
DOI reference number: 10.18293/SEKE2018-145

Classutopia: A Serious Game for Conceptual
Modeling Design

Felipe Larenasa, Beatriz Marína, Giovanni Giachettib
aFacultad de Ingeniería y Ciencias, Universidad Diego Portales, Chile

{felipe.larenas, beatriz.marin}@mail.udp.cl
 bUniversidad Tecnológica de Chile INACAP, Chile (ggiachetti@inacap.cl)

Abstract— One of the more complex topics to teach to
software engineering students is the conceptual modeling design,
which has several concepts that students must learn in order to
specify the structural, behavioral and interaction views of
software systems. Learning the design of class diagrams is of
paramount importance since these diagrams are used to guide
concrete development tasks such as programming and software
testing, and -consequently- to avoid defective software products.
Applying novel teaching/learning techniques in this topic may
help students to reduce the defects that are committed at the
moment of designing a class diagram. One interesting technique
is the use of serious games, due to the fact that they provide
learning environments free of risks and pressure for students,
allowing the students to know the topics that they must learn in a
fun way. Serious games have been widely used in programming
courses. Thus, we aim to investigate the feasibility to replicate
this experience for conceptual modeling of class diagrams at
software engineering courses. In this paper, we present a role-
playing game specially focused in the class diagram, which is
called Classutopia. This serious game provides modeling
challenges, comprehension and correction of diagrams with
different complexity levels for learning conceptual modeling
design.

Keywords— Gamification, serious games, class diagram,
software engineering.

I. INTRODUCTION
Conceptual modeling is one of the more complex topics

that must be learnt by software engineering students since they
need to abstract concepts from reality and express them in
computational terms. The conceptual modeling design is of
paramount importance in the development of software projects
because it specifies the different views of a software system,
which guide the programming and the testing tasks. The class
diagram is one of the most representative design approaches
for software modeling [1], which serves as a guideline to
develop the structures and the methods of a software product.
A faulty class diagram misleads the software development
teams, leading to mistakes in coding and delays in project
implementations, and subsequently causing project failures.

Some common defects encountered in the development of
class diagrams [2–5] are as follows: confusion amidst elements
such as aggregation and composition; overspecification; errors
in the cardinality, i.e., creating infinite recursive associations;
poor choices of names for classes and attributes; class

replications; lack of inheritance between classes of the same
type; lack of classes, attributes, and lost methods.

The defects mentioned above can be overcome if the
students actively participate in the learning process. The use of
games and simulation-based experiences has been of great help
for teaching and offering learning environments without any
risk. These games are designed for a different purpose than to
solely entertain and are known as serious games [6,7].
Moreover, the use of videogames characteristics such as points
or rewards in a game is known as gamification. Currently,
there are several systematic reviews in the literature [8,9] that
have reported the positive results of serious game-based
learning, wherein the use of this type of game has been verified
in various domains of learning in topics related to health,
education (school and university), culture, social skills, and
vocational training, among others. Within the domain of
education, specifically in the area of computing [10], it has
been used to teach topics such as programming, project
management software, and operating systems.

We believe that by implementing serious games,
specifically focused on learning conceptual modeling, it is
possible to motivate and entertain students by modifying their
behavior in a positive manner when coping with class
diagrams. Therefore, the design of a serious game for learning
and understanding conceptual modeling design is presented in
this paper. The game is a Role-Playing Game (RPG) wherein a
character hero (characterized by a robot) is assigned to a player
who must complete an adventure by overcoming three types of
challenges to defeat the villains (characterized as evil wizards).
As the game progresses, the difficulty of the challenges will
increase based on the predefined problems.

Therefore, the contribution of this work is the design of a
serious game for conceptual modeling learning of the class
diagram and the implementation of a mobile application for
Android that provides support for running the game on tablets.
This contribution is useful for students that want to learn how
to do a class model design avoiding defects, and it is also
useful for researchers that want to add new challenges to the
Classutopia serious game.

The rest of the article is organized as follows: Section 2
presents some relevant related works. Section 3 presents the
design of a serious game developed for learning conceptual
modeling of the class diagram. Section 4 presents the

evaluation of the game. Finally, Section 5 presents the main
conclusions and future works.

