

ComD2: Family of Techniques for Inspecting Defects

in Models that Affect Team Communication

Adriana Lopes, Ursula Campos and Tayana Conte

USES Research Group

Instituto de Computação, Universidade Federal do

Amazonas (UFAM)

Manaus, AM - Brazil

{adriana, usc, tayana}@icomp.ufam.edu.br

Clarisse Sieckenius de Souza

Semiotic Engineering Research Group

Departamento de Informática, PUC-Rio

Rio de Janeiro, RJ - Brazil

clarisse@inf.puc-rio.br

Abstract — Communication failures in software development

teams can compromise the software quality. Therefore,

identifying and mitigating risks for effective team communication

are important activities in software development. Software

models are one of the means of communication in development

teams, because it communicates other members of the

development team about the software. Thus, our research focuses

on inspection techniques for identifying defects that affect the

team communication through the software models. This paper

presents a family of techniques for inspecting defects that affect

team communication, called ComD2 (Communication between

Designers and Developers). The ComD2 family was developed

based on theories that investigate different ways of

communication. For the time being, the ComD2 family has three

specific inspection techniques for UML models, such as class

diagrams, activity diagrams, and state machine diagrams. We

performed a feasibility study and the results showed that the

ComD2 family was considered useful for the identification of

defects that affect the team communication through the software

models.

Keywords - inspection technique, communication artifact,

UML diagrams, human‑centered computing; software engineering;

I. INTRODUCTION

According to Reed and Knight [1], effective
communication is one of the most critical components of
working in software teams. In software development, the
communication is carried out through face-to-face discussions
in co-located or distributed teams [2], besides the support
offered by tools [3]. Software models are also used as means of
communication in software development teams [4]. In this
paper, we explore the communication of software development
teams through software models.

Software models that support the communication in
different domains can be considered boundary objects.
Boundary objects are used for different purposes and in
different domains while maintaining their authenticity [5]. The
term boundary object comes from the use of objects that
facilitate the sharing of information across linguistic, cultural,
or knowledge boundaries, such as the communication between
a software development team and its client.

Communication failures from software models can come
from information that is not clearly expressed by their
producers (people who created the models). Thus, other
members of the software development team (i.e. consumers,
who comprehend the models for the creation of other artifacts)
may have different interpretations of the ones intended by the
producers. Different interpretations can introduce defects
during the production of software; such as the omission of
some necessary information or the vague definition of
information, thus allowing multiple interpretations [6].

The propagation of defects associated with model
representations can be costly, especially in large or complex
system development projects. Can defects be detected and
remedied by model consumers down the communication line?
How do they affect communication in these and other
(undetected) cases? Is there a way to prevent or at least
minimize such defects? Our research aims to contribute to
answer these questions and starts with the following
interrogation: What defects in software models can affect the
communication of software development teams? To answer this
question, we have developed a family of techniques called
ComD2 (Communication between Designer and Developers).
The purpose of the ComD2 family is to support the
identification of defects that affect the team communication,
i.e. the communication of the designer1 to the developers at
development time. The collaboration between designer and
developers is one of the factors for the success of software
development [8]. We have initially developed three specific
inspection techniques for UML class diagrams, activity
diagrams, and state machine diagrams. The techniques were
developed for these models because they are among the most
frequently used in the industry [9].

The ComD2 family of techniques was developed based on
theories related to Human-Centered Computing (HCC), a field
of research that integrates theories and methodologies in
research on machines, human and application domains [10]. In
particular, the Semiotic Engineering, a theory originally
proposed for Human-Computer Interaction [11][12], which has

1 We use the term designer for the Software Designer, also

called Information Architect, i.e., the professionals involved in

designing the software solution.
DOI reference number: 10.18293/SEKE2018-155

been extended to account for HCC, investigating different
forms of communication through and about software, both
during development (between producers and consumers of
software development artifacts) and at use time (between
software producers and end users, through systems interfaces).
De Souza et al. [12] propose that Grice’s Cooperative Principle
[13] can be used to assess the effectiveness and efficiency of
communication achieved through software products (or
representations thereof). Thus, we also adopted this Gricean
principle as a theoretical basis for the development of the
ComD2 family.

