
Leveraging the Power of Component-based
Development for Front-End Components:

Insights from a Study of React Applications
Chen YANG∗, Yan LIU�†, Yiwei LIN§

School of Software Engineering, Tongji University
Shanghai, China

Email: ∗1610833@tongji.edu.cn, †yanliu.sse@tongji.edu.cn, §1532790@tongji.edu.cn

Jia Yu‡
SEEBURGER China Inc.

Shanghai, China
Email: ‡j.yu@seeburger.com

Abstract—Classic design patterns, architectural styles, and
design principles have been introduced and enhanced in Web
front-end development. Recently, component-based architecture,
successfully introduced in React.js, has tended to replace MVC
and other MV* patterns in front-end frameworks. However,
we still know little about design strategies for leveraging the
power of component-based development. We conducted a study
to explore the use of components in React-based applications
from two levels. Three private repositories were analyzed to get
practical insights into the nature, limitations and potentials of
CBD for front-end implementations. Our research started with
an aerial view, where we examined the dependency, connectivity,
and overall of components. Quite different architectural and
programming styles were observed; these can be easily attributed
to the lack of front-end component design paradigms. Meanwhile,
all cases exhibit similar component connectivity and dependency
patterns, which enlighten the study to categorize them further.
Next, the study zoomed in on the architectural elements level,
where we classified front-end components into four categories.
Our observations suggest that design components on the ar-
chitectural elements level may dramatically boost the power of
component-based front-end development.

Keywords—Component-Based Development, Web Front-End,
React Framework, Case Study

I. INTRODUCTION

Along with the development of Internet and cloud com-
puting, business systems form a unique web-based develop-
ment style. Due to the plethora of applications served by
JavaScript and varieties of programming needs, JavaScript
Frameworks have been developed to facilitate the work of
Web programmers[1]. The use of React for building web ap-
plications has given rise to the popularization of Component-
Based Development (CBD) for front-end development. React
is mainly applied to developing applications with declara-
tive views and composable components[2]. Owing to the
differences between programming languages, scenarios, and
implementation method, front-end CBD has a unique nature.
However, few studies have been done in this area[6]. In this
paper, we explored the implementations of CBD for front-
end, and the discoveries stimulated us to categorize front-

DOI reference number: 10.18293/SEKE2018-147.

end components. We hope that our findings can lead to the
potential improvements in CBD.

This paper makes following contributions: (1) Creation of
an experimental exploration process for front-end CBD from a
code observation view. (2) Derivation of significant discover-
ies, such as orphan components, connectivity, and dependency
patterns from the exploration process. (3) Tentative proposal
of a four-category classification of front-end components,
mapping of categories to the selected cases, and confirmation
of the rationality of the classification.

The paper is organized as follows. In Section II, the
scope will be introduced. Section III illustrates the exploration
process. In Section IV and Section V, the different levels in
the exploration process will be elaborated. In Section VI, the
progress in CBD and front-end development will be traced.
The conclusion and future work are in Section VII.

II. RESEARCH SCOPE

A. Case Study

CBD for front-ends is at the initial stage, and it’s obviously
beneficial to explore an old theory under a new situation by
doing a case study. Just like follows, we started with selecting
independent and complete repositories which can reflect real
corporate situations. Then we proceeded to preprocess, where
a Javascript analytical tool chain was integrated to extract
information from the source code. Besides, same observation
views and priorities were applied to the three selected repos-
itories. Next, we continued our exploration to get insights
from two levels. Discoveries and conclusions were reached
throughout the whole process.

B. Study Scope

To carry out the exploration, we used repositories from
private corporate software environments as cases. Repositories
released as open source are normally libraries or projects
created by individuals. Component libraries act as the basis
of other applications, yet few relations can be extracted
from these loose components. Elementary, exploratory, or
instructional repositories are unable to reflect the stressful,
complicated, and systematic corporative application scenarios.