II. RELATED WORK
Even though there are several serious games published in

literature, as we can observe in the systematic literature
reviews presented in [8,9], we did not find literature of serious
games that had been applied to teaching/learning class
diagram. Nevertheless, some of the games that are focused on
teaching object-oriented programming concepts are closely
linked to the modeling of classes, so that we review these
documents in this section.

Java Ninja [11] evaluated the effects of utilizing serious
games focused on teaching specific concepts of modeling and
programming, wherein the students receive help in
understanding the inheritance in object-oriented programming
and show positive results in their learning processes and
motivation.

In [12] a game-theme instructional model is presented,
which demonstrates the concepts of object-oriented
programming, specifically encapsulation, polymorphism, and
inheritance. The game uses virtual-reality to engage students
with 3 problems related to the programming topics mentioned
above. The student must answer correctly in the inheritance
situation in order to construct a class model diagram. Results
indicate that 80% of students agreed that the module developed
their interest in programming.

In [13] a game focused in object-oriented programming
concepts is presented. In this game, the players can select an
object and the class diagram is displayed in order to show the
inheritance relationships of the selected object.

A serious game focused in the education of object-oriented
analysis and design and artificial intelligence is presented in
[14]. The game is about the Sokovan problem, where five types
of relationships can be identified: association, composition,
dependency, inheritance and aggregation. Authors state that to
facilitate applying serious game a promising strategy would be
accumulating and opening game-based materials. So that, they
provides this game with a puzzle style, but no information is
provided about the usage or empirical evaluations.

In summary, we didn’t find serious games specifically
focused in learning conceptual modeling design, nevertheless
clear examples of the use of class diagrams in challenges of
serious games have been obtained. Considering the importance
and difficulty of conceptual modeling learning in software
engineering, a serious game has been created specifically for
class diagram learning, which is shown in the next section.

III. DESIGN OF CLASSUTOPIA SERIOUS GAME
The design of a serious game for the conceptual modeling

of class diagram learning has been developed using the engine
Unity, aiming toward it being executed in a mobile application
for devices with Android operating system. The conceptual
framework of the MDA (Mechanics, Dynamics and Aesthetics)
[15] is used to explain the design of the game, which allows the
implementation of the game by taking into account the player
and the developer viewpoints.

A. Aesthetics
For making the game attractive and fun for the player, the

game has a minimalist graphic style, displaying easy-to-
interpret buttons, lists, and menus. In a similar way, common
visual representations of RPG games are used, such as health
bars, characters’ dialog windows, and sprites for the same. The
visual feedback of the player's interaction with the elements on
the screen is based on the changes of hues and approaches.

Moreover, an interesting context has been created to
motivate playing the game. Classutopia is a technological
utopia wherein human beings have reached the pinnacle of
civilization thanks to the help of technology. Amidst all
significant technological advances achieved, five are
considered the most important, called The Pillars, in which all
this social prosperity is underpinned: a satellite plant of solar
energy, a synthesized food system, an organ cultivation center,
an anti-pollution multi-industrial system, and a robots factory
for unwanted tasks.

All the basic needs of humanity (health, food, and energy)
have been met. The villain in this story is the last descendant of
a caste of sorcerers, who is bothered by the fact that humanity
has reached fullness thanks to technology and not magic.
Therefore, he has initiated an attempt to sabotage The Pillars,
making use of his magic tricks to modify this systems software
by altering the class models to overthrow the utopia. However,
a maintenance robot has become aware of these failures; the
reason why it pursues an original adventure to repair the
damages and ruin the sorcerer’s plans. This context works as a
guideline for the creation of the diagrams arranged for the
missions since each mission represents the robot’s attempt to
save one of The Pillars. A diagram is modeled to represent the
satellite plant of solar energy, synthesized food system, and
organ cultivation center; these diagrams are presented in the
missions 1, 2 and 3, respectively.

Classutopia is available for download at
https://www.dropbox.com/s/sfcjjz0jlp6a911/Classutopia.apk?dl=0

B. Mechanics
The game is based on three types of mechanics: modeling

the character, correcting defective diagrams, and understanding
diagrams.

1) Character Modeling
The main character is a robot with three basic attributes:
attack, defense, and speed. Attack relates to the damage the
protagonist can cause to the enemy, defense is the resistance
posed to the damage received from the enemy, and speed is
the management of the limited time to solve the problems.
These attributes can be modified and enhanced through
modeling of class diagrams, which describe the features and
components of the robot. Initially, the robot needs to be
modeled correctly, and subsequently, as the game progresses,
new improvements can be unlocked, which should be properly
included in the class model of the robot so that the changes
take effect. These improvements, in addition to modifying the
character's attributes, also unlock some special powers that
can be used in the clashes between the protagonist robot and
its enemy (the magician).

