
A Revisit of Fault-Detecting Probability of
Combinatorial Testing

Min Yu Feiyan She Yuanchao Qi Ziyuan Wang∗ Weifeng Zhang
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China

∗Corresponding: wangziyuan@njupt.edu.cn

Abstract—The lower bound of fault-detecting probability of τ -
way combinatorial test suite for Boolean-specification testing have
been proposed [1]. However, the formula neglected the situation
that for different minimal failure-causing schemas, the coverage
of test suites may be non-independent events. Hence, multiplying
directly the probabilities of non-independent events is incorrect,
which causes that the result calculated by previous formula may
be greater. In this paper, we give counterexamples to demonstrate
the mistakes in the formula derivation. Furthermore, two exper-
iments are designed to illustrate that the actual fault-detecting
probabilities and ratios are usually less than the theoretical fault-
detecting probabilities calculated from the previous formula.

Index Terms—Software testing, combinatorial testing, fault-
detecting probability, minimal failure-causing schema.

I. INTRODUCTION

Combinatorial testing is a well-accepted testing method
which has been widely studied and applied [2]. There are grow-
ing concerns about the fault-detecting ability of combinatorial
testing, due to a controversy about combinatorial test suites
effectiveness of detecting faults.

The fault-detecting probability was proposed to evaluate
the ease of a combinatorial test suite detecting a fault. Previous
works have put forward formulas for fault-detecting probability
of combinatorial testing [1][3]. The lower bound of the fault-
detecting probability of fixed-strength combinatorial test suite
for 2-level system has been raised in [1]. On this basis, the
article [3] further proposed the lower bound of the probability
that fixed-strength combinatorial test suite detects faults for
mixed-level system. However, we find that the events that
combinatorial test suites detect faults under different minimal
failure-causing schemas may be non-independent sometimes.
So it is incorrect to multiply directly the probabilities of non-
independent events in the formula. In terms of this mistake,
we carry out some relevant researches and experiments.

In this paper, we take Boolean expressions from TCAS
system as study object to find counterexamples of the formula
and generate combinatorial test suites with different strengths
by some classic combinatorial test generation algorithms. By
analyzing the test suites of boolean expressions, the fault-
detecting probabilities and ratios of the combinatorial test
suites are calculated. A contrast of experimental results and
theoretical values calculated by the formula is made by us.

The rest of this paper is organized as follows. The 2nd
section proposes the formula of fault-detecting probability and
puts forward the counterexample of the formula. The 3rd

DOI reference number: No.10.18293/SEKE2018-139

section is the description of experiments and gives experimen-
tal results to illustrate the differences with theoretical values.
There is a conclusion finally.

II. FAULT-DETECTING PROBABILITY

A. Existing formula of fault-detecting probability

Suppose there are m minimal failure-causing schemas, with
strength k1, k2, ..., km respectively, for a fault. For an arbitrary
2-level τ -way combinatorial test suite T , the probability of
event that T detects this fault should be [1]:

p(τ) =

 1 : τ ≥ minmi=1{ki}

1−
∏m

i=1
(1− 1

2ki−τ
)C

τ
ki : τ < minmi=1{ki}

B. Counter-example

There is Lemma 6 in [1]: “Suppose there are totally m
schemas, and their strengths are k1,k2, ..., km respectively.
Let T be a 2-level suite, in which all possible τ -value sub-
schemas of all m schemas are covered by at least test case
(τ < minmi=1{ki}). The probability of event that none of
these m schemas are covered by T is equal to or less than∏m
i=1(1−

1
2ki−τ

)C
τ
ki .”

If there are multiple minimal failure-causing schemas, the
lemma 6 calculates probability for each and multiply them.
However, only when events are mutually independent, they can
be multiplied in probability theory. If a test case covers current
minimal failure-causing schema, it may cover others. That is,
many overlapping test cases are repeatedly calculated when
taking each minimal failure-causing schema as a independent
event. The actual probability should discard overlaps.

