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Abstract

Software testing is a process involving multiple
consecutive testing phases. Once software-units and
-components have been tested, the integration of
software-components itself must be tested. This dis-
cipline of Integration Testing involves multiple sys-
tems and resources (human and hardware) and the ef-
fort for successfully implementing an integration test-
ing scheme is easily underestimated. Yet errors de-
tected in this phase of the testing process, may require
fixes in the individual software components. Trivially,
if many such problems appear, the testing process is de-
layed and in the worst case, the roll-out of the system
has to be rescheduled. Focusing on the widely adopted
Java Enterprise Edition platform for web-services, this
paper presents an approach to move the detection of
possible integration errors from the integration testing
phase to the earlier and simpler unit testing phase, by
generating and collecting constraints relating to web-
service calls on the client side, in order to improve the
overall time required for the testing process.

1 Introduction
Recently, it was demonstrated how to automatically

generate unit tests for the business logic of Java ap-
plications that include web services [11]. More specif-
ically, a minimal set of test cases is generated which
cover the control-flow graph of that application, e.g. for
the Checkout Counter employing a Library Service

as depicted in Figure 1. If a path depends on the re-
sponse of a web-service request, an executable web ser-
vice with the desired behavior is generated as well. To
achieve this, the application is executed symbolically

in order to systematically explore all paths through
the application. During this execution, a system of
constraints with symbolic variables for both the ap-
plication’s input is created, as well as the web service
responses. Once the symbolic execution of one path is

finished, a constraint solver is used to generate concrete
values for every symbolic variable constellation. In the
end, those values guide the generation of executable
test cases and a set of web services which correspond
to the expected behavior. Thus, the generated service
acts as a stub, which always returns the same result
regardless of change in input, or as a mock, where the
return value is based on method-internal logic.

It is important to note, that the web services gen-
erated by this approach only mimics the model based
on the client’s knowledge of the server, since the server
source code is a black box to the client during gener-
ation time. While this has its own merit, integration
testing is still required to ascertain flawless component
integration. In software engineering systems are often
designed in a waterfall model approach. After writ-
ing the code, unit tests are written (or generated and
validated). Afterwards the individual software compo-
nents are tested regarding their integration with one
another. Since more than two components may exist
in a system, the integration between each and every
one of them needs to be tested. This may occur for
the individual component pairs, larger sets or in a ”big
bang” approach. For large systems with several inte-
grated components, there may exists a large amount
of these tests. Larger software companies, e.g. Google
LLC, restrict themselves to only write integration tests
for ”large, high priority“ features [21]. Integration tests
are often run during off-hours of development. Prob-
lems that occur, can only be fixed the next day. If
problems relate to two interconnected components that
both require correction, a problem with the fixes is only
detected upon the next integration testrun—another
round of fixes may be required.

We propose a system, that utilized the constraints
generated during the web service automated test case
generation phase from one (client) component, during
the test case generation phase of a (server) component.
The resulting unit test case suite is then to be inter-
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preted as follow: If a unit test case of this specific test
suite fails upon execution of the unit testing phase,
it hints at a problem that might occur later during
integration testing. By moving the detection time of
potential problems from the integration- to the unit-
testing-phase, problems that may occur due to changes
that were made to the server component are uncovered
earlier. Then, testers may run a small subset of the
integration test only involving these involved compo-
nents, thus reducing the total amount of time required
to remedy the problem.

To summarize, this paper provides the following con-
tributions:

• The detection of integration errors is shifted to
earlier testing phases.
• A system for reusing and sharing of constraint in-

formation is presented.
• We utilize the constraint sharing system to propa-

gate constraints to the automatic test case gener-
ation tool and generate a distinct integration test-
suite for the web-service software component.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the phases of software test-
ing and specifically about the relation . In Section 3 we
describe how the generated constraints can be gathered
and propose an infrastructure schema for exchanging
constraint data. In Section 4, we present related work
that is comparable to our approach, and we conclude
this paper in Section 5.

