
Software Process Selection based upon Abstract
Machines for Software Process Models

Shi-Kuo Chang, Jinpeng Zhou, Akhil Yendluri and Kadie Clancy
Department of Computer Science

University of Pittsburgh, Pittsburgh, PA 15238, USA
{schang, jiz150, aky13, kdc42 }@pitt.edu

Abstract— The Abstract Machine Model was developed by
Chang to formalize the decision cycles of slow intelligence
systems. It turns out the selection of software process can
also be regarded as a slow intelligence system. In this
paper we formalize abstract-machine prototypes for
different software process models such as waterfall model,
incremental model, spiral model, extreme programming
model and scrum model. A Software Process Generator
SPG was implemented to generate software process models
based upon design considerations. Initial evaluation by
undergraduate students using SPG to learn software
processes suggests further improvements to make it a
useful learning tool.

Keywords—slow intelligence system, software process
models, abstract machine model, component-based software
engineering, software process learning tool.

1 Introduction

The slow intelligence system is an approach to design human-
centric psycho-physical systems. A slow intelligence system
(SIS) is a system that (i) solves problems by trying different
solutions, (ii) is context-aware to adapt to different situations
and to propagate knowledge, and (iii) may not perform well in
the short run but continuously learns to improve its
performance over time. The general characteristics of a slow
intelligence system include enumeration, propagation,
adaptation, elimination, concentration and multiple decision
cycles [1]. In our previous work, an experimental test bed was
implemented that allows designers to specify interacting
components for slow intelligence systems [2].

In this paper, we formalize abstract-machine prototypes for
different software process models such as waterfall model,
incremental model, spiral model, extreme programming (XP)
model and scrum model. Inspired by recent research on design
spaces [3, 4, 5], a software process design space characterized
by eleven parameters can be used to assist the designer in
finding an appropriate software process model.

The paper is organized as follows. Section 2 presents an
abstract machine model for the computation cycles. Section 3
shows some preliminary work based on building finite state
machine (FSM) for each model. Based on the observations of

DOI reference number: 10.18293/SEKE2018-135

preliminary work and the abstract machine of slow
intelligence system (SIS), we further describe our abstract
machines in Section 4. In Section 5 we present five prototypes
to show how to use our abstract machine definition for
different models. Once the abstract machine model is
provided, a compiler can be constructed to generate the
components. In Section 6 we describe the major steps of the
generic Abstract Machine Compiler (AMC). Section 7
describes the Software Process Generator SPG we
implemented to construct different process models based upon
design parameters. Initial experimental results. discussion and
conclusion are presented in Section 8.

2 The Abstract Machine Model for
Computation Cycles

An SIS typically possesses at least two decision cycles. The
first one, the quick decision cycle, provides an instantaneous
response to environmental changes. The second one, the slow
decision cycle, tries to follow the gradual changes in the
environment and analyze the information acquired from the
environments or peers or past experiences. The slow/quick
decision cycles enable the SIS to both cope with the
environment and meet long-term goals.

Complex SISs may possess multiple slow decision cycles and
quick decision cycles. Most importantly, actions of slow
decision cycle(s) may override actions of quick decision
cycle(s), resulting in poorer performance in the short run but
better performance in the long run.

To model such decision cycles we introduce an abstract
machine model of multiple computation cycles.

The Abstract Machine Model is specified by: (P, S, P0,
Cycle1, ..., Cyclen), where

P is the non-empty problem set,
S is the non-empty solution set, which is a subset of Po,
P0 is the initial problem set, which is a subset of P,
Cycle1, ..., Cyclen are the computation cycles.

Each computation cycle will start from an initial problem set
and apply different operators such as +adapAij=, -enum<,
>elim-, =propAij+ and >conc= successively to generate new
problem sets from old problem sets until a non-empty solution
set is found. If a non-empty solution set is found, the cycle is
completed and later the same computation cycle can be

repeated. If on the other hand no solution set is found, a
different computation cycle is entered.
As an example the problem set P consists of problem elements
p1, p2, p3, ..., pn, and each problem element pj is specified by
a vector consisting of attributes Aij. A computation cycle x
will attempt to find a solution set by first adapting based upon
input from the environment: Px0 +adapAij= Px1 is to adapt
based on attribute Aij, for example, by appending Aij to each
element in Px0 to form Px1. Then it may try to find related
problem elements: Px1 -enum< Px2 where Px2 = {y: y is
related to some x in Px1, e.g. d(x,y) < D}.