The verification items of the ComD2 family help
practitioners classify different defects that are found in
software models [14] and detect which dimension(s) of model
representation associated with the defect can lie at the origin of
potential miscommunication. The employed dimensions of
representation are Syntactic (relationship between model and
the modeling language), Semantic (relationship of the model
with the problem domain) and Pragmatic (relationship of the
model with the stakeholders) [15].

We conducted a feasibility study with the initial version of
the ComD2 family in an academic environment. This study
was performed with 30 participants who had knowledge on
class diagrams, activity diagrams and state machine diagrams.
The results showed that defects in the Semantic and Pragmatic
dimensions may affect the effective communication between
producers and consumers of the models. With the support of
ComD2 family, we have indications about the different defects
that impact the team communication. Therefore, Grice’s
Cooperative Principle and the different defects associated with
the dimensions of representation are important concepts for
reducing team communication failures using the models.

The remainder of this paper is organized as follows: Section
2 presents the theoretical background and related work. Section
3 presents the ComD2 family of techniques. Section 4 presents
the feasibility study. Section 5 presents the discussion of the
obtained results. Finally, Section 6 presents the final
considerations and future work perspectives.

II. BACKGROUND AND RELATED WORK

This section presents the concepts used in the definition of
the ComD2 family of techniques. We also present the main
works related to the concepts adopted in the techniques.

A. Grice’s Cooperative Principle

Grice’s Cooperative Principle assists in the expression of
essential characteristics of effective and efficient
communication [13]. According to Grice, productive
conversation (communication) depends on the observation of
reciprocal cooperation, which is established by four maxims:

 (i) Quantity - Make your contribution as informative as
necessary, and no more than necessary;

(ii) Quality - Try to make your contribution true. Do not
say what you believe to be false and do not say something that
you do not have adequate evidence of;

(iii) Relation - Be relevant, that is, do not introduce issues
that do not come to the case under discussion; and

(iv) Manner - Be clear, brief and organized with your
input. Avoid obscurity of expression, ambiguity.

Breaking one or more of these maxims may lead to
communication failure. However, an adequate use of Grice’s
maxims involves the concept of implicature, that is,
information that can be inferred from statements. Conventional
implicatures can be inferred from the conventional meaning of
word. There are also conversational implicatures, that is,
inferences that can be drawn from participants of a given
conversational context in order to fulfill certain gaps and
omissions to (re)establish coherence and consistency in
communication. Therefore, unlike conventional implicatures,
conversational implicatures cannot be resolved by invoking the
usual meaning of information represented in communication
and require different kinds of inferences.

Grice’s maxims have been previously used by Santana et al.
[16] to analyze interaction diagrams modeled with MoLIC
(Modeling Language for Interaction as a Conversation).
MoLIC diagrams, which are based on Semiotic Engineering,
allow us to represent the interaction of the user with the system
as a communication process. The results showed that Grice’s
maxims can indeed help detect human-computer interaction
problems in MoLIC diagrams. We thus extend the object of
inspection and use Grice’s maxims to assess effective
communication between producers and consumers of other
kinds of software models.

B. Defect Inspection in Software Models

Software defects may be related to an inappropriate
comprehension of the information within the models. Granda et
al. [14] present a classification for defects that are commonly
found in UML models, which are presented in Table 1.

TABLE I. TYPES OF DEFECTS, ADAPTED FROM [14].

Type Description

Omission The required information has been omitted.

Incorrect Fact
Some information in the model contradicts the list of

requirements or general knowledge of the system

domain.

Inconsistency
Information in one part of the model is inconsistent
with information in other parts in the model

Ambiguity
The information in the model is ambiguous. This can

lead to different interpretations of information.

Extraneous

Information

The information that is provided is not required in the

model.

Redundant Information is repeated in the model.

Inspection is a method used to identify defects with lower
cost during the development process [17]. According to Qazi et
al. [18], the main purpose of an inspection is to identify defects
to reduce costs and improve software quality.

