
A Lightweight Approach to Detect Memory Leaks in 

JavaScript 
 

Ju Qian 

College of Computer Science and Technology, 

 Nanjing University of Aeronautics and Astronautics 

Nanjing 210016, China 

jqian@nuaa.edu.cn 

Long Wang, Xiaoyu Zhou 

School of Computer Science and Engineering,  

Southeast University 

Nanjing 211189, China  

zhouxy@seu.edu.cn

 

 
Abstract—Although with garbage collection support, many JavaS-

cript programs still suffer from memory leaks. These leaks can af-

fect application performance and even cause crashes, especially for 

single page websites. The existing work on JavaScript memory 

leak mainly focuses on the static detection of leaks toward certain 

leak patterns. The application scope of such approaches are lim-

ited. Previous techniques used for detecting memory leaks in Java-

like languages might be extended to JavaScript. However, how to 

apply these techniques in JavaScript is still a problem. In this pa-

per, we firstly present many common leak detection heuristics 

used in garbage-collected languages and investigate their effective-

ness on JavaScript. According to the investigation results, we then 

propose a lightweight multi-snapshots based dynamic leak detec-

tion method for JavaScript. The initial experimental results show 

that the proposed approach is effective. 

Keywords- memory leak; JavaScript; dynamic analysis 

I.  INTRODUCTION 

JavaScript is a popular language mainly used to develop dy-
namic web pages. Although with automatic memory manage-
ment, JavaScript still suffers from the memory leak problem. If 
a useless object in JavaScript is unintentionally referenced by 
some long-term living references, the object cannot be re-
claimed by a garbage collector. It will hence be leaked and oc-
cupy unnecessary memory.  

For traditional web applications, the memory leaks in JavaS-
cript may not cause serious problems, since the web pages of an 
application are usually frequently switched and the leaked 
memory can be reclaimed when a browser discards old pages. 
However, modern web applications are often single-paged. In 
those applications, the web pages of an application are no longer 
frequently switched. A web page may be alive for hours or even 
days using Ajax technologies to update contents without com-
pletely refreshing the page. Many rich client web applications, 
such as Google Gmail and Microsoft Office 365, follow this style. 
In such cases, the leaked memory can be largely accumulated, 
which can degrade the performance of web applications or even 
cause the applications to crash due to out of memory error. 

To address the issue, early research detects circular refer-
ences to catch memory leaks in the old browsers. In some old 
browsers like IE6, the DOM objects are garbage-collected with 
reference counting, while the other JavaScript objects are gar-
bage-collected using some kinds of mark and sweep algorithms. 
Useless objects in DOM-related reference cycles may not be 

effectively reclaimed. To help find the leaked objects, the 
SIEve/Drip tool [1] tracks all DOM nodes to find the ones in-
volved in reference cycles. It then lets the users to determine 
which DOM nodes are leaked. Microsoft developed another sim-
ilar tool named JavaScript Leaks Detector [2]. It reports circular 
reference caused leaks by simulating IE6 and IE7's garbage col-
lection (GC) mechanisms. In recent browsers, the GC algorithms 
have already been improved. The unnecessary memory caused 
by DOM-related reference circles now can be automatically 
freed by a browser. Therefore, such memory leaks do not need 
additional efforts to detect and fix any more.  

For the memory leaks caused by reachable useless objects, 
some static techniques have been proposed to detect certain leak 
patterns in web frameworks [3, 4]. A typical tool in this category 
is Leak Finder [3]. It detects memory leaks in Google’s Closure 
library. The tool finds goog.Disposable objects in a heap snap-
shot and inspects these objects to check whether certain easily to 
leak objects are freed. Its memory detection capability is limited 
to the Closure library. Pienaar and Hundt proposed another more 
advanced tool JSWhiz [4]. The tool summarizes several leak pat-
terns in the Closure library. It can statically detects many kinds 
of memory leaks based on the abstract syntax tree and type sys-
tem of JavaScript source code. Even though, the application 
scope of such work is limited, since the used leak patterns are 
often bound to certain types of applications. Jensen et al. [5] and 
Rudafshani and Ward [6] also proposed approaches to detect 
memory leaks in JavaScript. Their approaches need to track the 
allocations and accesses of objects and hence can be very costly 
for large programs. More general and lightweight JavaScript 
memory detection tools are still in demand. 