Next it may try to eliminate the non-solution elements:
Px2 >elim- Px3 where Px3 = {x: x is in Px2 and x is in S}

Finally the solution elements (or alert messages if there are
nosolutions) may be propagated to peers: Px3 =propAij+ Px4 is
to export/propagate attribute Aij to peers.

Therefore this computation cycle can be specified succinctly
as follows: Cyclex [guard x,y]: Px0 +adapAij= Px1 -enum< Px2
>elim- Px3 =propAij+ Px4.

The above expression is a specification of the computation
cycle, not a mathematical equation. This expression should be
read and interpreted from left to right.

If Px4 is non-empty, the Abstract Machine will complete this
cycle of computation and terminate at the end of Cyclex, and it
may later resume at the beginning of Cyclex. Otherwise Px4 is
empty and the Abstract Machine will jump to a different
Cycley. This is specified by [guard x,y] where x is the current
computation cycle if a solution set is found (Px4 is non-empty),
and y is the computation cycle to enter if no solution set is
found (Px4 is empty). Before an Abstract Machine completes
its current computation cycle, it will propagate the solution set
(or alert messages) to its peers.

In the above, the elimination operator can be replaced by the
concentration operator, whenever the solution set is not known
apriori. The concentration operator applies a predefined
threshold to filter out problem elements below the threshold:
Px1 >conc= Px2 where Px2 = {x: x is in Px1 and th(x) above a
predefined threshold t}.
.

3 Software Process Models

Software process models provide certain workflows for
software development. Intuitively, we can use finite state
machine (FSM) to illustrate these models. Each step in the
software process can be represented as a state in FSM. The
inputs and outputs of each state are corresponding to the
requirements and products of each process step, which may
include documents, program codes, user communications, test
datasets, prototypes, and timings.

3.1 FSM for different models

Based on the state transition tables, we drew the sketches for
five software process models. These are meant to illustrate the
concept, and the specific details of each software process
model may vary.

Fig 1. Waterfall model

Fig 2. Incremental model

Fig 3. Spiral model

Fig 4. Extreme programming model

Fig 5. Scrum model

3.2 Observations

There are some key observations that inspire the definition of
our abstract machines:

 All process models are based on a major workflow,

starting from the user requirements to the final release of
software. Thus, we can use operation cycles to represent
the process flows. Furthermore, we need to bind to a
starting point so that the machine starts from the first user
requirements.

 The final purpose of a software process is to build a
production software, which typically consists of different
features, or objectives. These objectives derive from the
original user requirements and are abstracted,
implemented, and verified during the process. Thus, each
state in the FSM actually can be presented as a set of

objectives, which is similar as the problems set in SIS
abstract machine.

 An objective has a lifetime starting from user
requirements to verification. Each step in the process will
update or mark the objective with a new state. Thus, we
can assign a color for each objective to represent its states
during the entire process.

 The software engineering or project managing operations

during the process can be represent by the operators.
These operations can perform add/delete/update on each
objective, including coloring.

 At some points, a step may have different successors

based on certain situation. Thus, we also need a guard
function to provide process control. Furthermore, we need
to know these specific steps and situations.

 Different Models may have different behaviors in similar

step. e.g., agile models do not need explicit and complete
user requirements and system design.

4 Abstract Machines for Software Process
Models

4.1 Machine definition

Based on the observations in Section 3.2, we can define the
abstract machine, by modifying the abstract machine for SIS:

Where is the objective set, is the initial set. is the
solution set which includes all objectives that have been

implemented and verified. are sequences of different
operators. As mentioned above, this abstract machine should
start from a certain starting point. By default, we set the
starting point to be the beginning of cycle_1.

4.2 Objectives

An objective is corresponding to a certain user requirement or
feature for the target software. We define four colors for each
objective.

 White: it’s abstracted or included into the software

process.
 Yellow: it’s implemented and ready for verification.
 Red: failed in verification, such as failed in testing or user

acceptance.
 Green: it’s verified and ready to be used.

