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Abstract

The Constraint Satisfaction Problem (CSP) is acknowl-
edged as a simple declarative formalism for modeling well-
defined decision problems. However, real-world problems
are usually ill-defined, especially, under uncertain circum-
stances. In such situation, uncertainty evokes the need for
flexibility or softness where we accept satisfying some con-
straints to some degree. Moreover, when the relevance of
some constraints depends on other factors, we should pri-
oritize those constraints. Eventually, the modeled uncer-
tainty, as well as the expressed soft and prioritized con-
straints induce preferences over the solutions set. Previ-
ous work employing mathematical uncertainty theories are
either uncertainty-based frameworks or preference-based
ones and the only attempt to handle both uncertainty and
preferences is performed using two uncertainty theories un-
der a commensurability assumption. In this paper, we pro-
pose a unifying CSP extension, labeled Belief CSP, that
deals jointly with all these four concepts, i.e., uncertainty,
soft and prioritized constraints and preferences over the so-
lutions set, by exploiting the expressiveness of the belief
function theory.

1 Introduction

The classical Constraint Satisfaction Problem (CSP)
[6, 5] framework has carried high attention because of its
simplicity and generality. In fact, every problem that can
be described by a set of variables and a set of constraints
among those variables can easily be cast as a CSP

However, decision problems tackled by the classical CSP
are assumed to be well-defined so that all their features
are precise and known with certainty. Hence, the CSP has
proven unfit for reasoning under uncertainty where most of
the problems are ill-defined, i.e., some problem’s compo-
nents are either beyond our control or cannot be assimi-
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lated due to the lack of the required quantity and quality
of knowledge or even ignorance.

From another side, yes-or-no reasoning makes no sense
in uncertain contexts. In fact, uncertainty evokes the need
for flexibility as the satisfaction of some constraints de-
pends on ill-known components. In addition, the majority
of the problems being solved are over-constrained, i.e., they
do not lead to any solution. Therefore, it is necessary to
soften some constraints in order to meet a solution, that is,
accepting satisfying some constraints to some degree.

To boot, in real world problems, not all constraints are
fully reliable. In other words, under uncertainty, the agent
cannot entirely rely on some constraints that can be untrust-
worthy, or subject to change. This reliability affects the rel-
evance of each constraint to the problem. Therefore, we
should rank those constraints according to their reliability
by assigning priorities.

As well, solutions cannot be equally preferable. In fact,
uncertainty induces preference levels over the set of solu-
tions.

In response to these issues, a variety of frameworks has
been introduced. We are particularly interested in CSP ex-
tensions that employed mathematical uncertainty theories.
Those extensions may be split in two trends: Uncertainty-
based frameworks that focus on handling uncertainty in
CSPs as suggested by the probabilistic CSP [4], which ad-
mits that the presence or the relevance of some constraints
to the real problem may be uncertain.

Besides, the preference-based frameworks that focus on
relaxing constraints in order to make an over-constrained
problem solvable, such as the possibilistic CSP [10], which
induces preference degrees over the constraints set to eval-
uate the necessity of the satisfaction of each constraint and
the fuzzy CSP [3] that considers a constraint as a fuzzy set
by making the satisfaction of a constraint by each labeling
a matter of degree.

Yet, despite this variety of frameworks, there is no pro-
posal that addresses the whole panel of those four notions
mentioned above. We shall mention the work proposed in



[2] that combined two theories, that are possibility theory
and fuzzy sets theory, to express both uncertainty and soft
constraints in CSPs but under a commensurability assump-
tion between uncertainty degrees and satisfaction degrees.

In this paper, we introduce a unifying CSP framework,
labeled Belief Constraint Satisfaction Problem, that deals
jointly with uncertainty, flexibility, priorities and prefer-
ences in CSPs employing one uncertainty theory, that is,
the Belief Function Theory (BFT) [1, 7, 8], on account of
its expressiveness. The BFT proposes a natural tool for im-
perfection1 modeling as it allows handling uncertain as well
as imprecise data.

The paper is organized as follows: The next section
presents a formal definition of the BCSP and shows how
uncertainty is handled and which components are involved;
it also illustrates the prioritized and soft constraints mod-
eling and preferences expressing. In the section 3 we will
apply the BCSP to a simple agricultural land-use planning
problem followed by a discussion of the main contribution
and some further work.