One insight for developing such general JavaScript memory 

leak detection techniques is to extend the existing techniques for 

Java-like languages [7] to JavaScript. Java suffers from memory 

leak problems similar to JavaScript’s. To detect memory leaks 

in Java, one kind of approach locates leaks according to the 

growth trends of heap structures, e.g., [8-11]. Another kind of 

technique detects memory leaks according to the structural in-

formation within the heap, such as the ownership relation [12], 

the data structure similarity and reoccurrence [13], etc. Besides, 

some other approaches also find leaks using the object lifetime 

information, such as the age of objects [7] and the staleness of 

objects (how long the object have not be used) [14].  

Although effective for Java, it is still unclear whether these 

techniques are still suitable for JavaScript, since JavaScript has 

DOI reference number: 10.18293/SEKE2018-151 



many individual characteristics that are different from Java, 

such as the dynamic type system and the prototype-based inher-

itance. To this end, this paper firstly studies the effectiveness of 

different memory leak detection heuristics which are borrowed 

from Java on JavaScript and then presents a dynamic approach 

to detect JavaScript memory leaks on the basis of JavaScript’s 

own characteristics and the existing leak detection heuristics. 

The approach collects heap snapshots for web applications, and 

uses a lightweight statistical method combining many heuristics 

to recommend suspicious leaking objects. The initial experi-

mental results show that the proposed approach can effectively 

detect memory leaks and hence can be helpful for the users.  

II. MEMORY LEAK DETECTION HEURISTICS 

The general memory leaks caused by unbroken reference in 
garbage-collected languages are hard to be precisely detected by 
static analyses. For such leaks, dynamic analyses are often pre-
ferred. Even though there is a rich literature on the dynamic anal-
ysis techniques for memory leaks, most of the existing techniques 
are based on a few core detection heuristics.  

A. Leak detection heuristics 

Table 1 shows many leak detection heuristics (or their core 
metrics) used by previous research. Before introducing their de-
tails, some basic concepts are firstly explained.  

GC Roots: Root objects or references where a garbage col-

lector starts its analysis. Typical GC roots include stack varia-

bles, static fields, class objects, etc.  

Ownership: If in an object reference graph, every path from 

GC roots to a node n going through a node d, we say d owns n.  

Leak Root: Root objects or references which directly or in-

directly reference the whole leaked data structure. A leak root 

can represent a collection of leaked objects.   

Fringe: Fringe [8] refers to the boundaries between the old 

objects and the newly created objects in the object reference 

graph of a heap snapshot. 

In the introduction of leak detection heuristics, we suppose the 

heap change history forms a sequence of heap snapshots  = (H1, 

H2, ..., Hn), where Hi is the i-th snapshot in the heap change history.  

DCR: For an object type T, let D(T) and C(T) be the num-

bers of T’s instances destructed and constructed in a heap snap-

shot, respectively. DCR(T) = D(T) / C(T) is said to be the de-

struction/construction rate of T. If DCR(T) is continuously low 

in a heap snapshot sequence, T can be considered as a probably 

leaked object type [9].  
TIV: Given two heap snapshots Hi and Hi+1, assume the num-

bers of objects of a type T in Hi and Hi+1 is Vi and Vi + 1, respec-

tively. Then, from Hi to Hi + 1, the increase volume of type T is 

TIV(T) = (Vi+1  Vi). The types with high TIV values are more 

likely to be the ones with instances leaked. 

TPFI: Assume the numbers of references between two object 

types T1 and T2 are Ri and Ri + 1 in two sequential heap snapshots 

Hi and Hi+1, respectively. Then, the type point-from relationship 

increment between T1 and T2 from snapshot Hi to snapshot Hi + 1 

is TPFI = (Ri + 1  Ri). The larger TPFI, the more likely that the 

involved types are with objects leaked [10]. 

