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Abstract

Software development depends on cooperation between
people, and the way it works can define the future of the
software project. Developers emotions affect their produc-
tivity and way they work, yet there is little information about
how developers can influence the mood of each other. As a
first step toward understanding how feedback may affect the
developers’ sentiment, this paper analyzes the mood varia-
tions on more than 78k pull requests and 268k pull com-
ments on GitHub. We found that in 31.16% of the cases the
developers presented a significant mood variation within
one hour when receiving feedback on their pull requests.
The variation reduces to 18.16% when evaluating one day
before and after the commentary. In software projects with
less than 34k lines of code, the number of developers that
never contribute again after receiving a negative comment
on the first pull request is 10.97%; this number more than
doubles to 24.02% when evaluating projects with more than
197k lines of code.

Keywords: Developers emotions, Developers mood,
GitHub, Open source, Subjective well-being.

1 Introduction
Humans are one of the most valuable resources in soft-

ware projects. Besides the technical knowledge needed
for a successful project, it is essential to have good
teamwork[7]. Staats [15] shows that increasing the teams
familiarity decreases the number of defects, reduces budget
deviation, and yields a 10% in performance improvement
from the clients’ perspective. Regarding the importance
of keeping the team’s members, Voices [17] warned that
unhappiness could lead the developers to quit their com-
pany/project endeavors. Additionally, emotions can affect
positively or negatively, the developers’ productivity, cre-
ativity, and task quality[4, 6]. Understanding the mood vari-
ations of the developers on a software project, as well as the
effects of feedback on the team members, is relevant to help
the projects leaders to take proactive actions in increasing
their team engagement and familiarity and, therefore, im-
proving productivity.

GitHub is a social network and code hosting provider

that hosts more than 71 million projects1 at present. The
main GitHub feature is not only the code hosting but also
project manager features, such as issues and pull request
controls. These features promote discussions among the
users, which is related to the reported bug and the requested
feature or even connected to a code path that a developer
wants to merge in a repository. We collected pull requests,
their comments, and the profile of the developers, related to
any of those interactions, to perform our research.

Recently, researchers have published several pa-
pers, regarding developer sentiment analysis, on GitHub
interactions[5, 7, 8, 9, 12, 14]. However, what causes pos-
itive or negative variances in the developers sentiment, as
well as the duration of the variation, is not entirely under-
stood yet; many external influencing factors remain unex-
plored.

Our study contributes to a better understanding of devel-
opers’ mood variations by analyzing the developers at the
time they are submitting pull requests to a repository, and
how other developers’ comments may influence their mood.
We highlight that we cannot establish a strong causal rela-
tionship between a comment and a developers’ mood varia-
tion, as events outside of our data set might have influenced
such variation. We empirically analyzed the 100 most popu-
lar java projects on GitHub and their more than 226k pull re-
quest comments. We applied SentiStrength [16] to calculate
the sentiment expressed in each pull request and comment,
and we then calculated the subjective well-being (SWB) [3]
to obtain the mood variations before and after receiving a
feedback from another developer. Finally, we analyzed the
SWB to understand how the feedback may affect the devel-
opers’ mood.

The rest of this paper is outlined as follows. We first
present the techniques we used to perform the sentiment
analysis and to calculate the sentiment influences in Sec-
tion 2. We show the experiment design in Section 3. In
Section 4 we present the results of our analysis, We present
the related work in the Section 5. and finally, we conclude
and present the plans for future works in Section 6.

1https://github.com/about
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2 Background
Reminding that our present goal is to investigate devel-

opers’ mood variation when receiving feedback from oth-
ers, we present an overview of the central concepts we have
used to hit our goals. We first introduce the GitHub con-
cepts, then we present the sentiment analysis approach we
have used, then we show the changes we have made on
the tool’s dictionary to better address software engineering
texts, and finally, we present the sentiment state and change
measurement metrics we have used.

GitHub: Here we present some GitHub concepts that
will help gain a better understanding of the paper. Next, we
pick the features that relate the most to the present work.