2) Correction of Defective Diagrams
During the game, the hero battles against the enemy; the
disputes are based on the challenge of correcting defective
class diagrams. In these challenges, given a defective class
diagram, the player can tap the screen of the tablet to highlight
the various elements that make up the class diagram, which
have been considered to be defective. Therefore, Classutopia
offers options to correct the possible defects. Once the
correction has been made, feedback on whether the player has
made a mistake or done it correctly is not instantaneous but
the player must “Attack” to be able to assess the correction.
This has been designed in this manner to give an option to the
player to evaluate one or more modifications made to the
diagram by pressing a single button, in which mistakes result
in harming the protagonist (robot) and the successful
corrections affect the enemy (magician). This is graphically
presented on the characters’ health bars that indicate the status
for each character. In addition, Classutopia delivers feedback
in the class diagram; it indicates in green the modification that
was applied correctly and in red where it has been incorrectly
modified. It also includes a button to undo the recent applied
modifications.

3) Understanding Diagrams
During the battles, the player can activate special powers in
the robot that allow him to perform various effects such as
enabling damage modifiers to apply more force on the attacks,
reducing corrections in the diagram to finish it on time, or
healing the protagonist. These modifiers have limited use and
are activated by means of a challenge in understanding class
diagrams. By pressing the button which activates a certain
power, the player must answer a question with respect to the
concepts that can be used in a class diagram. This question
displays a small diagram or some conceptual construct and
offers between two and four possible answers. If the player
answers correctly, the power is effective; if answered
incorrectly, the effect will not be applied. The powers are
arranged in the battle according to the previously modeled
characteristics for the robot.

C. Dynamics
The mechanics previously described have been presented to
the player in a smooth, consistent, and understandable way
during the execution of the game. To obtain the expected
gameplay, a series of screens, menus, and systems are
implemented, which are explained below.

1) Control Systems
Like most mobile applications available today, the game is
controlled via touch-screen by simply tapping on buttons and
menu items displayed on the screen. In some game mechanics,
multi-touch gestures are used to zoom in and out and scroll
through the proposed class diagrams.

2) Start screen and save game handling
When the player runs the application, a screen is shown with
the name of the game, a representative image, and a Start
button to initiate the game. It is a simple landing screen like
that of most mobile games. Once the player has clicked on the

Start button, the button disappears presenting to the player two
new options within the same screen (see Figure 1): one to start
a new game and the other to load a previous game. The game
uses a system of unitary games, i.e., you can only save one
game at a time, therefore, creating a new game automatically
deletes (if any) the previous game. For this reason, as a
precaution, a warning window to confirm deletion is displayed
to avoid accidental loss of the game. The games are saved
automatically, indicating this with a symbol at the end of each
challenge. If the player presses the button to start a new game,
the stored data are reestablished and the game moves on to the
main menu. If the player presses the button Load Previous
Game, it goes directly to the main menu preserving the
conditions recorded during the last auto-save.

Fig. 1. Game selection. Upper text: Classutopia. Lower left text: START

NEW GAME. Lower right text: LOAD PREVIOUS GAME

3) Main menu
The main menu displays three buttons (see Figure 2): one to
access the construction challenge of modeling the main
character, one to access the missions’ menu, and one to return
to home screen. In addition, it displays a summary table with
the current attributes of the character robot. The first time the
player accesses this screen (when he/she starts a new game),
the missions button is disabled in order to force the player to
model the character on the construction screen before
accessing the missions’ menu.

Fig. 2. Main menu. Upper right text: CURRENT ATTRIBUTES: ATTACK

1, DEFENSE 1, SPEED 1, HEALTH 100. Left text: BUILD UP,
MISSIONS.

4) Build and upgrades
On the construction screen (see Figure 3), the mechanical

modeling of the character is presented, as has been previously
described. Initially, the player must connect the classes that
represent the parts of the robot correctly, for example, sensors,
extremities, core, and weapons. The player can see, as he/she
models the robot appropriately, how its attributes (attack,
defense, speed, and unique skills) modify according to the
characteristics of the diagram. Defects in modeling during the

construction of the diagram result in the non-modification of
the attributes, i.e., the classes do not apply their effects and the
features of the robot are not improved. There is a button to save
the changes made, continuing to the main menu. Within this
screen, the list of improvements for the robot is presented,
those that get unlocked, as a reward, each time a mission is
completed. These represent the improved components of the
robot or new components that, by being adequately included in
the model, increase the attributes and activate new powers.