LN: Leaf nodes in an object reference graph are not likely to 

be the root causes of memory leaks. Therefore, it is better to not 

TABLE 1. Leak detection heuristics (or their core metrics) 
abbreviation heuristics or their metric 

DCR Destruction/Construction Rate 

TIV Type Increase Volume 

TPFI Type Point-from Increase  

LN Leaf Nodes 

IMN Immutable Nodes 

INN Internal Nodes 

NON Non-owner Nodes 

NAI No Age Intersection 

NF No Fringe 

OSR On-stack Reachability 

FOC Fringe Ownership Count 

NOC New Ownership Count 

SOC Similar Object Count 

LS Life Span 
 

directly report them as the leak diagnosis results.  

IMN: Immutable objects with sizes not changed in different 

heap snapshots are unlikely to be leak roots.  

INN: Internal objects maintained by the language runtime 

(e.g., JavaScript VM) are unlikely to be leaked.  

NON: An object not owning any other objects is said to be a 

non-owner object. The non-owner objects are often close to GC 

roots, and their referenced objects are shared by other references. 

These non-owner objects are less likely to be leak roots.  

NAI: The age of an object describes how long ago it has been 

created. In a heap snapshot, the objects created in the current heap 

snapshot and not holding references to the objects created in old 

snapshots, or the objects created in old snapshots and not holding 

references to the objects created in the current snapshot are said 

to be no age intersection objects. NAI objects are unlikely to be 

leak roots. If a new object does not reference old objects, it is 

likely to be a temporal object. If no new object is attached to an 

old data structure, then the old data structure is likely to be stable. 

NF: No fringe objects refers to the objects owning no objects 

on the fringe. Memory leaked objects are often connected with 

fringe objects. No fringe objects are unlikely to be leaked, while 

the objects referencing to both fringe and no fringe objects have 

more possibility to be the leak causes [8].  
OSR: The objects directly accessible from stack variables are 

more likely to be temporary objects instead of leak roots. 

FOC: If an object owns more objects on the fringe, it is 

more likely to be a leak root object. 

NOC: Objects owning a lot of newly created objects are 

more likely to be leak roots. 

SOC: In a heap snapshot, if an object has more similar objects, 

then there will be high possibility that such type of objects are leaked. 

LS: If an object firstly appears in a snapshot Hi and finally dis-

appears since snapshot Hj, we say its life span is LS = (j  i). The 

longer life span, the larger possibility that the object is leaked. 

B. Effectiveness of leak detection heuristics on JavaScript 

We conducted experiments on some JavaScript programs to 
analyze the effectiveness of the above heuristics. The results are 
discussed as following. 

(1) The type memory growth based heuristics (TG) 

The DCR and TIV heuristics detect memory leaks according to 
the memory growth trends of each type. These heuristics are ef-
fective for JavaScript. However, the leak sources detected by them 
are mostly basic types like Object, Array, HTIMDivElement, etc. 



This is because JavaScript uses a prototype-based inheritance 
mechanism, and the types dynamically extended from a root type 
like Object by attaching or removing properties at runtime are 
difficult to be distinguished from the root type. A basic type can 
have too many sub-types dynamically extending from it. Only 
knowing that objects of some basic types are leaked is not very 
helpful for leak diagnosis. Heuristics DCR and TIV must be com-
bined with techniques that can classify objects with finer granu-
larity to effectively help locating leak sources.   

(2) The reference growth based heuristic (RG) 

The TPFI heuristic detects memory leaks according to the 
growth of reference relationships between types. It can rank the 
leak causing reference relationships in high position. However, 
most of the reported results are relationships between basic object 
types. Such relationships are too rough for leak diagnosis. The 
reasons are similar to that of the DCR/TIV heuristics, which are 
also due to the very flexible nature of the JavaScript type system. 