Travassos et al. [19] developed a family of seven
techniques for inspection, called OORTs (Object Oriented
Reading Techniques). The techniques of the OORTS family
can be used to inspect object-oriented models with regards to:
(i) the different models used, such as use case diagrams and
class diagrams, ensuring consistency among such models; and
(ii) the requirements and models, ensuring traceability within a
domain in order to find defects between them. However, we

did not find inspection techniques with the purpose of
supporting the defects identification that affects the
communication of the team through the use of models. For this
reason, we proposed inspection techniques to identify defects
that impact the communication of the team through the use of
models. We have developed our techniques in the context of
HCC and related theories that study different ways of
communication.

III. THE COMD2 FAMILY

ComD2 offers specific techniques for inspecting defects
that affect the team communication through the software
models. The purpose of the ComD2 family is to assist
experienced and novice practitioners by checking for defects in
models that impair the communication of the team. The
theoretical basis of ComD2 family is presented in the following
paragraphs. From this theoretical basis, it is possible to develop
specific techniques for other software models.

Using Grice’s Cooperative Principle [13], ComD2 family
uses the four maxims. We created verification items to support
the identification of discrepancies (these discrepancies may be
defects or not) based on these four maxims. Based on the
maxim of Quantity, we developed verification items for the
necessary content (and no more than necessary), in the models
e.g., for the class diagram: “Are all necessary classes of the
problem domain in the diagram?”. Based on the maxim of
Quality, we developed verification items for the identification
of false information in the models, e.g. for the class diagram,
we have: “Do the classes have content that affects the quality
of the model?” Based on the maxim of Relation, we developed
verification items for the identification of information that is
not relevant to the models, e.g.: “Are classes relevant to system
modeling?”. Based on the maxim of Manner, we developed
verification items for the identification of information that is
not clear in the model, e.g.,: “Are there classes and
relationships with descriptions that are not clear?”.

We observed that when the maxims are not respected in the
models, they could cause defects in software. This occurs due
to the lack of understanding of the consumers on the intention
of the producers regarding the model. Thus, for each
verification item, we used the defect classification that is
presented by Granda et al. [14] (see Table 1). From the
verification items, it is possible to classify the defects. For
instance, for the verification item that is based on the maxim of
Quantity, we relate this item as follows: Are all necessary
classes of the problem domain are in the diagram? If not, this
may be an Omission discrepancy.

Each verification item presents the dimensions of
representation that was affected by the defects in the models,
being these Syntactic, Semantic and Pragmatic [15]. These
dimensions can help in comprehending the defects that cause
the communication failures from software models. Defects
related to the form of representation are associated with the
syntactic dimension, whereas the defects related to the content
of information are associated with the semantic and pragmatic
dimensions. We highlight in the verification items the different
dimensions of representation related to the defects. The
following verification item shows the dimension of
representation affected by the defect, which refers to the

content of system information in the modeling: Are all
necessary classes of the problem domain are in the diagram? If
not, this may be an Omission discrepancy (Semantic).

Verification items can be proposed for each one of the
models. At this initial state, we have developed specific
techniques for inspecting three UML models: class diagrams,
activities diagrams, and state machine diagrams. These three
models are commonly used in software development [9]. There
are verification items for unique elements in the models, such
as the following item for the Association element in the class
diagram: According to the problem domain, are all Association
relationships established among classes? If not, this may be an
Omission discrepancy (Semantic and Pragmatic). In some
cases, there are verification items for all elements of a model,
such as the following item for the class diagram: Are there
elements with descriptions that are not clear? If so, there are
probably Ambiguity discrepancy (Pragmatic).

The Fig.1 presents some verification items for class
diagrams. We use the following structure in the ComD2 family
techniques: verification items for the elements of the respective
models, which are related to the questions based on Grice’s
maxims. Each verification item suggests the identification of
one or more defects and support the classification of the
information representation dimension that such defects affect in
the models.

Figure 1. Extracts of the ComD2 techniques for class diagrams.

The verification items are divided into categories
corresponding to the Grice’s maxims (highlighted in gray in
Fig. 1.), such as: Is the necessary information, and no more
than necessary, present in the model? (verification items
related to the maxim of Quantity); Does the information in
the model contain statements that are not true? (verification
items related to the maxim of Quality); Is the information
relevant to system modeling? (verification items related to the
maxim of Relation); Is the information difficult to
understand in the model? (verification items related to the
maxim of Manner). Despite the structure used, we do not
define the order for the use of each category. The inspection
techniques for the activity and state machine diagrams use the
same structure presented in Fig.1. These techniques are
available in [20].