Three private repositories with complete processes were
selected, involving different groups; all utilize React to achieve
the effect of CBD. These repositories all possess high sepa-
rability and use AJAX to handle interactions with the back-
end through standard JSON-based REST API. Therefore, these
repositories are fully equivalent. Discoveries of our case study
did not interfere with the programmers behavior since we
commenced our research after the repositories had developed.

A brief description of the selected repositories is presented
in Table I. React is the View layer in MVC patterns, so we sim-
ply focused on the visible components. Thus only the JS/JSX
source code were extracted, while CSS and configuration were
not taken into account. Besides, a React-based Web application
relies on many different kinds of third-party libraries; we
merely focused on libraries related to View, paying no attention
to those related to language, framework, etc.

TABLE I
OVERVIEW OF CASE PROJECTS

Project
agname

LOC Start - End date Duration
(week)

Contri-
butors

Third-party
library/View

Usage Scenario

BD 6,929 2016.12.26-2017.05.22 21 6 8 life service provider

MY 6,523 2016.10.24-2017.03.08 19 6 14 financial management

FE 26,807 2016.08.07-2016.11.08 13 3 9 fund analysis

In order to guarantee the validity of results, we integrated
a Javascript analytical tool chain. Firstly, due to the in-
compatibility between the ES6 in React-based projects and
Esprima1, the raw source code without irrelevant files was
compiled into the ES5 format via Babel2. By Estraverse3,
we traversed, extracted, and persisted the preliminary data,
including components, relations, properties, functions from
the abstract syntax tree generated by Esprima. Lastly, we
combined or disassembled this information and converted it
into an understandable visualization.

III. EXPLORATION PROCESS

The theory of CBD has become mature after 50 years of
back-end development[4]. However, little is known about the
design strategies for harnessing CBD capabilities for front-
end development. So, we created an exploration process in an
attempt to figure out the current situation of front-end CBD.
Fig.1 illustrates the basic workflow of our exploration process
from three key phases. Progressive relationship exists between
the phases, and they also influence each other conversely. In
this paper, we summarize the major conclusions in the second
phase due to space limitations. A brief description of the first
phase are given to pave the way for the second. Although the
elaboration of the component timeline isn’t presented in this
paper, evidence suggests that it deserves further investigation.

The process starts with global features at the aerial view.
We extracted components and relations from source code
and got observations from three different aspects. Above all,
we did an overall observation. Afterwards, certain features

1Esprima: http://esprima.org/
2Babel: http://babeljs.io/
3Estraverse: https://github.com/estools/estraverse

(see Section IV) are selected to analyze the state or extent
of all components connected in connectivity aspect. Finally,
regarding the dependency aspect, there are many remarkable
features associated with the degree of dependency between one
component and others. Significant observations on the aerial
view provided the basis for launching a thorough analysis.

Fig. 1. Exploration Process �

Meaningful discoveries could be derived from the aerial
view, which we generalized into three aspects. Firstly Gran-
ularity refers to the encapsulation capability of components,
specifically the number of attributes and functions. We also
made discoveries about Reusability, like the reuse degree
and component reuse pattern. Valuable relation features were
obtained from the Dependence among components. Besides,
abnormal discoveries like orphan components and groups
were also made. Further analyzing the timeline of orphan
components can help us investigate the accumulation process.

With the help of external features emerging from the aerial
view, we proceeded with our exploration at the architectural
elements level, where we focused on the nature of one com-
ponent itself. We mapped components into four categories
considering their typical usage scenarios, and examples were
presented to facilitate the readers understanding. By attaching
internal qualitative and quantitative features, each component
was categorized uniquely according to its distinctive nature.
Similarly, these categories also reflect external features.

IV. OBSERVATIONS FROM THE AERIAL VIEW

A. Feature Selection and Case Exhibition

To get a better idea of the aerial view, a brief summary
of the key features derived from these aspects is shown in
Table II, and important attributes that represent the key features
quantitatively are listed too. Statistical features such as scale
(Table II, 1.1) are shown directly. Graphs in Fig.2 are created
to facilitate the understanding of the remaining features that
cannot be captured in a numerical form. Moreover, attributes
like Scale and Code Clone were calculated using SonarQube4,
and attributes like Maximum Path were gained by combining
or disassembling the basic information extracted in Section
II.B. The dependency graphs are drawn by Gephi5. Finally,
Table III shows the observations and explanations of the cases.