(3) The heap structure based heuristics (HS) 

Heuristics LN, IMN, INN, NON, NAI, NF, OSR, FOC, and 
NOC mainly detect leaks by analyzing the structural attributes of 
objects on a single or two sequentially obtained heap snapshots. 
Our experiments show that applying heuristics LN, IMN, INN, 
NON, NAI, NF, and OSR can filter out a large number of objects 
that are unlikely to be leak roots and heuristics FOC and NOC are 
effective for suspicious leak root ranking. However, determining 
ownership relationships can be costly for large heap snapshots.  

(4) The data structure similarity based heuristic (DSS) 

Heuristic SOC can be used to partition objects in to similarity 
groups and then analyze the properties of these groups to identify 
leak sources. In Java, we can at least use the type information to 
distinguish similar objects. However, in the prototype-based Ja-
vaScript language, many objects are created by dynamically ex-
tending the root Object type and the actual type information is 
hard to determine. Therefore, there need some other techniques 
to help determine the similarity between objects. Besides, we 
found the SOC heuristic should better be used together with TG 
heuristics to get more valuable results. The similarity groups can 
be viewed as finer-grained resolution of object types or data 
structures. Such grouping also can benefit many different meth-
ods which depend on type or data structure information.  

(5) The object lifetime based heuristic (OL) 

Heuristic LS detects memory leaks according to the object 
lifetime information. With this heuristic, we may detect a large 
number of individual leaked objects instead of a few object types 
or data structures. Because in JavaScript, objects are not with 
their types distinguished with fine granularity, such results do not 
provide clear clue for further leak diagnosis. Besides, when 
roughly tracking the lifetime of objects according to their occur-
rences in heap snapshots, without monitoring the uses (reads or 
writes) of objects, heuristic LS can easily lead to false alarms. 

III. A LIGHTWEIGHT LEAK DETECTION METHOD FOR JAVASCRIPT 

According to the above findings, we believe an effective and 
lightweight way for JavaScript memory leak detection is to com-
bine the TG, DSS, and some HS heuristics for leak object identi-
fication. We may follow the DSS heuristics to get a better reso-
lution of types or data structures. The TG heuristics can be used 
to rank suspicious objects, and we can use the HS heuristics to 
filter out unlikely leaked objects. Under such idea, this section 

find newly 

created objects 

group objects

Start

End

filter objects

rank and report
growth trends 

analysis

obtain heap 

snapshots

 
Figure 1.  The workflow of the MS method 

presents a lightweight multi-snapshots based leak detection 
method (the MS method). The method takes the characteristics of 
JavaScript language into account and can be more helpful for Ja-
vaScript memory leak diagnosis. 

A. The detection method 

The proposed method is a dynamic approach which detects 
memory leaks based on two or more heap snapshots obtained 
from a memory leaking program. The workflow of the method 
is shown in Figure 1. It takes 6 main steps.  

In the first step, we obtain a sequence of heap snapshots from 
the execution of the target program. Then, the heap snapshots 
will be parsed and we traverse the object reference graphs em-
bedded in the heap snapshots and compare every two adjacent 
snapshots to locate the newly created objects in a snapshot. The 
objects occurred in the current snapshot but do not occur in a 
previous one are considered as the newly created objects.  

After that, the objects unlikely to cause memory leaks will be 
filtered out according to heuristics IMN, INN, NAI, and OSR. 

Next, we classify the newly created objects into partitions ac-

cording to the connections between objects. For two newly created 

objects, if they are connected, then the two objects will be put 

into the same partition. Each partition can be regarded as an indi-

vidual data structure. We then follow the idea of heuristic SOC 

to categorize these data structures into similarity groups. Instead 

of doing object level similarity analysis, we find common parent 

objects of the objects in the above partitions on the object refer-

ence graph. A common parent object can be viewed as the repre-

senting node of one or more partitions. The data structures refer-

enced by a common parent object are usually similar. Finding com-

mon parent objects works as a kind of data structure level simi-

larity grouping. This can result in fewer groups compared to object 

level similarity grouping. Each common parent object can be re-

garded as a candidate leak root. By inspecting these leak roots, it 

will be easier to diagnose the root causes of memory leaks. 
For the calculated candidate leak roots, we will further ana-