2 Belief Constraint Satisfaction Problem

2.1 Preliminaries

A classical CSP is defined by a quadruplet (X,D,C,R)
where X = {x1, ..., xn} is a finite set of n variables, each
xi takes its values in a finite domain Di such that D =
{D1, ..., Dn}. The simultaneous assignment of values to a
set of variables is called an instantiation and denoted by θ.
C = {C1, ..., Cm} is a finite set of m constraints where each
constraint Ci is defined on a subset of variables Si ⊆ X
delimited its scope and by a relationRi that specifies the set
of permitted instantiations with respect to Ci; Ri is a subset
of the Cartesian product of the domains of the variables in
Si (i.e., Ri ⊆ ×{Di|xi ∈ Si}). A solution of a CSP is
a consistent complete instantiation, i.e., an instantiation of
all the variables in X , so that, all the constraints in C are
satisfied. A CSP is said to be consistent if and only if it has
at least one solution, otherwise, it is said to be inconsistent.

2.2 Belief Constraint Satisfaction Problem
(BCSP)

A Belief Constraint Satisfaction Problem is a quadruplet
(X,D,Cα, R), where:

• X = {x1, ..., xn} is a finite set of variables;

• D = {D1, ..., Dn} is the set of their domains;

1The term uncertainty is commonly used, in the literature, to refer to
imperfection. However, according to the taxonomy established in [9] un-
certainty is one aspect of imperfection, whereas, imprecision is its other
aspect.

• Cα = {(C1, α1), ..., (Cm, αm)} is a finite set of belief
constraints (shortened as Bf-constraints) where (1 −
αi) is the priority of the Bf-constraint Ci.

• R = {R1, ..., Rm} is a finite set of imperfect relations
associated to Cα.

2.2.1 Imperfect Relations

Under uncertainty, we cannot doubtlessly state whether or
not an instantiation of values to variables is permitted with
reference to a given constraint. To model imperfect (uncer-
tain and/or imprecise) relations, we rely on a basic belief
mass (bbm) distribution over instantiations.

An imperfect relation Ri, defined by a pair (Vi,Θi), as-
sociates a valuation Vi (a bbm distribution), over the frame
of discernment Θi of the associated Bf-constraint obtained
by the Cartesian product of the involved variables domains,
i.e., Θi = {Di1× ...×Dik}. The valuation Vi is defined as
follows:

Vi = mi : 2Θi → [0, 1] |
∑
I⊆Θi

mi(I) = 1

Where I is a singleton or a subset of instantiations. In the
following, we shall restrict ourselves to normalized bbm
distributions where mi(∅) = 0.

If we may define an instantiation as a logical relation
between variables, the finite amount of support (complete,
partial or ignorant) enclosed in the bbm (i.e., mi(I)) and
derived from the available pieces of evidence can be in-
terpreted as the potentiality degree of a given relation to,
actually, occur so that the potentiality of the associated Bf-
constraint to be satisfied by such variables instantiation(s),
I . A second reading interprets this bbm distribution as
preference levels induced over instantiations. Formally, let
θ1 and θ2 two subsets of Θi(i.e., θ1, θ2 ⊆ Θi),m(θ1) >
m(θ2) means that θ1 is more believable (certain) than θ2

and hence θ1 is, a priori, preferred to θ2 for the satisfac-
tion of the given Bf-constraint. This latter reading shows
that the bbm distribution has twofold purpose. The first is
to quantify our belief about a given instantiation whereas
the second is to induce a preorder, i.e., a priori preferences,
among them.

The most appealing feature that makes the BFT an effi-
cient tool is its faithfulness in recognition our knowledge as
well as our ignorance. Obviously, the case of total knowl-
edge matches the classical notion of perfect (certain and
precise) relation where all tuples are known with certainty.
This case is obtained through the certain belief function.
Other kinds of relations may be modeled using the vari-
ous functions offered by the BFT such as the vacuous belief
function for uncertain and imprecise relation and the cate-
gorical belief function for certain but imprecise relation.