Class Diagrams Technique

Is the necessary information, and no more than necessary, present in the

model?

Class
Are all necessary classes of the problem domain are in the diagram?

If not, this may be an Omission discrepancy (Semantic).

... ...

Does the information in the model contain statements that are not true?

Class

Do the classes have content that affects the quality of the model? If

so, there are probably Inconsistency and/or Extraneous Information

discrepancies (Semantic).

... ...

Is the information relevant to system modeling?

Class
Are classes relevant to system modeling? If not, there are probably

Extraneous Information and/or Redundant discrepancies (Semantic).

... ...

Is the information difficult to understand in the model?

Class
Are there classes and relationships with descriptions that are not

clear? If so, there are probably Ambiguity discrepancy (Pragmatic).

... ...

IV. FEASIBILITY STUDY WITH THE COMD2 FAMILY

In order to evaluate the initial techniques of the ComD2
family, we conducted a feasibility study in an academic
environment. In this study, we analyzed the effectiveness (ratio
between the number of detected defects and the total number of
defects) and efficiency (ratio between the number of defects
per inspection time) of each participant for the different
techniques. The adopted measures of efficiency and
effectiveness are often used in studies investigating inspection
techniques [21] [22]. We also evaluated the participants’
perceptions on the techniques.

A. Planning and Execution of the Feasibility Study

In the planning stage, we selected 30 participants for the
study. The participants are undergraduate students and have a
basic dimension of knowledge about software modeling with
class diagrams, activity diagrams and state machine diagrams.
We selected the UML models of a real web and mobile
development project. In addition, we prepared all necessary
artifacts, such as forms for the participants to report the
identified discrepancies and post-study questionnaires. The
package with the artifacts used also available in [20].

In the execution stage, we first gave lectures on the
techniques of the ComD2 family. Then, the participants
performed the inspection of the UML models individually.
After the inspection, we applied the post-study questionnaires.
During the study, two of the researchers took notes for later
analysis.

B. Results of the Feasibility Study

After the execution of the study, we verified whether the
technique achieved the goal of detecting defects. The oracle of
defects contained a total of 25 defects in the three diagrams (10
defects in the class diagrams, 8 defects in the activity diagrams
and 7 defects in the state machine diagrams).

Table 2 presents the participants (column P#), number of
defects found by each participant (CD column for the class
diagram, AD column for the activity diagrams and SD column
for state machine diagrams), inspection time (in hours) and the
effectiveness of the participants (EfC column for the class
diagrams technique, EfA column for the activity diagrams
technique, EfS column for state machine diagrams technique)
and the average effectiveness of each technique (in the last line
in the Table 2). As the participants performed the inspection of
the created models at the same time, we did not evaluate the
individual efficiency of each participant with the techniques.

Analyzing the effectiveness indicator, we noticed that the
inspectors were able to identify an average of 53% of the
defects with the class diagrams technique, 35.8% with the
activity diagrams technique and 25.8% with the state machine.
This is a positive result in terms of effectiveness when
compared to the indicators achieved by other inspection
techniques for models [22]. The results showed that ComD2
can support the detection of defects. Regarding efficiency, as
the participants used three techniques in the inspection of the
models, we analyzed the efficiency of the entire ComD2
family. The participants found an average of 10.94 defects per
hour with the techniques. However, as the number of defects is
directly dependent on the inspected models, is not suitable to

compare the results of efficiency from this study with the
results of other techniques.

TABLE II. RESULTS PER PARTICIPANTS WITH THE COMD2 FAMILY.

P# CD AD SD
time

(hours)

EfC

(%)

EfA

(%)

EfS

(%)

EfT

(%)