2 Integration Testing in the Develop-
ment Process

The V-Model is an abstract representation of the
process used for software development [9]. It can be
considered an extension of the waterfall model [9]. In
Figure 2, the left hand side of the model represents
steps necessary to define the goal software system.
Based upon the requirement specification, the function
and non-functional specification are developed. This
model omits, that the two lowest phases occur a num-
ber of times for a given requirement specification, de-
pending on how many systems are involved.

Afterwards, a technical specification is defined, and
the individual programs are specified. After the ac-
tual development of the software artifacts, they are
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Figure 1: An overview of two systems that exchange
data.
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Figure 2: A Software Development V-Model with In-
tegration aware Test Case Generation (IaTCG).

1

2 public c lass CheckoutCounter {
3 private f ina l long maxBalance = 50L ;
4

5 private Loan createLoan ( In t eg e r userId , L ist<
Str ing> books ) {

6 User user = l i b r a r y . getUser ( use r Id ) ;
7 long balance = l i b r a r y . getBalance ( user ) ;
8 i f ( balance <= maxBalance ) {
9 Loan approvedLoan = l i b r a r y . requestLoan (

user , books ) ;
10 return approvedLoan ;
11 }
12 throw new In su f f i c i en tFundsExcept i on ( ) ;
13 return null ;
14 }
15 . . .
16 }

Figure 3: Checkout Counter Client.

unit tested to ascertain whether or not they meet the
program testing goals. At this step, automated test
case generation may be utilized to develop the unit test
cases. If the individual programs adhere to the goals,
the integration of the programs according to the tech-
nical specification is checked. The goal of the paper,
relates to this and the aforementioned step unit-testing.

Integration testing of the individual software com-
ponents may occur in a top-down, bottom-up or big-
bang fashion, among others [5]. Assuming, that there
is some hierarchy in the way modules are integrated, we
may call modules, that require none of the other mod-
ules to offer their functionality as basic. For bottom-
up and for top-down testing modules will be assigned
to groups. In the case of bottom-up integration test-
ing, basic modules make up level 0. Level 1 makes
up groups of modules, that require some of the level



1

2 public c lass L ib ra rySe rv i c e {
3 private f ina l long maxBalance = 50L ;
4

5 @WebMethod
6 public Loan requestLoan ( User user , L i s t<

Str ing> books ) {
7 long balance = getBalance ( user ) ;
8 i f ( balance >= maxBalance ) {
9 return null ;

10 }
11 Loan loan = createLoan ( user , books ) ;
12 return loan . get Id ( ) ;
13 }
14 . . .
15 }

Figure 4: Initial Library Service Server.

0 modules to be present upon execution. This holds
for all other levels i + 1 , i ∈ N . Abiding by this pro-
cess, the modules and their dependencies are executed
concretely during this stage.

Using the top-down approach, the lower level de-
pendencies are not present upon integration testing.
The functionality of the lower-level dependencies is pro-
vided by a mock service instead, that mimic the behav-
ior of the lower-level dependencies. This is also a viable
approach,as the mocks can be designed in such a way,
that they are very close in behavior to the functional-
ity checked by test cases used in the lower-level depen-
dencies interfaces. A mismatch of mock behavior and
lower-level interface test behavior is problematic. Of
course, bottom-up and top-down approach can be com-
bined into a mix to decrease integration testing time,
depending on the tree structure of the dependency hi-
erarchy tree.

Finally, integration testing can occur by starting all
modules at the same time and testing the modules in
arbitrary order or even at once. However, first, depend-
ing on the amount of modules, it may be problematic
to create an runtime environment as that matches the
hardware of the production system. Second, if the tests
are not run at the same time, the integration test will
take a large amount of time, compared to the other
approaches. Third, if the tests are run at the same
time, it may be hard to determine which module in the
module call tree failed. This can be remedied, if error
handling and propagation are well designed and allow
for tracing by bubbled errors messages. Side effects of
running all modules of the system at once may occur
that influence the test. Coincidentally, the detection of
occurrences of these kinds of problems, is one reason
why a big-bang test may be employed in complement
with bottom-up, top-down or mixed strategies.