The dependency graphs describe the state of components
and relations from a global perspective. As shown in Fig.3, the
internal invocation structure of the project can be regarded as

4SonarQube: https://www.sonarqube.org/
5Gephi: https://gephi.org/

https://github.com/Ada12/RCCE/blob/master/img/Fig1-Exploration-Process.png


graphs, where nodes represent components and edges represent
relations between them. The degree of a node in graphs is the
number of edges attached to the given node. The nodes in
gray, red, blue, and green respectively represent the ordinary,
leading indegree, leading outdegree, and leading degree nodes.
The size and shade of a edge indicate the weight of it,
determined by the number of relations between one component
and others. In addition, these graphs are directed graphs, where
the direction of an arrow denotes the callee.

TABLE II
ATTRIBUTES DERIVED FROM FEATURES

Aspect Key Feature Attribute BD MY FE

1.Overall

1.1. Scale Scale 6929 6523 26807

1.2. Code Clone Code Clone 7.6% 10.7% 24.1%
1.3. Components
and Relations
Summary

Components 95 153 76

Relations 122 241 114

2.Connectivity

2.1. Global
Relations Pattern

Maximum Path 3 4 3

Average Path Length 1.355 1.482 1.371

Maximum Relation Weight 3 9 3

Relation Weight Distribution As shown in Fig. 2. (a)

2.2. Disconnected
Components

Disconnected Set 4 7 2

Disconnected Components 17/15.2% 23/13.1% 14/15.6%

3.Dependency

3.1. Relation
Strength

Average Degree 2.568 3.15 3

Maximum Indegree 5 15 16

Maximum Outdegree 33 8 8

Average Weighted Degree 1.337 1.98 1.671

Maximum Weighted Indegree 5 29 16

Maximum Weighted Outdegree 33 11 10

3.2. Relations
Distribution

Indegree Distribution As shown in Fig. 2. (b)

Outdegree Distribution As shown in Fig. 2. (c)

Weighted Indegree Distribution As shown in Fig. 2. (d)

Weighted Outdegree Distribution As shown in Fig. 2. (e)

(a) Relation Weight (b) Indegree (c) Outdegree

(d) Weighted Indegree (e) Weighted Outdegree

Fig. 2. Attributes Distribution �

(a) BD (b) MY (c) FE

Fig. 3. Dependency Graphs �

B. Discovery

In light of the observations, our preliminary discoveries
regarding the three aspects are as follows: Granularity: (i)
Components with fine granularity tend to possess a higher

TABLE III
OBSERVATIONS FROM THREE ASPECTS

Aspect Observations Explanations / Possibilities

Overall

An asymmetry exists between the number of
components & relations and the scale of the
respective project.

Different coding styles may account for this
phenomenon, FE exhibits a lack of decomposi-
tion, while MY tended to be overencapsulated.

A project with larger components (FE) has the
highest code clone rate (24.1%).

Similar tiny functions are implemented in the
form of code clones between components.

Connectivity

Complex multi-layer nesting rarely exists. Nestings of components in React come at a cost.

The relation weight of the dependency
graphs are generally very small.

Cannot determine if a higher relation weight
is beneficial, yet the callee component with
larger relation weight (9), importing third-party
components directly with nothing attached, can
be considered as a kind of over-encapsulation.

Orphan component (a component that is inde-
pendent of the primary components set) and
group exist with a fairly high ratio (14%).

Reasons such as code examples, strategy, and
requirements changes led to the legacy of or-
phan groups

Dependency

Components with smaller degrees account for
the majority; few differences exist between
distributions with weight and those without.

Simple dependency is dominant.

Different top-ranked in-degree components
perform different functions; Over-
encapsulation exists in components with
an extremely high in-degree.

Components with a higher in-degree tend to
either be (1) basic components applied in differ-
ent pages, or (2) relatively complex components
implemented a specific function.