The Repository represents the project itself; it contains
the code, documentation, and also aggregates all the project
interactions (issues, pull requests and commits). Reposito-
ries can be private or public; however, in this paper, all the
repositories we have used are public, and therefore, all their
information is available on the GitHub API [2].

A pull request is a proposed code change to a repository
submitted by a developer. Once a pull request is open the
project members can comment and either accept or reject
it. If the pull request is accepted, the code integrates them
into the repository code; if it is rejected, it is discarded. Pull
requests have their discussion forum where the developers
can comment on the changes or ask for improvements or
changes before merging it. A pull request can contain one
or many commits [2].

A commit consists of a change in one or many files,
enabling developers to track the changes they have made.
Commits usually contain a message with a short explana-
tion about the change that it contains [2].

Author association is the association between the devel-
opers who are commenting or opening a pull request, and it
represents the role of the developer in the repository. The
author association’s possible values are: collaborator (has
been invited to the repository but has not commited any-
thing yet), contributor(has been invited and has at least one
commit), member (is a part of organization that owns the
repository on GitHub), none(has no relationship with the
repository), and owner (owner of the repository), we lim-
ited this list to the values that are present in our data set
[1].

GitHub pull request flow consists of some developer
(any GitHub user) with or without a relationship with the
repository, who wants to integrate a code change to the code
base. Let’s suppose there is a bug and a developer wants
to fix it, he/she needs to: 1) clone the project, 2) create a
branch locally, 3) commit the changes to solve the bug, and
4) submit a pull request to the central repository. Figure 1
presents this process. After opening the pull request, other
developers can comment on it, asking for changes or en-
dorsing the changes made. That is why these comments

Figure 1: GitHub Pull request flow.

often become discussions among developers relating to the
code change submitted. For that matter, the most critical in-
teractions for us are after opening the pull request, when the
discussions start. At this point, we compare the developer
comments, before and after another developer’s comment,
to understand if the comment caused any mood variation on
the developer who wanted to integrate his/hers code to the
repository.

Sentiment analysis: Sentiment analysis is a common
task when evaluating social network interactions. Ribeiro
et al. [11] presented benchmark testing 24 sentiment analy-
sis tools in 18 labeled tweet data sets. Their results showed
that the SentiStrength tool [16] presented the best results
in most of the datasets. Additionally, the previous work
[7, 8, 14] have successfully used SentiStrength [16] to per-
form sentiment analysis of software engineering interac-
tions, such as commits, issues, and pull requests. Therefore,
in this paper, we decided to use SentiStrength to perform the
sentiment analysis.

SentiStrength uses a lexicon approach based on a dic-
tionary or words and idiomatic expressions to detect two
sentiment polarizations, negative (from -1 slightly negative
to -5 very negative) and positive (from 1 slightly positive to
5 very positive). By that, it provides the overall sentiment
of the sentence(scale), subtracting the negative sentiment
from the positive sentiment [16]. We used SentiStrength to
extract the sentiment of each pull request and comment.

However, Novielli et al. [10] warned that using any sen-
timent tool to evaluate sentiment on software engineering
artifacts without any change might result in an inadequate
analysis because some terms considered as negative in other
social networks are natural when analyzing technical texts.
For example, the word ’static,’ which in the SentiStrength
default dictionary is considered as -2 negative, is used most
of the time by developers to reference a method or field of a
class. Additionally ‘static‘ is a common term in some pro-
gramming languages such as Java. Based on the Novielli
et al. [10] suggestion, and in the previous work [14, 8], we
decided to change the default SentiStrength dictionary to
evaluate our data set better.



Sentiment Analysis in Software Engineering: Using
any sentiment analysis tool without any change will, as we
had introduced, result in an inadequate analysis. For that
matter, we decided to change the default SentiStrenth dic-
tionary to address the software developer field better. We
performed this process by checking the results of the clas-
sification manually and removing the common terms from
the dictionary, classified as negative or positive.The Table
1 shows the modifications we have made in the dictionary;
the words in the first column, Words, are the words that we
have modified; the second column, Original Value, shows
the value that the words have in the original SentiStrength
dictionary; the third column shows the new values that we
had set to the words, and the last column shows a short ex-
planation why we had changed that group of words.