4.3 Guard function

In order to support process control, we also define a guard
function by extending the SIS abstract machine’s guard
function:

guard [a, b, P_checkpoint, constraint, P_newInit]

Where a is the current cycle, b is the target cycle. When it
reaches the P_checkpoint of cycle a, it will check whether a
certain constraint is satisfied. If so, it will jump to start cycle b
with P_newInit.

4.4 Operators

To provide a general definition, we defined six basic operators
for software process models:

 Abstract (abst): Translate user-described requirements to

software-engineering requirements. This operator will
initialize objectives with color white. We further divide
this operator into two types: (1) Enumerative Abstract (-
abst<). This type will process every objective; (2)
Selective Abstract (=abst=). This type will process
selected objectives only. It does not guarantee that all
objectives will be processed.

 Design (desi): Functionalize non-green objectives to

module-level or function-level objectives. It also has two
types: enumerative (-desi<) and selective (=desi=).

 Implement (=impl=): Implement white/red objectives to
real product-level objectives and color them as yellow.
We assume that implementation is strictly bound to the
objectives. E.g., each objective will be implemented as a
module. Thus, only selective is required here.

 Test (=test=): Validate yellow objectives and color them

as green or red. Similarly, only selective is required.

 Adjust (=adju=): Modify objectives based on (external)

non-engineering issues, such as user communications,
funding issues. This operator is essential for agile models.

 Release (=rele+): release all green objectives. This

operator is similar as the propagator in SIS abstract
machine, which generates some outputs to environment.

5 Abstract Machine Prototypes

Based upon the observations in Section 3.2 and the formal
specification of abstract machines in Section 4, the software
process models can now be formally specified. Again, these
are meant to illustrate the concept, and the specific details of
each software process model may vary.

5.1 Waterfall

Prototype:

• Cycle_1: guard[1, 2, P2, NULL, P2]
– P0 -abst< P1 -desi< P2

• Cycle_2: guard[2, 2, P2, has_non-green, P2]
– P0 =impl= P1 =test= P2 =rele+ P3

In cycle_1: it requires a complete abstraction and design.

In cycle_2: it will go through implementation, test, and final
release. Whenever there’s a failed objective after test, it should
go back to the implementation and redo the following process
again.

The machine halts at P3 in cycle_2.

5.2 Incremental

Prototype:
• Cycle_1: guard[1, 2, P2, NULL, P2]

– P0 =abst= P1 -desi< P2
• Cycle_2: guard[2, 2, P2, one_non-green, P2], guard[2, 1,

P3, all_green, NULL]
– P0 =impl= P1 =test= P2 =rele+ P3

In cycle_1: the abstraction can be incomplete. But the design
should take care of all current objectives.

In cycle_2: different from waterfall model, here it will go back
to cycle_1 for next increment when the current increment is
finished.

The machine halts when no more increment is required, which
means P0 in cyle_1 is empty.

5.3 Spiral

Prototype:
• Cycle_1: guard[1, 1, P3, one_red, NULL], guard[1, 2, P3,

no_red, P1]
– P0 =abst= P1 =impl= P2 >+adju= P3

• Cycle_2: guard[2, 1, P5, all_green, NULL]
– P0 -abst< P1 -desi< P2 =impl= P3 =test=

P4 =rele+ P5

In cycle_1: it required to build a simple prototype to evaluate
the risk. Thus, we need an implement and adjust operator here.
If the risk evaluation says good, then it will transfer to the
cycle_2 for further process.

In cycle_2: similarly, it will go back to cycle_1 until there’s no
more work to do.

The machine halts when P0 in cyle_1 is empty.

5.4 Extreme programming

Prototype:

• Cycle_1: guard[1, 2, P2, NULL, P2]
– P0 =abst= P1 =desi= P2

• Cycle_2: guard[2, 2, P2, hours, P2], guard[2, 3, P3, days,
P3]

– P0 >+adju= P1 =impl= P2 =test= P3
• Cycle_3: guard[3, 1, P2, non-empty, P2]

– P0 =rele+ P1 >+adju= P2

In cycle_1: it does not require complete requirements or
design. It selects a certain user story to implement.