For instance, there are 2 minimal failure-causing schemas
S1=(1 1 1- -), S2=(- 1 1 1 -), k = 3. Their τ = 2-value sub-
schemas are (1 1 - - -), (- 1 1 - -), (1 - 1 - -), (- 1 - 1 -) and
(- - 1 1 -). Let A be the event that S1 is not covered by a
2-way combinatorial test suite, and B the same event for S2.
According to Lemma 5 in [1], P (A) = P (B) ≤ (1− 1

2 )
3 = 1

8 .
According to Lemma 6 in [1], P (AB) = P (A)×P (B) ≤ 1

64
and Pτ=2 = 1− P (AB) ≥ 63

64 .

However, since A and B are not independent, P (AB) =
P (A) × P (B) can’t be used to calculate the probability that
A and B occur at the same time. In fact, if A occurs, there
should be 3 test cases (1 1 0 x x), (1 0 1 x x), (0 1 1 x x) in
combinatorial test suite, in which only (0 1 1 x x) has chance
to cover schemas (- 1 1 1 -). P (AB) = P (A) × P (B|A) ≤



1
8 ×

1
2 = 1

16 since P (B|A) ≤ 1
2 . There should be Pτ=2 =

1 − P (AB) ≥ 15
16 . It means that, the formula in [1] gives an

overvalued low bound of fault-detecting probability.

III. EXPERIMENTS

A. Research questions

RQ1 (fault-detecting frequency): In a large number of
runnings of combinatorial testing, for each mutant, is the fault-
detecting frequency approximate to theoretical fault-detecting
probability?

RQ2 (fault-detecting ratio): In a large number of runnings
of combinatorial testing, for some grouped mutants (from the
same original version), is the mean value of the ratios of
detected faults approximate to the mean value of theoretical
fault-detecting probabilities?

B. Experiment setup

We take 20 Boolean expressions that extracted from the
TCAS system as the experimental subjects. For each expres-
sion, we create mutants by 10 fault types and get 19131 non-
equivalent mutants.

Combinatorial test suites with different strengths are gener-
ated by some classic combinatorial test generation algorithms
including Greedy algorithm [4], DDA algorithm [5], and IPO
algorithm [6]. And besides, two algorithms named ReqMerge
[7] and DensityRO [8], which were mainly designed for
variable strength combinatorial testing, are also utilized in our
experiment. When running an algorithm, a random generated
seeding test case will be assigned in order to output the
rich diversity combinatorial test suites in the large number of
runnings of combinatorial testing.

In the first step, for each mutant, the theoretical fault-
detecting probability of combinatorial test suite will be cal-
culated according to the formula in [1]. In the second step,
for each original Boolean expression from TCAS system,
each combinatorial test generation algorithm will generate
100 different τ−way combinatorial test suites for τ=2, 3, 4.
By the running of large number of combinatorial test suites,
experimental results could be obtained:

• To answer the 1st research question, for each mutant,
the fault-detecting frequency in the large number of
the running of combinatorial testing should be col-
lected.

• To answer the 2nd research question, for each combi-
natorial test suite, the ratio of the number of killed
mutants to the total number of mutants should be
collected.

C. Experimental results

1) Results for RQ1: In Fig.1, there are 20 groups of box-
graphs in each figure, where each group stands for an orig-
inal Boolean expression from TCAS. Besides the theoretical
faulting-detecting probabilities in the first box-graph of each
group, the last 5 box-graphs in each group illustrate fault-
detecting frequencies of mutants, which are mutated from
current original Boolean expression, in the running of τ−way

combinatorial test suites that generated by Greedy algorithm,
DDA algorithm, IPO algorithm, DensityRO algorithm, and
ReqMerge algorithm respectively, where τ =2, 3, 4.