Fig. 3. Building screen.

5) Missions
After modeling the robot for the first time, in the main menu,
the button to access the missions’ menu is enabled. The
missions correspond to each of the clashes the robot must
complete by defeating the magician (see Figure 4). These
tasks are presented as a list and are sequential, i.e., the second
mission is enabled when the previous mission is completed,
and the third is activated upon completion of the second
mission. Each mission is shown with a name and its level of
difficulty. The difficulty of the missions is incremental. In the
first instance, the game has three missions: the basic level,
mid-level, and advanced level. The missions can be repeated
for practicing or unlocking new rewards (those corresponding
to the accomplished level). To start a mission, the player must
tap on it, by doing so it gives way to the battle.

Fig. 4. Missions menu.

6) Battle
The battle screen shows the class diagram to be corrected (as
explained in Mechanics Section), which can be navigated
using tactile gestures (see Figure 5). The avatars that represent

the parts in conflict are shown at the top of the screen with
their respective health bars and with the remaining time for the
mission. The confrontation ends when the time runs out, when
one of the parties loses all their health or when all defects are
corrected. If the player (robot) wins, the level is completed,
regards are awarded, progress of the game is saved, and the
missions menu appears. If the player (robot) loses, the
missions menu appears without rewards but with the option to
reattempt to complete the mission.

Fig. 5. Battle screen.

Each level focuses on the correction of different groups of
defects in class diagrams. The basic level focuses on learning
the essential elements within a class (names and attributes).
The medium level focuses on learning the correct specification
of services in a class. The advanced level focuses on learning
the associations and cardinalities. Table 1 shows the injected
defects in each of the levels.

TABLE I. DEFECTS INJECTED IN CLASSUTOPIA LEVELS

Level Defects

Basic

• Classes without name
• Classes without id
• Classes with repeated attributes
• Classes with attributes without data type

Medium
• Classes without creation service
• Classes with service without return
• Classes without visualization of attributes

Advanced

• Associations of wrong type
• Association without cardinality
• Minimum cardinality of 1 at both ends
• Descending cardinality at one end of the association

The more advanced levels include the types of defects of
the levels of lesser complexity. These defects are applied
randomly at the beginning of a confrontation on a diagram
without defects, i.e., the game can generate any of these defects
in any of the elements of the class diagram presented in a battle
and generate another type of defect, completely different, in the
same elements when repeating the mission.

7) Special Powers
On the battle screen, there are buttons to activate the special

skills obtained in the construction of the robot (see Figure 6).
By tapping on a skill, the understanding problem is presented,
which must be answered correctly for its activation. While this
occurs, time is not paused. Once the problem is addressed, the

battle continues and if answered correctly, the effects of the
skill are applied; otherwise, the effects do not apply. Whether it
is answered correctly or incorrectly, the selected skill is
disabled for the rest of the combat. The types of effects that the
skills have are as follows: Multipliers of special powers, Health
recovery of the protagonist, Mission’s time manipulation or
Reduction of remaining defects.

Fig. 6. Special powers panel.

IV. EVALUATION OF CLASSUTOPIA
An exploratory empirical evaluation of Classutopia has

been conducted with the aim of assessing the understanding of
the game and the perceived utility to support the conceptual
modeling learning in the Software Engineering course. For the
design of this activity, the guidelines previously defined in [16]
were used. The following research question was defined:

RQ1: Do the students find the use of Classutopia for
learning the conceptual design of class diagrams beneficial?

The context of the experiment is included in the Software
Engineering course, which is a fourth-year course of the
Engineer degree in Computer Science and
Telecommunications at the Diego Portales University (Chile).
The subjects are students of this course that have already
attended classes on conceptual modeling. These classes have
been conducted using traditional techniques of
teaching/learning such as PowerPoint slides and inspection
exercises in diagrams printed on a sheet.