In cycle_2: The process is controlled based on timing. Thus,
the major constraint here should be related to the specific time
deadline. Furthermore, we need the adjust operator to make
sure the implementation and testing are sensitive to user
communications.

In cycle_3: after few days, it’s supposed to generate a version
for quick release. Then it can keep finishing rest or new
objectives based on feedbacks.

The machine halts when P2 in cycle_3 is empty, which means
feedbacks confirm that no more objectives.

5.5 Scrum

Prototype:
• Cycle_1: guard[1, 2, P2, NULL, P2]

– P0 =abst= P1 =desi= P2
• Cycle_2: guard[2, 2, P2, day, P2], guard[2, 3, P2, Weeks,

P2]
– P0 =impl= P1 =test= P2

• Cycle_3: guard[3, 1, P3, non-empty, P3]
– P0 >+adju= P1 =rele+ P2 >+adju= P3

In cycle_1: it does not require complete requirements or
design. It selects a certain backlog and launch it as a sprint.

In cycle_2: it starts a sprint. Inside this sprint, no requirement
modification is allowed.

In cycle_3: in the end of a sprint, the developing team will
review the sprint. Then, based on user communications, the set
of objectives (backlogs) will be updated.

The machine halts when P3 in cycle_3 is empty, which means
all backlogs are finished.

6 The Software Process Model Generator

The Abstract Machine Model is a formal specification of the
computation cycles of a slow intelligence system. Once the
abstract machine model is provided, a Software Process
Generator SPG can be used to generate software process
model based upon design considerations.

The input to the SPG are the various software process models
SPM specified by Abstract Machines. The user/designer can
interact with SPG to select the appropriate design choices.
After a software process model is selected, the output in the
form of a web page is generated by SPG. This web page
describes the software process and can be used by the
user/designer to track a project according to the selected
process model.

Figure 6. The software process model generator.

User/designer interacts with SPG through the webpage, such
as tracking process status, updating environment and so on.
The user/designer can make design choices, update
requirements if possible, modify environment, etc. The SPG
updates the current software process status based on the the
selected SPM, and user interactions.

In what follows we describe the major steps of how the AMC
and visualizer work in SPG.

Step 1: Adapt inputs from the user
The AMC will first invoke an interface to receive a set of
features from the user/designer. This set may include
necessary information of the project for simulating different
process models. It is submitted by the user/designer through a
webpage (see box below).

In practice, the user/designer makes choices to specify the
desired parameters (see Figure 7 in Section 7).

AMC Controller manages the process by controlling the state
machine (see box below).

The State Machine will determine the action and the output. It
may give several tries. For example, two solutions can be
applied to one certain state when given certain input (see box
below).

Step 2: Simulate process models
The AMC is responsible to simulate every model.

To answer the question “Which process model is the best?”: (1)
each state will be measured to make sure the current project
status is in a “safe-zone”. Depending on the results of the
measurement, either enumeration operator or elimination
operator can be applied; (2) a specific function, which takes
certain parameters into consideration, will be applied to
evaluate the performance of each model.

If a certain model is simulated successfully, the evaluation
results and simulation logs will be presented to the user on
demand. If a certain state of model A violates project’s
configuration, the AMC will terminate A’s simulation and
start the next un-simulated model.

Step 3: Model selection
After all models have been simulated, the AMC will choose
the model with the best evaluation result to the user, and
present it as the optimal solution to the user.

Step 4: Model visualization
A process visualizer is built to show the simulation to the user.
There are three cases that the visualizer is invoked: (1) the
running simulation requires dynamic or runtime inputs from
users; (2) the user requests to check current simulation status;
(3) the AMC has decided the optimal solution (see box below).

Interactor:
 // adapt current data with user inputs
 while(user inputs are not required) {
 sleep();
 }

while(currentData is not updated) {
adaptCurrentDataWithInputs();

` }
 send DATA_READY msg to Controller;

Controller:
// manage the process of one process model
while(true) {
 while (stateMachine.precheck()) {
 trigger Interface,
 // wait for user inputs
 stateMachine.wait(DATA_READY);

}
stateMachine.perform(currentData);
send msg to visualizer if necessary;

}

State Machine:
// manage the states
enum Status {

State0,
State1,
…;

}

State currentState = State0;//initial state

bool precheck(); // return true if current state requires inputs

int wait(msg); //wait until certain msg is received

void perform(Data currentData) {

 // based on certain state and certain input
 switch (currentState) {
 case ‘State0’:
 perform accordingly;

break;
 case ‘State1’:
 perform accordingly;

break;
….