P1 1 3 2 1,33 10 37,5 25 24,1

P2 6 4 3 1,21 60 50 37,5 49,1

P3 4 2 1 0,95 40 25 12,5 25,8

P4 5 3 1 0,81 50 37,5 12,5 33,3

P5 3 2 1 1,26 30 25 12,5 22,5

P6 4 3 4 1 40 37,5 50 42,5

P7 4 4 3 1,16 40 50 37,5 42,5

P8 8 2 3 0,63 80 25 37,5 47,5

P9 7 3 3 1,48 70 37,5 37,5 48,3

P10 7 1 1 0,83 70 12,5 12,5 31,6

P11 5 2 1 0,81 50 25 12,5 29,1

P12 9 2 1 0,81 90 25 12,5 42,5

P13 6 4 1 1,3 60 50 12,5 40,8

P14 9 3 3 0,95 90 37,5 37,5 55

P15 8 4 1 1 80 50 12,5 47,5

P16 4 4 2 1,01 40 50 25 38,3

P17 3 4 3 1,13 30 50 37,5 39,1

P18 4 4 4 0,96 40 50 50 46,6

P19 8 0 3 0,26 80 0 37,5 39,1

P20 5 2 1 1,16 50 25 12,5 29,1

P21 6 2 3 1,33 60 25 37,5 40,8

P22 2 3 1 1,06 20 37,5 12,5 23,3

P23 8 2 3 1,05 80 25 37,5 47,5

P24 4 1 2 1,06 40 12,5 25 25,8

P25 5 7 3 1,01 50 87,5 37,5 58,3

P26 4 3 2 1,05 40 37,5 25 34,1

P27 3 4 1 1,06 30 50 12,5 30,8

P28 7 2 2 1,21 70 25 25 40

P29 5 3 1 1,21 50 37,5 12,5 33,3

P30 5 3 2 1,21 50 37,5 25 37,5

Average Effectiveness 53 35,8 25,8 -

We analyzed the post-study questionnaires to understand
participants’ perceptions. The questionnaire had three open
questions, the first question being: What is your perception
with the use of the techniques? We analyzed the responses of
participants P2, P12 and P13, who had more than 40%
effectiveness in detecting defects with the ComD2 family
(considering the effectiveness of the three techniques):

“The techniques are very practical. The dimensions of
representation facilitate the review and help understand the
intent of the artifact's author. With this classification, it is also
possible to correct defects more easily” (P12)

 “The techniques show an intermediate dimension of
representation between the requirements and implementation.
Therefore, it is a great way to analyze the team’s
understanding of the requirements” (P21)

Other participants reported perceptions that could be used
to improve the techniques, such as joining some verification
items that were considered repetitive. Some quotations from
the participants were:

 “The techniques help to ensure the reliability of the
model, but some points are repetitive” (P12)

“The techniques can be more unified in the description of
the problems, since some errors are the same in different
models” (P22)

In spite of perceived issues, while answering the first
question our participants considered the information
representation dimensions useful, because they help gain better
understanding of information that the model communicates.
We believe this may improve the identification of defects that
undermine the consumers’ understanding of the intention of the
producers of the models.

The second question posed to participants was: Do the
information representation dimensions help to understand the
defects that could undermine the understanding of the model?
Some participants reported the following:

“Yes, especially the defects in the semantic and pragmatic
dimensions that can compromise software development” (P3)

 “Through the dimensions of representation, it is possible
to see if we should change only something in the syntax or
redesign parts of the system” (P13)

The participant’s utterances showed that the defects in the
semantic and pragmatic dimensions are the types of defects that
may most affect the understanding of a model; since the
syntactic dimension defects may not compromise both the
understanding of the model language.

To understand if participants had difficulties with the
ComD2 family, the post-study questionnaire included a third
question: What are the difficulties with using the techniques?
The following are excerpts from some of the answers.

“Although the techniques help in the classification of the
representation dimensions, I had doubts with the classification
of defects in Semantic and Pragmatic dimensions” (P6)

“Certain defects fall into more than one dimension, so it is
necessary to evaluate and interpret each case in order to avoid
misunderstanding” (P29)

Regarding the citations of participants P6 and P29, we
noticed that there are difficulties with understanding the
dimensions of representation and related defects. Although the
techniques help in the classification of the dimension of
representation associated to the defects, we can make
improvements in the techniques with regards to the examples
of the different dimensions of representation.

After the participants ended the study activities, we asked
them which types of information in models could affect team
communication. We noticed that some participants considered
that unnecessary, irrelevant, ambiguous and false information
affect the communication of the team when using these models.
This type of information violates Grice’s four maxims and

indicates that this theory is adequate for analyzing
communication between producers and consumers. Moreover,
based on the results of this feasibility study, we define a
prioritization of the categories in ComD2 family. The proposed
prioritization follows this order: (1st) Quality, (2nd) Quantity,
(3rd) Relation and (4th) Manner. This prioritization order
should be followed in the next applications of the ComD2
family.