In the experiment, the subjects receive a small description
of what is Classutopia and then they must play. They begin
building the robot and go through the missions. Finally, the
subjects must respond to a questionnaire in order to obtain the
perceptions of the usefulness of the game as a new technique of
teaching/learning of conceptual modeling in Software
Engineering. The sentences of the questionnaire are presented
at Table 2, and subjects must answer using a Likert scale,
where 1 is totally disagree to 5 totally agree.

TABLE II. QUESTIONNAIRE TO ASSESS CLASSUTOPIA

Sentence

1. Classutopia facilitates the understanding of a class diagram.

2. Classutopia helps determine how to correct a class diagram.

3. Classutopia helps to understand the concepts of the class diagram.

4. I find Classutopia easy to understand.

5. Classutopia allows you to learn about the design of a class diagram in an
easier way than by using text.

6. In general, I found Classutopia to be useful.

A. Operation of the empirical evaluation
The research was conducted in first semester of 2017 with

students who have completed the course of Software
Engineering in the second half of 2016. Thirteen students
participated voluntarily. Participation in the experiment was
not related to the score of the students but the students were
urged to make their best effort. The start and end of each
student for each mission and the times they had to conduct a
mission to win it were registered. It is important to mention
that each student should complete mission 1 (M1) to unlock
mission 2 (M2) and further complete M2 to unlock mission 3
(M3).

The students had 30 minutes to conduct the activity.
However, most subjects wanted to continue playing to defeat
the magician. The students realized that each time they earned
a mission, they unlocked new features that could improve the
robot and they were going to build the robot to improve their
attributes. In addition, the subjects used the easier mission to
unlock the features thanks to they win many times to build the
robot to defeat the most powerful wizard in the last mission.

B. Results
Results are shown in Table 3. It can be observed that 7
subjects were able to correctly build the robot and detect all
defects injected in the diagrams.

TABLE III. RESULTS

Subject Time
M1

Num.
of M1

Time
M2

Num.
of M2

Time
M3

Num.
of M3

Win

S1 5 2 13 3 14 7 yes
S2 2 1 25 8 - - no
S3 3 1 27 6 22 9 yes
S4 4 3 7 2 15 5 yes
S5 5 3 22 5 - - no
S6 1 1 12 5 7 3 no
S7 3 2 10 4 6 3 yes
S8 11 11 7 2 46 16 no
S9 11 5 37 12 20 8 no
S10 2 1 1 1 6 3 yes
S11 4 2 28 7 21 6 no
S12 4 2 17 5 22 8 yes
S13 3 2 8 2 30 10 yes

Of these 7, 3 subjects exceeded the game in 30 minutes but 4
subjects were engaged in the game to overcome it. Four
subjects correctly build the robot but did not exceed M3 that
had defects in the associations of the classes. Two subjects did
not exceed M2 that had defects in the services of the classes
and did not continue to play after 30 minutes. It is important to
note that the four subjects who did not win had to stop playing
the game although they were eager to continue playing.

The results indicate that all students (13 subjects) could
learn how to build the robot and to detect defects in the class
attributes (basic level). 11 of them were able to learn how to
build the robot and to detect defects at basic and medium
levels. From these 11 students, 7 students could learn how to
build the robot and to detect defects in the class diagrams at
basic, medium, and advanced levels. This allows to observe
whether it is feasible to use a serious game to learn about the
conceptual modeling software, the game improves the

students’ understanding of class diagram, and encourages us to
improve the testing to evaluate the effectiveness in learning.

Regarding the survey, Questions 1, 2, and 3 are related to
the perception of the subject matter of learning using the
serious game. The results (see Figure 7) indicate that the
students perceive that Classutopia helps in the comprehension
of the class diagram, in the understanding of how to construct a
class diagram, and that Classutopia helps to understand the
concepts used in the class diagram (the majority of the subjects
agree or totally agree with the statements of Q1, Q2, and Q3).
Regarding the ease of use of the game (Q4), there are two
subjects that did not find it easy to understand how Classutopia
works. However, more than 50% of the students agree or
totally agree that it is easy to understand how the game works.
Regarding the utility of the game, the majority of students
agree that Classutopia allows to learn more easy than using
texts (Q5), and they are totally agree that in general found
Classutopia useful (Q6). The results of this survey allows to
answer the research question since the students find it
beneficial to use a serious game for learning conceptual
modeling, in particular, for learning class diagrams.

Fig. 7. Results of the questionnaire.