Different top-ranked out-degree components
show different features.

Components with a higher out-degree tend to
be (1) page-level components that invoke many
other components; or (2) normal components
that invoke over-encapsulation components.

in-degree; (ii) components with rough granularity tend to
possess a higher out-degree; (iii) a potential correlation may
exist between granularity and code clones. Reusability: (i)
Reusability didn’t achieve the optimal effect; (ii) the over-
encapsulation phenomenon may affect the reusability of com-
ponents. Dependence:(i) Simple dependency plays a major
role; (ii) orphan components deserve more discussion.

V. INSIGHTS FROM THE ARCHITECTURAL ELEMENTS
LEVEL

In the exploration of the aerial view, quite different archi-
tectural and programming styles were observed. These can
be easily attributed to the lack of front-end component design
paradigms, which motivated us to perform a thorough analysis.

For existing front-end development, efforts have been made
regarding different types of business logics encapsulation. For
example, React is regarded as a presentation (view) layer, and
often used with Redux, which is separated into an action (con-
troller) layer and a reducer (model) layer as well, to interact
with interfaces[3]. The appearance of stateless components in
React also indicates that components in front-end gradually
perform their respective roles. So that a layered architecture
for front-end is one possible way to improve development
by providing more controllability. According to programming
experiences and design specifications for building components,
we tentatively propose a classification methodology.

A. A Four-Category Classification of Front-End Components

We propose a four-category classification of components
for React-based applications in Table IV considering typical
usage scenarios. As space is limited, a graphical example to
help readers understand the component categories is available
online6. It’s strongly recommended for readers who want to
understand the usage scenarios and code features of different
categories. Reasonable use of the four-category classification
may have a positive effect on good design.

6Example: https://github.com/Ada12/RCCE/blob/master/example.md

https://github.com/Ada12/RCCE/blob/master/Fig2-Attributes-Distribution.md
https://github.com/Ada12/RCCE/blob/master/Fig3-Dependency-Graphs.md


TABLE IV
CLASSIFICATION OF THE COMPONENTS

Component Definitions

Decoration
Component

A Decoration Component is a tiny component that is only responsible for decorative functionalities
with extreme dependence upon parent components, and pays no attention to its own state and lifecycle.

Atom
Component

An Atom Component is a basic component that tends to be an inseparable unit of functionality with
complete lifecycle management. It can be a constituent of other more complicated components.

Intent
Component

An Intent Component is a more complex component, which can be thought of as the glue between
components. It implements a complete presentational business process, and can be composed of
Decoration Components and Atom Components.

Container
Component

A Container Component is a page-level component that manages states exposed by subcomponents
unifiedly, and composed of the components mentioned above. It’s responsible for communications
between different subcomponents and interacted with external interfaces.

B. Findings from the Case Study
In order to observe the categories in real-world React-based

projects, we continued the analysis of our cases. Although
we mapped the categories according to usage scenarios and
qualitative features, definite quantitative features should still be
used as benchmarks. In addition, the preliminary discoveries
summed up in Section IV were also taken into account. Table
V lists the features we utilized to categorize the components.
Table VI shows the mapping of components and features, in
which the symbol

√
represents one component possesses a

given feature, and symbol ↑ or ↓ represents the component
possesses a larger or smaller value of a given feature.

TABLE V
SUMMARY OF BASIC FEATURES

Observation Aspect Quantitative Qualitative Discoveries

Key Element

1.1 state; 1.2 props; 2.1 usage scenarios 3.1 indegree

1.3 invoke third-party library 2.2 business coupling 3.2 outdegree

1.4 invoke other component 2.3 scale 3.3 reusability

1.5 life cycle management

1.6 interact with interfaces

TABLE VI
MAPPING OF COMPONENT AND FEATURES

Component
Features

1.1 1.2 1.3 1.4 1.5 1.6 2.3 3.1 3.2 3.3

Decoration
√

↓ ↑ ↓ ↑
Atom

√ √ √ √
↓ ↑ ↓ ↑

Intent
√ √ √ √ √

↑ ↓ ↑ ↓
Container

√ √ √ √ √ √
↑ ↓ ↑ ↓

(a) Counts (b) BD (c) MY (d) FE

Fig. 4. Component Distribution by Category �

By the category criteria of Table V and VI, we categorized
the three cases manually; the results are shown in Fig.4.
We found that (1) project (’FE’) which possesses a lack
of decomposition and a higher code clone rate, has less
Decoration and Atom Components, due to the unreusable tiny
functions; (2) project (’BD’) with high quality demands of user
experience tend to have more Decoration Components; (3)
more Intent Components exist in project (’MY’) that focuses
a great deal on business process.