Likewise, some operations may be applied on imperfect
relations, such as the vacuous extension and the marginal-
ization. The vacuous extension of an imperfect relation Ri
defined on Si, to a larger set S

′

i , such that Si ⊆ S
′

i , is an

imperfect relationR(↑S
′
i)

i defined on S
′

i and obtained as fol-
lows:

m
(↑S

′
i)

i (ϕ) =

{
mi(θ) if ϕ = θ↑S

′
i

0 otherwise
for all θ ⊆ Θi

Such that θ↑S
′
i denotes the cylindrical extension of the set

θ to S
′

i . The vacuous extension is useful when we want to
know to what extent a given instantiation may satisfy the
Bf-constraint Ci. In fact, it corresponds to a refinement of
knowledge.

The knowledge, initially, encapsulated in the bbm distri-
bution can be refined as well as coarsened. The marginal-
ization, which corresponds to a coarsening of knowledge,
of an imperfect relation Ri defined on Si, to a coarser set

S
′

i ,i.e.,Si ⊇ S
′

i , is an imperfect relation R(↓S
′
i)

i defined on
S

′

i and obtained as follows:

m
(↓S

′
i)

i (ϕ) =
∑

θ⊆Θi:θ
↓S′

i =ϕ

mi(θ) for all ϕ ⊆ Θi

Such that θ↓S
′
i denotes the projection of the set θ to S

′

i . We
can employ the marginalization when we want to know to
what extent a given partial instantiation, if extended, may
satisfy the Bf-constraint Ci.

2.2.2 Prioritized Constraints

In real world problems, not all the constraints are fully reli-
able. In fact, under uncertainty, the agent cannot entirely
rely on some constraints that can be untrustworthy, mis-
leading or that can be subject to change. For instance, in
the agricultural production planning problem the reliability
of some constraints depends on fluctuating prices and / or
weather condition. In other words, some constraints may
be relevant in a given circumstance but not in other circum-
stances. Regardless, this reliability affects the importance
of each constraint to the set of solutions. For this reason,
some constraints are prior to others.

To express priorities, we have recourse to the discount-
ing principle provided by the BFT. First, we evaluate the
reliability of each Bf-constraint Ci ∈ C using a discounting
factor θ, so that, the smaller the reliability, the stronger the
discounting. Second, we have to update the bbm distribu-
tion according to that factor. Let mi be a bbm distribution
related to the Bf-constraint Ci on the frame of discernment
Θi and let (1 − αi) be the confidence degree allocated to
that Bf-constraint Ci that corresponds to its priority level.

The updated bbm, denoted by mα
i and induced from the old

bbm mi discounted by the coefficient αi, where every lost
mass is reassigned to the universe of discourse, is obtained
as follows:

mα
i (I) =

{
(1− αi)mi(I) if I 6= Θi

αi + (1− αi)mi(I) if I = Θi

such that αi ∈ [0, 1], it is called the discounting factor
which read as follows:

• αi = 0 means that the Bf-constraint Ci is fully reli-
able, so its priority is equal to 1 and the Bf-constraint
is absolutely relevant. In this case, the bbm mi is left
unchanged.

• αi = 1 means that the reliability of the Bf-constraint
Ci is totally doubtful, so its priority will be equal to
0, which means that it is possible to violate the Bf-
constraint. In this case, all the information induced by
the Bf-constraint Ci will be forthright discarded. The
bbm mi becomes a vacuous function that corresponds
to the total ignorance state (i.e., mα

i (Θi) = 1).

The priority determine the importance of the Bf-constraint.
Let Ci and Cj be two Bf-constraints with priority levels,
respectively, αi and αj , if αi < αj then the satisfaction of
Ci is more relevant than the satisfaction of Cj . The notion
of priority induces a preorder over the Bf-constraints.

2.2.3 Soft Constraints

After expressing our beliefs on the imperfect relations and
updating those beliefs using priorities, we shall extract the
satisfaction degree of the Bf-constraints by each given in-
stantiation θ in Θ aside using the pignistic probabilities pro-
duced by the TBM pignistic transformation [8] of the bbm
distribution.