2) Results for RQ2: In Fig. 2, there are 20 groups of
box-graphs in each figure, where each group stands for an
original Boolean expression from TCAS. Besides the theo-
retical faulting-detecting probabilities in the first box-graph
of each group, the last 5 box-graphs in each group illustrate
the ratios of killed mutants, which are mutated from current
original Boolean expression, by each τ -way combinatorial test
suite that generated by Greedy algorithm, DDA algorithm,
IPO algorithm, DensityRO algorithm, and ReqMerge algorithm
respectively, where τ =2, 3, 4.

These results indicate that, the mutants’ actual fault-
detecting frequencies and the mean values of the ratios of
detected faults are usually less than the mean values of
mutants’ theoretical fault-detecting probabilities calculated by
formula in [1].

IV. CONCLUSION

There have been formula about the fault-detecting proba-
bility of combinatorial in previous researches. Due to over-
looking the independence of probability event, the formula
is inaccurate. In this paper, we take 20 boolean expressions
as experimental subject to research fault-detecting frequencies
and ratios of combinatorial test suites generated by five classic
combinatorial test generation algorithms. From the results we
come to a conclusion there are obvious deviations between
theoretical and real value of fault detection. Because of higher
theoretical values than experimental results, the formula in [1]
is mistaken.

In future, we will correct the mistakes in the formula and
figure out the accurate theoretical fault-detecting probability.

ACKNOWLEDGMENT

This work is supported by the National Nature Science
Foundation of China (61772259).

REFERENCES

[1] Ziyuan Wang, Yuanchao Qi. Why Combinatorial Testing Works: Ana-
lyzing Minimal Failure-Causing Schemas in Logic Expressions. 2015
IEEE 8th International Conference on Software Testing, Verification
and Validation Workshops (ICSTW2015): 4th International Workshop
on Combinatorial Testing (IWCT2015).

[2] C. Nie, H. Leung. A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 2011, 43(2): 11.

[3] Chiya Xu, Yuanchao Qi, Ziyuan Wang, Weifeng Zhang. Analyzing
Minimal Failure-Causing Schemas in Siemens Suite. 2016 IEEE 9th
International Conference on Software Testing, Verification and Validation
Workshops (ICSTW2016): 5th International Workshop on Combinatorial
Testing (IWCT2016).

[4] P. J. Schroeder. Black-box Test Reduction Using Input-Output Analy-
sis: [Dissertation for PhD]. Department of Computer Science, Illinois
Institute of Technology, Chicago, IL, USA, 2001.

[5] Renee C Bryce, Charles J Colbourn. A density-based greedy algorithm
for higher strength covering arrays. Software Testing, Verification and
Reliability, 2009, 19(1): 37-53.

[6] Yu Lei, Raghu N Kacker, D Richard Kuhn, Vadim Okun, Jim Lawrence.
IPOG-IPOG-D: efficient test generation for multi-way combinatorial
testing. Software Testing, Verification and Reliability, 2008, 18(3): 125-
148.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

Fig.1 Compare Fault-Detecting Probabilities and Frequencies of τ -way Combinatorial Test Suite for 20 Boolean Expressions(τ = 2, 3, 4)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0%

50%

100%

Fig.2 Compare Fault-Detecting Probabilities and Ratios of Detected Faults of τ -way Combinatorial Test Suite for 20 Boolean Expressions(τ =
2, 3, 4)

[7] Wang Ziyuan, Nie Changhai, Xu Baowen. Generating Combinatorial Test
Suite for Interaction Relationship. In Proceedings of the 4th Interna-
tional Workshop on Software Quality Assurance (SOQUA2007), Croatia,
September 3-4, 2007: 55-61

[8] Wang Ziyuan, Xu Baowen, Nie Changhai. Greedy Heuristic Algorithms
to Generate Variable Strength Combinatorial Test Suite. In Proceedings

of the 8th International Conference on Quality Software (QSIC2008),
Oxford, UK, August 12-13, 2008: 155-160.