C. Conclusion

In conclusion: (1) Significant differences exist between the
various component categories; (2) different categories can
represent specific usage scenarios; (3) a slight variation in
distribution exists for categories under different scenarios.

VI. RELATED WORK

It has been fifty years since software components was firstly
proposed[4]. CBD developed rapidly and gradually formed
its own philosophy. Alan[5] indicated that a component is
a deliverable piece of functionality that can independently
provide interface access to its services. Tassio[6] investigated
1231 studies dating from 1984 to 2012, and summarized the
domains where CBSE has been applied; yet most of them
were related to the server side, only one showed solicitude for
providing better services for the front-end. These all indicate
that little research has been done on CBD for front-ends.

Based on the keyword JavaScript, we explored papers in 15
conferences in the field of SE over past five years. 48 papers
involving a variety of different areas, matched the condition.
However, none of them pay close attention to the field of CBD
for front-end development. In addition, some papers explored
the related area. Cappiello[7] defined a quality model for
building blocks of mashup applications. Magnusson[8] found
that a certain framework and the way to implement its data
flow pattern are the main reasons that impact maintainability.

VII. CONCLUSION AND FUTURE WORK

In this paper, we carried out an exploration tentatively, and
the constant outpouring of discoveries prompt us to propose
a four-category classification of front-end components. By the
researches above, we concluded that (1) Hard-to-maintain phe-
nomena such as lack of decomposition and over-encapsulation
may be avoided by adopting a good design prior to CBD;
(2) Components for front-end may have more capabilities
of prefactoring, so components can be created purposefully
according to the categories we proposed. In the future, we will
continue our exploration on the component timeline, orphan
components, and component code clones.

REFERENCES

[1] Andreas Gizas, F., Sotiris P. Christodoulou, S., Theodore S. Pap-
atheodorou, S.: Comparative evaluation of javascript frameworks. In:
WWW ’12 Companion Proceedings of the 21st International Conference
on World Wide Web, 513-514(2012).

[2] ”React home,” https://facebook.github.io/react/, accessed: Dec.15, 2017.
[3] ”React&Redux MVC,” https://hackernoon.com/thinking-in-redux-when-

all-youve-known-is-mvc-c78a74d35133, accessed: Feb.5, 2018.
[4] Brown A W. Component-Based Development[J]. 2000.
[5] Alan W. Brown, Large-Scale, Component Based Development, Prentice

Hall PTR, Upper Saddle River, NJ, 2000
[6] Vale T, Crnkovic I, Almeida E S D, et al. Twenty-eight years of

component-based software engineering[J]. Journal of Systems & Soft-
ware, 2016, 111:128-148.

[7] Cappiello C, Daniel F, Matera M. A quality model for mashup compo-
nents[C]//International Conference on Web Engineering. Springer, Berlin,
Heidelberg, 2009: 236-250.

[8] Magnusson E, Grenmyr D. An Investigation of Data Flow Patterns Impact
on Maintainability When Implementing Additional Functionality[J].2016.

https://github.com/Ada12/RCCE/blob/master/Fig4-Component-Distribution-by-Category.md

	Introduction
	Research Scope
	Case Study
	Study Scope

	Exploration Process
	Observations from the Aerial View
	Feature Selection and Case Exhibition
	Discovery

	Insights from the Architectural Elements Level
	A Four-Category Classification of Front-End Components
	Findings from the Case Study
	Conclusion

	Related Work
	Conclusion and Future Work
	References