Next, system testing involves testing concrete user
workflows, e.g. from user creation, login, and book

1

2 public c lass LibraryServ iceV2 {
3

4 @WebMethod
5 public Loan requestLoan ( User user , L i s t<

Str ing> books ){
6 long maxBalance = getMaxBalance ( user ) ;
7 long balance = getBalance ( user ) ;
8 i f ( balance >= maxBalance ) {
9 return null ;

10 }
11 Loan loan = createLoan ( user , books ) ;
12 return loan . get Id ( ) ;
13 }
14 . . .
15 }

Figure 5: Second Version of Library Service Server.

lending in our library example illustrated in Figure 1.

Finally, the process concludes with the acceptance
testing phase. Initially, based upon the initial require-
ments specification, project acceptance criteria were
devised, that specify, what parts of the requirements
need to be fulfilled, so that the software component is
accepted as complete. Furthermore, to allow for some
room for error in software development, it specifies how
many high level, medium level and low level test fail-
ures are acceptable for the module to still past the ac-
ceptance test.

Considering the example in Figure 34, Line 2 in
CheckoutCounter and Line 2 in LibraryService
specify a maximum balance in unpaid fees that a li-
brary may accumulate, before he is denied a book loan.
If the implementation of LibraryService changes as
illustrated in Figure 5, where the maximum balance
is now an attribute defined on a per-user basis, the
CheckoutCounter would potentially not throw the
desired InsufficientFundsException to display a
message to the counter clerk.

3 Integration Aware
Test Case Generation

This section, will describe the approach, constraint
propagation system and test case generation of the pro-
posed new JUnit test suites for automatically creating
integration checker tests that take the real behavior
of multiple modules into account. The scheme pro-
posed here, is depicted in Figure 6. (1) The modified
symbolic execution system takes as input the client un-
der test (CUT). For each symbolically executed path
π through the CUT, the system generates a set Cπ of
constraints. (2) Next, the constraints are filtered into
the set CI ⊆ Cπ, This represents only the constraints
relating to variables involved in web services calls. Cur-
rently, we use a file that stores these constraints (con-
straint store).
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Figure 6: An overview of the constraint propagation
and test case generation approach.

Additionally, a unique service identifier name N
that represents the called component is calculated. It
contains the following information.

I) The domain or the network address of the called
web service,

II) the number and type of parameters of the called
method and

III) the return type of the called method.

Finally, CI and N are send to the constraint store.
In a second phase, we use the constraint store and

the service under test (including the web service) to
generate a test case (TC) for π through the CUT.

Using stored constraints for integration
checker test suite generation. (3) The second part
of the schema occurs, once the modified symbolic exe-
cution system is started in server side generation mode.
The result of the server mode execution depend on the
constraint store. The modified symbolic execution sys-
tem generates the service ID object for the method un-
der test, by examining the annotations present prior to
the method declaration. The constraint store is queried
for the constraint set for this service ID. (4) If the con-
straint store offers an empty set as result, the compu-
tation is finished. Otherwise, the test case generator
receives the result set CI and starts in normal execu-
tion mode, i.e. without taking the received constraints
into account. Once this step is completed, the test case
generator starts in additional execution mode. The
gathered constraints CI relate to the parameters and re-
turn variable of the method under test. Whenever the
symbolic execution passes a choice-point, we conjunct
the constraints CI to the constraint stack and check the
constraint solver for satisfiability as usual. This contin-
ues, until the choice-point stack is empty and all node
and edges of the control-flow graph have been covered.
If a branch, that was previously unreachable in normal
mode, becomes reachable in additional mode, this hints
at a possible integration error. (5) If a branch becomes
unreachable, we keep the normal branch, but generate
a failing test case. The test cases generated for these