V. DISCUSSION

The results of the study provided initial evidence to the
feasibility of ComD2 family to inspect defects that may impact
the communication between producers and consumers.
Regarding our research question - What defects in software
models can affect the communication of development teams? -
the results obtained with the techniques showed that the defects
in the Syntactic dimension do not always affect the consumers’
understanding, since they are related to the syntax of the
language used for modeling. Defects at the Semantic
(relationship of the model with the problem domain) and
Pragmatic (relationship of the model with the stakeholders)
dimensions can affect the communication of the team.
Regarding defects in the Semantic dimension, communication
failures occur because the consumers infer explicit content
inconsistent with the problem domain (conventional
implicature of the explicit content in the model). However, if
the consumers have knowledge about the problem domain,
these defects can be perceived and not propagated to other
artifacts (e.g. when the consumer uses the class diagram for
system coding and it perceives the lack of a domain class, then
this class could be added). Defects in the Pragmatic dimension
may not be perceived by the consumers due to lack of
information context (conversational implicature of the implied
content in the model). In this case, communication failures
occur because consumers may not understand the intention of
producers. However, the ComD2 family can help reduce risks
for effective team communication through models.

In the feasibility study of the ComD2 family, there are
limitations, such as the fact that the participants are
undergraduate students and that the study is conducted in an
academic environment. Regarding this limitation, Fernandez et
al. [8] state that undergraduate students who do not have
experience in the industry may have similar skills to less
experienced practitioners; and one of the goals of the
techniques is to assist practitioners with no experience in the
inspection process of models. Another limitation is that the
inspected models were from a development project, since it is
not possible to state that these models represent all types of
class diagrams, activity diagrams and state machine diagrams.
Therefore, we intend to carry out new studies with the set of
techniques for different models. Regarding the indicators of
effectiveness and efficiency that were adopted, they are often
used in studies investigating inspection techniques [22].

VI. CONCLUDING REMARKS AND FUTURE WORK

The purpose of this paper was to answer the following

research question: “What defects in software models can

impact the communication of development teams?”. To do so,

we developed a family of techniques called ComD2 that helps

practitioners identify defects that affect software team

communication. We initially proposed and evaluated specific

techniques of the ComD2 family for inspecting class

diagrams, activity diagrams, and state machine diagrams. The

results of the evaluation provided initial evidence to the

feasibility of ComD2 family.
As future work, we intend to improve the ComD2

techniques and perform an empirical study in comparison with
other specific techniques for inspecting class diagrams, activity
diagrams and state machine diagrams. Furthermore, we intend
to carry out a longitudinal study with the ComD2 family to
evaluate the identification of defects that affect the team
communication through the models employed during the
software development.

ACKNOWLEDGMENT

We thank the undergraduate students for their participation
in the feasibility study. We would like to thank the financial
support granted by UFAM, CNPq through processes numbers
423149/2016-4, 311494/2017-0 and 304224/2017-0, and
CAPES through process number 175956/2013.

REFERENCES

[1] A. H. Reed and L.V. Knight, “Effect of a virtual project team
environment on communication-related project risk”, International
Journal of Project Management, vol. 28 (5), 2010, pp. 422–427.

[2] E. Diel, S. Marczak, D. S. Cruzes, “Communication Challenges and
Strategies in Distributed DevOps”, Proceedings of the 11th International
Conference on Global Software Engineering (ICGSE 2016), 2016, pp.
24-28.

[3] V. Käfer, “Summarizing software engineering communication artifacts
from different sources”, Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017), 2017, pp.
1038-1041.

[4] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, J. Still, “The
impact of agile practices on communication in software development”,
Empirical Software Engineering, vol. 13 (3), 2008, pp. 303-337.

[5] P. Ralph, M. Chiasson and H. Kelley, “Social theory for software
engineering research”, Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering (EASE '16),
2016, pp. 44-55.

[6] R. M. de Mello, E. N. Teixeira, M. Schots, C. M. L. Werner and G. H.
Travassos, “Verification of software product line artefacts: a checklist to
support feature model inspections”, Journal of Universal Computer
Science, vol. 20(5), 2014, pp. 720-745.