V. CONCLUSIONS
Novel teaching techniques in computer courses are

required, particularly for the advanced levels of Software
Engineering, because in many cases, the emphasis of research
has been placed on the most basic courses such as
programming. The design, implementation, and use of a
serious game to learn conceptual modeling in software
engineering courses are presented in this study. From this
work, it can be concluded that it is feasible to implement new
teaching techniques with gamification and serious games for
Software Engineering courses.

In the development of computer projects, modeling a
correct class diagram is of vital importance for the reduction of
problems and delays in deploying a software. In this work, we
provide a solution for the problems caused by the
misunderstanding of class diagrams and their semantic
components. Thus, Classutopia has been presented, which is a
serious game that supports the conceptual modeling learning,
and it can be a good solution to correct the most common
problems that students have to familiarize themselves with
class diagrams, offering them a space free of pressure and
consequences to learn and understand how to model and
correct class diagrams.

In addition, there has been an exploratory empirical
evaluation to verify the perception of students with respect of

this new method of teaching/learning in Software Engineering.
Results indicate that Classutopia provides benefits for learning
conceptual modeling design. We are aware that with a limited
number of subjects, it is not possible to apply statistical
techniques to increase confidence in the results. One of the
limitations of the empirical assessment performed is the lack of
evidence of the effectiveness of Classutopia in the learning
process. Therefore, further work is referred to conduct
experiments to evaluate the effectiveness of Classutopia.
Finally, there are plans to improve the Classutopia graphics
aspects that will help to enhance the gaming experience.

ACKNOWLEDGMENT
This work was funded by CONICYT project ENSE REDI170020, 2017-2019.

REFERENCES
[1] OMG, Unified Modeling Language (UML) 2.4.1 Superstructure
Specification, 2011.
[2] D. Giordano, F. Maiorana, Object Oriented Design through game
development in XNA, 3rd Interdisciplinary Engineering Design Education
Conference (IEDEC), pp. 51-55, 2013.
[3] J. Cabot, Common UML errors (I): Infinite recursive associations.
http://modeling-languages.com/common-uml-errors-i-infinite-recursive-
associations/ (last access 14.03.18)
[4] Guidelines for UML Diagram Development.
http://eng.umd.edu/~austin/nsf-crcd/uml-guidelines.html(last access 14.03.18)
[5] B. Marín, G. Giachetti, O. Pastor, A. Abran, Identificación de Defectos
en Modelos Conceptuales utilizados en Entornos MDA, XII Ibero-American
Conference on Software Engineering (CIbSE'2009), pp. 109-114, 2009.
[6] C. Abt, Serious Games, University Press of America, 1987.
[7] M. Zyda, From visual simulation to virtual reality to games, IEEE
Computer, vol. 38, issue 9, pp. 25–32, 2005.
[8] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, J. M. Boyle, A
systematic literature review of empirical evidence on computer games and
serious games, Comput. Edu. Vol. 59, issue 2, pp. 661–686, 2012.
[9] A. Calderón, M. Ruiz, A systematic literature review on serious games
evaluation: An application to software project management, Comput. Edu. vol
87, pp. 396–422, 2015.
[10] J. Vargas-Enríquez, L. García-Mundo, M. Genero, M. Piattini, Análisis
de uso de la gamificación en la enseñanza de la informática, XXI Jornadas de
la Enseñanza Univ. de la Informática (JENUI 2015), pp. 105-112, 2015.
[11] J. Zhang, E. Caldwell, E. Smith, Learning the concept of Java
inheritance in a game, 18th International Conference on Computer Games
(CGAMES), pp. 212-216, 2013.
[12] S. Sharma, J. Stigall, S. Rajeev, Game-theme based instructional
module for teaching object oriented programming, International Conference
on Computational Science and Comp. Intelligence (CSCI), pp. 252-257, 2015.
[13] J. Livovský, J. Porubän, Learning object-oriented paradigm by playing
computer games: concepts first approach, Central European Journal of
Computer Science, vol. 4, issue 3, pp. 171–182, 2014.
[14] Z. Li, L. O'Brien, S. Flint, Object-oriented Sokoban solver: A serious
game project for OOAD and AI education, IEEE Frontiers in Education
Conference (FIE) 2014.
[15] R. Hunicke, M. LeBlanc, R. Zubek, MDA: A formal approach to game
design and game research, AAAI Workshop on Challenges in Game AI, 2004.
[16] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell,
Experimentation in Software Engineering, Springer, 2012.