Words Original Value Change Reason
broke*, fail -2 0 Usually is a reference to the build

status and has no sentiment
bug, defect, error,
missing, mock,

-2 0 No sentiment related just reference
fact

constrain*, drop,
kill, static

-2 0 Common term in development with
no sentiment expressed

Default, exit -2 0 A common term in development
with no sentiment expressed

garbage, vagrant,
storm

-3 0 A common term in java projects
with no sentiment expressed

revert -2 0 Common term across GitHub social
network

not working -4 0 Idiomatic expression that most of
the times have no sentiment ex-
pressed

Table 1: SentiStrength dictionary changes

Mood Variation: To evaluate the influences of others in
the developer mood, we decided to use a metric called sub-
jective well-being initially presented by Bollen et al. [3] and
used in the Twitter social network to measure mood propa-
gation. We used the technique to calculate the state of devel-
oper sentiment by analyzing a window of time. The subjec-
tive well-being (S(d)) of a developer is given by subtracting
the number of positive comments from the number of nega-
tive comments, divided by the number of positive comments
plus the number of negative comments. This way, the S(d)
value variates from -1 to 1; Equation 1 shows the S(d) equa-
tion. Once S(d) gives the developer sentiment on a specific
window of time, we use the metric to evaluate the senti-
ment change by calculating the difference between before
(Sb(d)) and after (Sa(d)) another developer comment on a
pull request. The metric of mood variation(SC(d)) variates
between -2 and 2, and Equation 2 presents its equation. As
previously mentioned, we cannot establish a strong causal
relationship between a comment and the developer mood
variation, given the possibility of external influences. How-
ever, by analyzing different windows of time (1, 2, 4, 8
hours and one day) we intend to reduce or mitigate such
a problem.

S(d) = Np(d)−Nn(d)

Np(d) +Nn(d)
(1)

SC(d) = Sb(d)− Sa(d) (2)

3 Experiment Design
This section presents the steps taken in our experiment,

starting with a short presentation of our research questions,
followed by data set and finally the sentiment mining.

Goal and research questions: As we previously men-
tioned the primary goal of this paper is to analyze the im-
pact of feedback on GitHub in developers mood and how
the influence behaves in time. Therefore, we formulate the
following research questions (RQ):

RQ1: Can a developer change the sentiment of another
developer with a pull request comment?

RQ2: Does the role of the developer in the project
change the intensity of influence he/she has on the senti-
ment of another developer?

RQ3: How does the influence behave over time? Does
the behavior change depending on the comment sentiment?

RQ4: Do negative comments on the first pull request
lead to quitting the project?

Data Set: We collected the data from the GitHub API.
We first obtained the most popular java projects from the
API 2. GitHub limits the search to the first 1,000 results. To
get the most popular projects, we sorted the results by stars.
We decided to remove all the projects with less than 1,000
lines of java code because they were probably documenta-
tion or experimental projects. After filtering out projects
smaller than 1,000 lines of code, 930 projects remained on
the data set. After filtering the projects, we collected the
project interactions, pull requests, pull request comments,
pull request reviews and commits from the GitHub API.
Then we filtered the 100 most popular projects among the
930 filtered in the first filter to investigate more deeply. At
the end of the data collection, our data set contained 100
projects, 555,665 commits, 78,475 pull requests, 226,446
reviews, 240,060 pull comments and 15,865 developers.

Sentiment mining: After collecting the data, we applied
the SentiStrenth [16] with the changes in the dictionary we
presented previously, in all the interactions. We noted that
the developers express less sentiment on the commits inter-
actions, (15.52% of the commits have some sentiment ex-
pressed), on the other hand, 54.32% of the pull comments
express some emotion Figure 2 shows the percentage for all
the kinds of interactions. In all the cases the rate of positive
sentiment is more significant than the rate of negative, on
pull comments 40.5% are positive against 13.82% negative,
and in the commits, the difference is small (7.86% positive,

2https://developer.github.com/v3/projects/



Figure 2: Sentiment distributions in different interactions.

