEE Trans. on Knowledge and Data Engineering,
27, 2015.