[7] A. M. Qazi, S. Shahzadi and M. Humayun, “A comparative study of
software inspection techniques for quality perspective”, International
Journal of Modern Education and Computer Science, vol. 8 (10), 2016,
pp. 9-16.

[8] J. M. Brown, G. Lindgaard, and R. Biddle, “Collaborative events and
shared artefacts: Agile interaction designers and developers working
toward common aims,” Proceedings - 2011 Agile Conference, Agile
2011, pp. 87–96.

[9] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi, “What are the used
activity diagram constructs? A survey”, Proceedings of the 2nd
International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2014), 2014, pp. 87–98.

[10] Sebe, N. Human-centered computing. In Nakashima, H., Aghajan, H., &
Augusto, J (Eds.), Handbook of ambient intelligence and smart
environments, pp. 349–370, 2010. DOI: 10.1007/978-0-387-93808-
0_13.

[11] C. S. De Souza, The Semiotic Engineering of Human-Computer
Interaction (Acting with Technology). The MIT Press, 2005.

[12] Clarisse Sieckenius de Souza, Renato Fontoura de Gusmão Cerqueira,
Luiz Marques Afonso, Rafael Rossi de Mello Brandão and Juliana
Soares Jansen Ferreira. 2016. Software Developers as Users: Semiotic
Investigations in Human-Centered Software Development. In Springer
International Publishing Switzerland. DOI 10.1007/978-3-319-42831-4.

[13] H. P. Grice, “Logic and conversation”. Syntax and Semantics 3: Speech
arts, ed. Peter Cole and Jerry Morgan, 1975, pp. 41–58.

[14] M. F Granda, N. Condori-fernández, T. E. J. Vos, O. Pastor, “What do
we know about the defect types detected in conceptual models?”,
Proceedings of the IEEE 9th Int. Conference on Research Challenges in
Information Science (RCIS 2015), 2015, pp. 96–107.

[15] M. Priyanka and R. Phalnikar, “Generating UML diagrams from natural
language specifications”, International Journal of Applied Information
Systems, vol. 1(8), 2012, pp. 19-23.

[16] B. S. Silva, V. C. O. Aureliano, S. D. J. Barbosa, “Extreme designing:
binding sketching to an interaction model in a streamlined HCI design
approach”, Proceedings of the VII Brazilian Symposium on Human
Factors in Computer Systems, 2006, pp. 101 – 109.

[17] P. C. Rigby and C. Bird., “Convergent contemporary software peer
review practices”, Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2013), 2013, pp. 202–212.

[18] A. M. Qazi, S. Shahzadi and M. A Humayun, “Comparative study of
software inspection techniques for quality perspective”, International
Journal of Modern Education and Computer Science, vol. 10 (8), 2016,
pp. 9-16, DOI: 10.5815/ijmecs.2016.10.02.

[19] G. Travassos, F. Shull, M. Fredericks, V. Basili, “Detecting defects in
object-oriented designs: using reading techniques to increase software
quality”, Proceedings of XIV ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, And Applications, 1999,
pp. 47-56.

[20] A. Lopes, T. Conte, C. S. de Souza. 2018. ComD2 (Communication
between Designer and Developers): A Family of Techniques for
Inspecting Defects that Affect Communication from Models. USES
Research Group Technical Report. TR-USES-2018-0003. Available:
http://uses.icomp.ufam.edu.br/wp-content/uploads/2018/03/TR-USES-
2018-0003.pdf

[21] A. Fernandez, S. Abrahão, E. Insfran, and M. Matera, “Further analysis
on the validation of a usability inspection method for model-driven web
development”, International Symposium on Empirical Software
Engineering and Measurement (ESEM 2012), 2012, pp. 153-156.

[22] N. M. C. Valentim, J. Rabelo, A. C. Oran, S. Marczak, T. Conte, “A
Controlled Experiment with Usability Inspection Techniques Applied to
Use Case Specifications: Comparing the MIT 1 and the UCE
Techniques”, Proceedings of the 18th International Conference on
Model Driven Engineering Languages and Systems, (MODELS 2015),
2015, pp. 206-215.