lyze their memory growth in the heap snapshots. Unlike doing 
memory growth analysis at type-level, the previous grouping can 
make the analysis results easier for further inspection. The total 
size of the objects in each object group represented by a common 
parent object is used as an approximation of the occupied 
memory of a leak root. If the occupied memory continues to grow, 
then the candidate is considered suspicious; otherwise, it will be 
excluded from the leak detection results.   

After all the heap snapshots have been analyzed, we rank the 
candidate leak roots according to their totally occupied memory 
and the number of objects in the categorized object groups. The 
top ranked candidates will be reported as leak detection results.  

To better show which objects are leaked, we use a chain of 
object property names that used to reach a leak root in the object 
reference graph as the identification of the leak root. 



TABLE 2. The experimental subjects 

Name Library Source 

JQueryWeb JQuery http://javascript.info/tutorial/memory-leaks 

ExtWeb ExtJS 
http://www.sencha.com/forum/showthread.php? 

263439-ExtJS-Memory-Leak 

YuiWeb YUI http://yuilibrary.com/trac-archive /tickets/2530415.html 

DojoWeb Dojo http://www.ibm.com/developerworks/cn/web /wa-sieve/ 

MeteorWeb Meteor https://github.com/meteor/meter/issues/1157 

BackWeb Backbone http://plnkr.co/edit/xfJWIF?p=info 

AngularWeb Angular https://github.com/angular/angular.js/issues/4864 

    
B. Experimental analysis 

We conducted an initial experimental study on 7 JavaScript 
programs using popular libraries JQuery, ExtJS, etc. to validate the 
effectiveness of the proposed approach. The subjects are listed 
in TABLE 2. In the experiment, we use the Chrome browser to 
run the subject programs for a while and then use Chrome Dev-
Tools to obtain snapshots at different time points. The snapshots 
are exported to local files for further analysis. Each obtained 
heap snapshot can be viewed as an object reference graph. These 
snapshots are parsed and analyzed with Java language. 

TABLE 3 shows the effects of different analysis steps in our 
lightweight leak detection method. The table only lists the exper-
imental data when analyzing two adjacent snapshots. In the table, 
column #new shows the number of identified newly created ob-
jects. Column #filter shows the number of remaining objects after 
doing object filtering. Column #partition lists the number of cat-
egorized newly created object connection partitions, and column 
#parent shows the number of calculated common parent nodes 
for the object partitions. From the table, we can see that object 
filtering can greatly reduce the number of the objects to need be 
analyzed, and the object partitioning and common parent group-
ing can effective categorize objects into suspicious object groups. 

The final results of our lightweight leak detection method 
are shown in the rightmost two columns of TABLE 3. The re-
sults indicate that our proposed method can detect memory 
leaks in high precision. The reported numbers of suspicious leak 
roots are small, which can reduce the effort of further leak di-
agnosis and fixing.  

TABLE 4 shows the analysis time consumed by different leak 
detection methods on the same snapshots. TG, RG, HS, and OL 
stand for the detection methods with different groups of heuristics 
applied, respectively. From these data, we can see that our light 
weight multi-snapshots based method consumes very little time. 
This is because we only analyze the newly created objects on each 
snapshot, which greatly reduces the number of objects need to be 
processed. We use a lightweight method to calculate metrics for 
suspicious leak root ranking, which also reduces the analysis cost. 