Figure 3: Sentiment by interaction.

and 7.66% negative). Figure 3 shows the percentage for all
the interactions.

We noted that the most sentimental interaction is the
pulls comments because this is where the users express their
sentiments the most (54.32%). We expected this result,
given the nature of the interaction once it represents a com-
mentary from a developer on another developers patch of
code. The commenter can agree or disagree with the change
and can also request changes which sometimes starts a dis-
cussion. We believe this interaction can be a trigger for
changing the humor of the developer submitting the code
to integrate and we explore this hypothesis in the section 4.

4 Results
This section presents the results of the experiment each

result is related to an RQ.
Mood Variation : To answer the RQ1 and RQ2, we ana-

lyzed the subjective well-being change that was previously
present in the equation, for 1, 2, 4, 8 hours and one day,
using a comment in a developer’s pull request as a refer-
ence; this way, we can evaluate whether or not the comment

Role %
ANY 31.16%
COLLABORATOR 30.51%
CONTRIBUTOR 31.50%
MEMBER 32.06%
NONE 29.77%
OWNER 31.62%

Table 2: Relevant sentiment change One hour time window

Figure 4: Sentiment variation before and after interaction
with ANY developer, in the one-hour time window.

had an influence and how the influence will behave in time.
Next, we discussed the results.

In a 1 hours time window, we noted 31.15% of signifi-
cant mood change (abs(SC(d)) > 1) in general. We also
explored this sentiment change with the role of the com-
menter, but the role of the commenter does not change the
influence significantly, where the smaller influence is from
the role none (commenter no association with the reposi-
tory) 29.77% and the highest is from member (commenter
is a member of the organization that owns the repository)
32.06%. Table 2 shows the values for all the roles. We
also analyzed how the sentiment changed based on the sen-
timent expressed by the commenter. This time, we analysed
the positive and negative sentiments expressed before and
after a comment. Figure 4 shows that receiving a positive
comment the increased the percentage of positive interac-
tion from 37.85% to 41.55% and receiving a negative com-
ment increased the percentage of negative interaction from
11.94% to 14.35% ignoring the role of the commenter.

To answer RQ3, we studied how the influences behaved
over time. We noted that as time passed, the notable pos-
sible influence reduced, as we show in Figure 5. The blue
line shows the relevant mood variation (abs(SC(d)) > 1)
for each time window when receiving a neutral comment,
the red shows the same when receiving negative comments,
and the green line when receiving positive comments. We
found that as time passed, the influence reduced in all the
cases. The negative comments had the bigger influence in
all analyzed time windows, with an average of 2,93 percent-
age points bigger than general.

To address RQ4, we explored the consequences of a
negative comment on the first pull request of a developer.



Figure 5: Relevant sentiment change by time since com-
ment.

Figure 6: Percent of Once Contributor, with negative com-
ment on the first Pull Request by KLoc

On average, 70% of the pull requests came from a con-
tributor who would never contribute again to the repos-
itory (once-contributors). We related this to receiving a
negative comment on the first contribution (pull request)
and also to the project characteristics, KLoc, number of
contributors, and stargazers. We found that as the project
grew in KLoc(Thousand lines of code) the number on once-
contributors with negative comments on the first pull re-
quest grew, from 10.97% on projects with less than 30.57
KLoc to 24.02% on projects bigger than 197.78 KLoc, we
present the progression in Figure 6 in the bars, and the line
shows the percent of projects in the respective KLoc range,
we did not find a relationship between number of contribu-
tors or stargazers with the percentage of once-contributors.

Research Questions: In this paper, we addressed the
following research questions:

RQ1: Can a developer change the sentiment of an-
other developer with a pull request comment? The se-
lected metric presented 31.16% of significant sentiment
change when considering one hour before and after a com-
ment.

RQ2: Does the role of the commenter in the project
change the intensity of influence he/she has on the senti-
ment of another developer?