LetCi be a Bf-constraint,Ri its relation and letmi be the
associated bbm distribution over Θi, the produced pignistic
probability, denoted by BetPi, is defined as follows:

BetPi(θ) =
∑
ϕ⊆Θi

(
mi(ϕ)

|θ ∩ ϕ|
|ϕ|

)
,for all θ ∈ Θi

where, |ϕ| denotes the number of elements of ϕ. Hence, this
notion of pignistic probability allows for expressing soft or
flexible Bf-constraints starting from imperfect relations. It
is of interest to discern the difference between hard con-
straint that should be certainly and fully satisfied and soft
constraint whose satisfaction is not required to be neither
certain nor total. Therefore, the satisfaction of a given con-
straint becomes, essentially, a matter of degree, such that:

• BetPi(θ) = 1 means that the instantiation θ totally
satisfies the Bf-constraint Ci;



• BetPi(θ) = 0 means that the instantiation θ totally
violates the Bf-constraint Ci;

• 0 < BetPi(θ) < 1 means that the instantiation θ par-
tially satisfies the Bf-constraint Ci;

A Bf-constraint Ci, whose scope is Si, is said to be (totally
or partially) satisfied by a given instantiation θ ∈ Θi, noted
θ |= Ci if and only if BetPi(θ) > 0. A Bf-constraint Ci
is said to be unsatisfiable if there is no instantiation that
satisfies it, i.e., ∀θ ∈ Θi, BetPi(θ) = 0. Obviously, hard
constraints are a particular case of Bf-constraints which are
satisfied only to 1 or 0 degree.

2.2.4 Preferences over the solutions

The BetP also induces a preorder among instantiations.
Formally, let θ and θ′ be two instantiations defined on the
same set of variables, BetPi(θ) > BetPi(θ

′) means that
is, a posteriori, preferred to θ′ for the satisfaction of the
soft Bf-constraint Ci. Hence theBetP has twofold purpose
as it allows expressing soft Bf-constraints and preferences
among instantiations.

Classically, an instantiation θ of a set of variables S ⊆ X
is said to be consistent if and only if it satisfies all the con-
straints among that set. Within the BCSP view, the con-
straint satisfiability is not any more a yes/no query but a
matter of degree and so the instantiation consistency is.

To get the consistency degree of an instantiation,
we shall aggregate the satisfaction degrees of each Bf-
constraint by the instantiation under consideration. In the
literature, several aggregation functions have been pro-
posed, especially, for decision models where uncertainty
and imprecision are key issues. In order to select the ap-
propriate function, we have considered three imperative cri-
teria. First, the aggregation function should fulfill the most
basic consistency principle, every instantiation that totally
violates (i.e., BetPi(θ) = 0) at least one constraint is re-
jected. Hence, we need an aggregation operator that has an
absorbent element a = 0. Second, we require that the unit
interval [0, 1] be closed to the sought for aggregation func-
tion, so that, the resulted values may be easily interpretable
and comparable. Finally, in order to avoid falling into the
same weakness as the Fuzzy and the Possibilistic CSPs that
suffer from the ”drowning effect” because of the egalitarian
min-max operators use which barely discriminate between
instantiations that satisfy the CSP to the same degree, we
propose using a utilitarian operator for aggregation.

Given these criteria, we find out that the most appropri-
ate function may be the geometric mean. Formally, the con-
sistency degree of an instantiation θ of a set of variables

S ⊆ X is obtained as follows:

C(θ) = BetP∧{Ri|Si ⊆ S}(θ)

=

 ∏
R↑S

i |Si⊆S

{BetPi}(θ)

1/k

=

 ∏
Ri|Si⊆S

{BetPi}(θ↓S)

1/k

such that, k is the number of the Bf-constraints covering S.

• If θ totally satisfies all the Bf-constraints covering S,
it is said to be completely consistent, i.e., C(θ) = 1.

• If θ totally violates, at least, one Bf-constraint is said
to be inconsistent, i.e., C(θ) = 0.

• Otherwise, it is said to be partially consistent, i.e.,
0 < C(θ) < 1.

As the BCSP is a generalization of the classical model, if
the relations are perfect, a given instantiation is either con-
sistent (1) or inconsistent (0).

A solution of BCSP (P ) is every consistent complete
instantiation θ, i.e., an instantiation of all the variables in
X whose consistency degree is greater than 0, so that, all
the Bf-constraints in C are satisfied. This consistency de-
gree, evidently, corresponds to the satisfaction degree of the
BCSP (P ) by that instantiation.