TABLE 3. Effects of different analysis steps 

Subject #new #filter #partition #parent #detected 

leak roots 

#actual 

leak roots 

JQueryWeb 95101 28431 14221 2 1 1 

ExtWeb 19334 906 534 34 9 3 

YuiWeb 12151 7050 937 14 2 1 

DojoWeb 1805 290 84 2 1 1 

MeteorWeb 165896 77609 4681 197 5 2 

BackWeb 9030 2510 421 36 2 1 

AngularWeb 3800 856 599 21 5 3 

TABLE 4. Analysis time of different methods (ms) 

Subject TG RG HS OL MS 

JQueryWeb 384 550 16325 465 198 

ExtWeb 960 4466 5497 4168 179 

YuiWeb 341 557 4436 560 547 

DojoWeb 211 1175 1069 1113 135 

MeteorWeb 638 1242 91332 1146 395 

BackWeb 550 923 4540 827 553 

AngularWeb 326 737 1116 691 190 

 

IV. CONCLUSION 

In this paper, we firstly investigate the effectiveness of many 
common leak detection heuristics on JavaScript programs. Based 
on the investigation results, we propose a lightweight multi-snap-
shots based leak detection method for JavaScript. The method 
combines many effective heuristics and takes the characteristics 
of JavaScript language into consideration. Our experimental re-
sults show that it is both effective and efficient. In the future, we 
plan to further improve the method and conduct more experi-
ments on more subjects to further validate its effectiveness. 

ACKNOWLEDGMENT 

This work is supported by the China Defense Industrial Technol-
ogy Development Program (Grant No. JCKY2016206B001 and 
JCKY2014206C002), the Science and Technology Planning Project of 
Jiangsu Province (BY2016003-02), and the National Natural Science 
Foundation of China (Grant No. 61472175). 

REFERENCES 

[1] IE/Sieve. http://home.online.nl/jsrosman/ 
[2] JavaScript Memory Leak Detector. http://blogs.msdn.com/b/gpde/archive 

/2009/08/03/javascript-memory-leak-detector-v2.aspx 
[3] Leak Finder for Javascript. http://code.google.com/p/leak-finder-for-javascript/ 
[4] J. A. Pienaar, R. Hundt. JSWhiz: Static analysis for JavaScript memory 

leaks. IEEE/ACM International Symposium on Code Generation and 
Optimization (CGO), 2013, pp. 1-11. 

[5] S. H. Jensen, M. Sridharan, K. Sen, S. Chandra. Meminsight: Platform-
independent memory debugging for JavaScript. In Symposium on the 
Foundations of Software Engineering, 2015. 

[6] M. Rudafshani, P. AS Ward, LeakSpot: detection and diagnosis of 
memory leaks in JavaScript applications, Software: Practice and 
Experience, 47(1): 97-123, 2017. 

[7] V. Šor, S. N. Srirama. Memory leak detection in Java: Taxonomy and 
classification of approaches. Journal of Systems and Software, 2014. 

[8] N. Mitchell, G. Sevitsky. LeakBot: An automated and lightweight tool for 
diagnosing memory leaks in large Java applications. In the European 
Conference on Object-Oriented Programming, 2003. 

[9] K. Chen, J. B. Chen. Aspect-based instrumentation for locating memory 
leaks in Java programs. In Annual International Computer Software and 
Applications Conference (COMPSAC), 2007.  

[10] M. Jump, K. S. McKinley. Cork: dynamic memory leak detection for 
garbage-collected languages. ACM SIGPLAN Notices. 2007, 42(1): 31-38. 

[11] J. Qian, D. Zhou, Prioritizing test cases for memory leaks in Android 
applications, Journal of Computer Science and Technology, 31(5), 2016. 

[12] D. Rayside, L. Mendel. Object ownership profiling: a technique for finding 
and fixing memory leaks. In International Conference on Automated 
Software Engineering, 2007, pp. 194-203. 

[13] E. K. Maxwell, G. Back, N. Ramakrishnan. Diagnosing memory leaks using 
graph mining on heap dumps. In SIGKDD International Conference on 
Knowledge Discovery and Data Mining, 2010. 

[14] H. Yu, X.  Shi, and W. Feng. LeakTracer: Tracing leaks along the way. In 
15th International Working Conference on Source Code Analysis and 
Manipulation (SCAM), 2015 pp. 181-190. 

 

http://home.online.nl/jsrosman/