}
}

7 An Experimental SPG System

An experimental SPG was implemented. Software processes
are characterized by the following eleven design parameters:
 Early Functionality (iteratively introduce features, only

produce final product),
 Feature Adaptation (impossible, flexible),
 User Involvement (C only initially, at requests, frequent

feedback),
 Documentation (not produced, produced),
 Experienced Team (requested, not required),
 Model Type (C linear, iterative),
 Planning and Scheduling (upfront, continuous),
 Risk Mitigation (yes, no),
 Project Size (C small, medium, large),
 Prototypes (used, not used).
 Cross-platform development (no, yes)

Figure 7. The designer specifies the needed parameters.

Figure 8. Stored profiles of software processes.

A parameter with continuous value is indicated by the letter
‘C’. In practice the designer can specify a continuous
parameter from 0% to 100% in 10% increments (see Figure 7).
Parameters not specified by the designer are not used in
calculating the optimum. The designer-specified profile
(Figure 7) is compared with the pre-specified profiles of
software process models (Figure 8) and the one with minimum
distance is the SPG-recommended software process model
(Figure 9).

Figure 9. Scrum software process recommended by SPG.

When the designer clicks on the link for Scrum, a Scrum
software process simulator is provided. As shown in Figure
10 the designer can simulate the execution of the software
process by clicking on the actions associated with its current
state. In addition a tutorial on Zoho is provided as the
recommended tool for Scrum software development.

Visualizer:
// present the AMC results
void showCurrent(); // invoked by the AMC or the user

void showOptimal(); // invoked by the AMC

Figure 10. Scrum software process simulator.

8 Discussion

The Abstract Machine Model is a formal specification of the
software processes, based upon which the SPG tool was
implemented: http://ksiresearchorg.ipage.com/spg/. The SPG
tool was used by 32 undergraduate student project groups in
two software engineering classes at the Univ. of Pittsburgh to
experiment with software processes. The students were then
asked to evaluate the SPG. In response to the question whether
the SPG tool enhanced understanding of the software
processes, the average rating is 0.35, between “a lot” (0.5) and
“a little” (0.25). There are comments that the individual model
pages are the most helpful, and percentage as a parameter
value is a little vague.

The current SPG was implemented with pre-defined web
pages representing the states of different software process
models. We are implementing a better version by dynamically
generating customized web pages (the process states). Both
pre-defined software processes as well as hybrid software
processes can then be generated, thus making the SPG a more
powerful learning tool. More information is added to the
individual model pages, and parameters are better explained.
With more improvements the SPG tool can become a valuable
learning tool.

Acknowledgement:

This research was supported in part by KSI Research, USA.

References:

[1] Shi-Kuo Chang, "A General Framework for Slow Intelligence
Systems", International Journal of Software Engineering and
Knowledge Engineering, Volume 20, Number 1, February 2010, 1-16.

[2] Shi-Kuo Chang, Sen-Hua Chang, Jun-Hui Chen, Xiao-Yu Ge,
Nikolaos Katsipoulakis, Daniel Petrov and Anatoli Shein, "A Slow
Intelligence System Test Bed Enhanced with Super-Components",
Proceedings of 2015 International Conference on Software
Engineering and Knowledge Engineering, Pittsburgh, USA, July 6-8,
2015, 51-63.

[3] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan,
The design of bug fixes, in Proc. Int. Conf. Softw. Eng., 2013,
pp. 332341.

[4] Murphy-Hill, E., Zimmermann, T., Bird, C., and Nagappan,
N., 2015. The Design Space of Bug Fixes and How Developers
Navigate It. IEEE Transactions on Software Engineering
41, 1, 65-81.

[5] S. CARD, J. MACKINLAY, AND G. ROBERTSON. A MORPHOLOGICAL

ANALYSIS OF THE DESIGN SPACE OF INPUT DEVICES. ACM

TRANSACTIONS ON INFORMATION SYSTEMS, 9:99122, 1991.