SP (θ) = C(θ) =

 ∏
Ci∈C;R↑X

i

{BetPi}(θ)

1/m

such that, m is the total number of the Bf-constraints cover-
ing X .

Accordingly, we can merely notice that the satisfaction
degree of the BCSP, as defined above, accomplishes a sort
of quantitative discrimination among the several instantia-
tions inducing then a total preorder over them. Then, the
higher is the satisfaction degree, the better is the instantia-
tion.

The solution space of a BCSP (P ) of the set of all the
feasible solutions, i.e.,

Sols(P ) = {θ ∈ {D1 × ...×Dn}|SP (θ) > 0}

A BCSP (P) is said to be:

• Totally consistent if and only if it has at least one so-
lution that totally satisfies all the constraints of C, i.e.,
∃θ ∈ Sols(P )|SP (θ) = 1.

• Totally inconsistent if and only if all instantiations of X
are inconsistent, i.e., Sols(P ) = ∅ or also ∀θ ∈ {D1×
...×Dn}|SP (θ) = 0.



• Partially consistent if and only if all solutions
are somehow feasible, i.e., Sols(P ) 6= ∅|∀θ ∈
Sols(P ),SP (θ) < 1.

Toward the same view, the consistency degree of a BCSP is
the satisfaction degree of its best solution, i.e.,

C(P ) = SP (θ∗)

= max
θ∈Sols(P )

(SP (θ))

= max
θ∈Sols(P )

 ∏
Ci∈C;R↑X

i

{BetPi}(θ)

1/m

3 A planning problem

In this section, we suggest a Belief CSP model for a sim-
ple vegetable crops production planning problem under un-
certainty. The problem is to decide which crop to plant in
which plot (a measured area of land). However, vegetable
crops are, generally, cost expensive and of uncertain prof-
itability due to the fluctuating prices and its dependence
to weather condition that affects the harvest yields. The
generic problem could be the following: a number of crops
must be produced in a number of plots (ai). Each plot has
a limited area and grows one single crop. Each crop has
a profit (pj) and a labor-hour (hi) per unit area (1000m2)
which are uncertain. The agriculturist’s practical experience
and his preferences are considered as pieces of evidence.

A farmer has to grow cucumber, pepper, potatoes, and
peas in four plots a1, a2, a3, and a4. The total area of the
land (L) to be cultivated is 100.000m2(10ha) where a1, a2,
a3, and a4 represent, respectively, 40, 30, 20, and 10 per-
cent of L. The farmer requires a minimum profit (R) equal
to 150.000 TND (Tunisian National Dinar) and a maximum
labor-hour (H) equal to 500 hours. As well, he prefers not
to grow potatoes on the same plot for more than two years
and after potatoes production, it is preferable to grow clean-
ing crops like cucumber to maintain the soil healthiness but
he is doubtful about which crop he prefers more for a1, pep-
per or peas. The evidence we have is that, last year, potatoes
were grown in plot a4.

A BCSP (X,D,Cα, R) may be:

• X = {a1, a2, a3, a4} is the set of four plots;

• D = {D1, D2, D3, D4} , where D1 = D2 = D3 =
D4 = {cu(p1,h1), p(p2,h2), po(p3,h3), pe(p4,h4)}
where cu, p, po, and pe stands respectively for cucum-
ber, pepper, potatoes and peas;

• Cα = {(C1, α1), (C2, α2), (C3, α3)}is a set of two

Bf-constraints.

C1 :

n∑
i,j=1

ai.pj ≥ R;α1 = 0.4

C2 :

n∑
i,j=1

ai.hj ≤ H;α2 = 0.2

C3 : ai 6= ak∀i, k = 1..4 and i 6= k;α3 = 0

• R = {R1, R2, R3} is a set of imperfect relations asso-
ciated to Cα.

Giving the uncertain values of pj and hj , the bbm distri-
butions related to the imperfect relations R1 and R2 are,
respectively, illustrated in Table 1.

The priority of the Bf-constraint C3 is equal to 1(i.e.,
1− α3), so it is fully reliable and absolutely relevant which
means that it should be certainly and fully satisfied. C3 is
a classical hard constraint. The associated relation R3 is
a certain but imprecise relation where there is more than
single instantiation may fully satisfy the Bf-constraint C3.
R3 is represented using the categorical bbm distributionm3

as follows: ∀θ ⊂ Θ3, if ai 6= ak∀i, k = 1..4 and i 6= k then
θ ∈ ϕ such that m3(ϕ) = 1, otherwise, m3(θ) = 0. We
can notice that |ϕ| = 4! complete instantiations that fully
satisfy C3.