The role of the commenter had not had a significant im-
pact on the sentiment influence, with a difference of only
1.83 percentage points between the most influencer when
the commenter was the owner of the project and the least

influencer when the commenter has no relationship with the
project.

RQ3: How does the influence behave over time? Does
the behavior change depending on the comment senti-
ment?

In general, the influence reduces as the time pass, from
31.15% in one hour to 18.16% in one day. The behav-
ior does not change, depending on the sentiment of the
comment, but we noted the biggest influence from negative
comments in all the analyzed time windows.

RQ4: Do negative comments on the first Pull Request
lead to quitting the project?

Only 14.85% of the developers with a single Pull request
received at least one negative comment on the pull request.
On the other hand, we found a weak correlation with the
size of the project in lines of code and the number of de-
veloper with only one contribution that received at least one
negative comment, where the percentage grew from 10.97%
on projects with less then 34.57k lines of code, to 24.02%
on projects bigger than 197.78k lines of code.

5 Related Work
This section describes previous works regarding senti-

ment analysis on software development interactions and a
short comparison with the current paper.

Robinson et al. [12] performed data analysis on open
source projects looking to understand how behavior change
can change developers sentiment, and they analyzed 2
points, behavior change and routine change and their re-
lationship with sentiment change. They used a regres-
sion model to search for the relations ship between de-
veloper sentiment change and developer behavior change.
They hypothesized that routine change would change de-
veloper sentiment positively or negatively. They evalu-
ated 124 GitHub projects also performing intra-project and
multi-project analysis and their results shown that routine
change had a positive impact on the developer sentiment
when evaluation multi-project approach and negative senti-
ment change were related to behavior change.

Islam and Zibran [8] performed an analysis of 50
projects with more than 490 thousand commits messages,
searching for sentiment variations over the commits mes-
sages. They searched for a relationship between, weekday,
day hour, commits message length, and task type related
to the developer sentiment variation, they used hierarchi-
cal algorithm clustering to perform clustering and used a
statistical approach to support their findings. They found
relationships between the task type and the developer sen-
timent variation; bug fix commits have more positive senti-
ment than refactoring tasks. Also more significant commits
message express more sentiment than small commit mes-
sages, weekdays and hours of that day did not show any sig-
nificant relationship with developer sentiment. Souza and



Silva [14] studied the sentiment related to building status,
evaluated 1,262 projects from GitHub, and more than 609k
builds, they found that the commit message following bro-
ken builds has a week correlation with negative sentiment.

Sinha et al. [13] analyzed the sentiments of the developer
in the commits messages; their research focuses on finding
the sentiments variations only into commits and relate this
with the day of the week and the size of the commit. They
found that a low percentage of commits has sentiment ex-
pressed, and there are more negative than positive sentiment
expressed (5% positive and 14% negative), they also found
the worst day in sentiment level (higher volume of negative
sentiment) on Tuesday.

None of the related works explored the sentiment con-
tagion studying the influence of other developers in the de-
velopers’ mood; also, few papers analyzed the sentiment
over the Pull Request comments, which is the proper place
to promote discussion related to code. Therefore, in this
paper, we take the challenge of investigating how other de-
velopers’ comments may influence the developers’ mood.

6 Conclusions and Future Work
This paper analyzed the impact of feedback on devel-

opers’ mood when submitting pull requests. Our results
showed that developers feedback might influence another
developers’ mood; negative comments have bigger impacts
on mood variation; and as project grows in lines of code, the
bigger is the impact of negative comments on the first con-
tribution, and it might result in not contributing again with
the same repository. We believe our results will help project
leaders and companies create conduct codes to guide devel-
oper feedback constructively.

In future works, we intend to explore deeper the con-
sequences of politeness and impoliteness in the success of
open source projects and communities’ growth or decline
and its relationship with the maintainer’s sentiment expres-
sion. We also intend to use the relevance of developers in
a community instead of the rule they have in the project
they are commenting or contributing. We believe that de-
veloper relevance has a relationship with the impact it can
cause, independent of the rule they have in the project they
are contributing.
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