Table 1. The imperfect relations R1 and R2.
Ri mi

R1(α1 = 0.4) m1{(a1, p), (a1, pe)} = 0.5
m1{(a4, po)} = 0.3
m1{(a2, cu), (a2, p), (a3, cu)} = 0.1
m1{Θ1} = 0.1

R2(α2 = 0.2) m1{(a1, cu), (a2, cu)} = 0.3
m1{(a4, cu)} = 0.4
m1{(a4, po), (a3, po)} = 0.1
m1{Θ2} = 0.2

Given the relative priorities, the updated bbm distribu-
tions mα

1 and mα
2 related, respectively, to the imperfect re-

lations R1 and R2 are represented in Table 2. R3 is left
unchanged.

At this level, as our problem model is updated, we can
compute the satisfaction degrees of each Bf-constraint by
any complete or partial instantiation θ. For instance, let
θ1 = {(a1, cu), (a2, p)} be a partial instantiation; the satis-
faction degree of C1 by θ1, i.e., BetP1(θ1) = 0.08 whereas
the satisfaction degree of C2 by θ1, i.e., BetP2(θ1) = 0.17.
Let θ2 = {(a1, cu), (a2, p), (a3, po), (a4, pe)} be a com-
plete instantiation; BetP1(θ2) = 0.32 and BetP2(θ2) =
0.25. If we get another complete instantiation θ3 =
{(a1, pe), (a2, p), (a3, po), (a4, cu)}; BetP1(θ3) = 0.47



Table 2. The updated imperfect relations.
Ri Priority mα

i

R1 1− α1 m1{(a1, p), (a1, pe)} = 0.3
(α1 = 0.6 m1{(a4, po)} = 0.18
= 0.4) m1{(a2, cu), (a2, p),

(a3, cu)} = 0.06
m1{Θ1} = 0.46

R2 1− α2 m1{(a1, cu), (a2, cu)} = 0.24
(α2 = 0.8 m1{(a4, cu)} = 0.32
= 0.2) m1{(a4, po), (a3, po)} = 0.08

m1{Θ2} = 0.36

and BetP2(θ3) = 0.45. We can notice that the instan-
tiation θ3 is preferred to θ2 for the satisfaction of both
of the soft Bf-constraints C1 and C2. However, they are
equally preferred for the satisfaction of C3 as BetP3(θ2) =
BetP3(θ3) = 0.04.

Let us recall that every complete consistent instan-
tiation is a possible solution for the BCSP. For ex-
ample, one solution to the current BCSP may be
θ2 = {(a1, cu), (a2, p), (a3, po), (a4, pe)} whose con-
sistency degree C(θ2) = 0.15, same as θ3 =
{(a1, pe), (a2, p), (a3, po), (a4, cu)}whose consistency de-
gree C(θ3) = 0.2. However, θ3 is preferred to θ2.

The best solution consistency degree is 0.2. Hence, the
current BCSP is partially consistent as its consistency de-
gree, i.e., C(P ) = 0.2.

In order to make our framework valid, as a first step, we
have adapted the very basic Backtrack algorithm to solve
the BCSPs. However, given the sound basis of the BCSP
framework, other interesting solving algorithms as well as
consistency ones may be easily extended.

4 Further work

The large-range expressivity brought by the BFT allows
for covering both aspects of imperfection, uncertainty as
well as imprecision, soft and prioritized constraints, and
preferences over solutions. We may consider the BCSP as
a unifying and general CSP framework where mapping to
other frameworks is possible using the different kinds of re-
lations. In addition, the BCSP is too close to the real world
problems where an agent is not required to provide prior in-
formation and it takes into account his available knowledge
and his preferences.

As a generalization of the standard CSP framework, the
classical algorithms (e.g., the branch and bound algorithm,
the consistency algorithms) can be adapted to our BCSP
framework. Currently, we are working on implementing a
specific algorithm for the BCSP employing some measures
such as the belief and the plausibility offered by the BFT

and discussing its complexity.
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