1 public Libra ryServ i c eTes t {
2 @Test
3 public void t e s t ( ) {
4 User pete r = new User ( ) ;
5 Account p e t e rB i l l i n g = new Account ( ) ;
6 p e t e rB i l l i n g . se tUser ( pete r ) ;
7 p e t e rB i l l i n g . se tBalance (51L) ;
8 p e t e rB i l l i n g . s e tL imi t (52L) ;
9

10 LibraryServ iceV2 ws = new LibraryServ iceV2 ( )
;

11 assertNotEquals ( null ) ,ws . requestLoan ( peter ,
null ) ) ;

12 }
13

14 @Test
15 @Category ( Po t en t i a l I n t e g r a t i onFau l t . class )
16 public void te s t IA ( ) {
17 User pete r = new User ( ) ;
18 Account p e t e rB i l l i n g = new Account ( ) ;
19 p e t e rB i l l i n g . se tUser ( pete r ) ;
20 p e t e rB i l l i n g . se tBalance (51L) ;
21 p e t e rB i l l i n g . s e tL imi t (52L) ;
22

23 LibraryServ iceV2 ws = new LibraryServ iceV2 ( )
;

24 assertNotEquals (null , ws . requestLoan ( peter ,
null ) ) ;

25 f a i l ( ”The add i t i ona l execut ion revea led ,
that t h i s branch became unreachable ” ) ;

26 }
27 }

Figure 7: Normal WS′ Test Case and additional (inte-
gration) Web Service WS′ Test Case.

branches, are saved into a dedicated test suite, marked
with PotentialIntegrationFault.

Making use of the dedicated test suite. The
new additional automated generate test suite is used
as follows. Instead of creating a component stub or
mock for top-down and mixed-mode integration test-
ing or including the whole lower-level component in the
component currently under integration testing, neither
is necessary to reap benefits of the new approach. In-
stead, the dedicated test suite is executed against the
unmodified program, if information regarding the com-
patibility of component external use of the method is
required. Should one of the dedicated test suites fail,
this does not necessarily point to an error in the server
code. However, it does indicate, that the client that
was responsible for the creation of the relevant con-
straints, will fail if it runs into the parameter scenario
described in the test case. If, e.g., the failure of the
dedicated test suite occurs after the server code was
changed, then if this change is deemed to be correct,
then the corresponding client should be informed, that
an impending change to the server will certainly im-
pede the client operation. A secondary benefit of this
approach is, that given the case of service usage across
organizational borders, clients may voluntarily offer
their server usage constraints to the constraint store, to



possibly guide development of the server component or
at least be notified of impending compatibility break-
ing changes on the server side. Consider the simpli-
fied example: Figure 4 is the actual implementation
on the server side. The developers introduce a change
to the service which results in Figure 5. The client is
unaware of these changes and does not adapt the im-
plementation accordingly. However, if the constraints
regarding the service usage are stored in the constraint
store, upon generating test cases for the server project,
the problematic usage of the client can be exposed.
Figure 7 depicts the results of both the normal exe-
cution in Lines 1-12 and the additional generation step
in Lines 14-26. The additional generation procedure
test case will fail upon execution, giving the hint to the
server, that there is a problem with the way the service
is utilized.

4 Related Work

Automated test data and test case generation has
been the subject of an extensive research effort. As
a result, several techniques and tools have been pro-
posed. Search-based approaches [13] use optimization
algorithms to identify (near) optimal solutions. This
approach can be applied to software testing [3, 6, 16, 18]
by optimizing testing criteria. EvoSuite [10] is an au-
tomated search-based unit test generation approach.

Our approach is based upon symbolic execution.
EFFIGY [14] is one of the earliest systems that uses
symbolic execution to generate test cases for programs.
Recent approaches [7, 12, 19, 20] use symbolic (or con-
colic as a combination of symbolic and concrete) ex-
ecution to generate test cases for more complex pro-
grams. Muggl [17] is an symbolic-execution tool for
automated unit test generation.

Based on this, several techniques exist, that aim
to test web service, e.g. by generating data for re-
quests that invoke specific operations of the service
[2, 4, 22, 8, 15] and generate unit tests based upon
the source code [11, 1]. However, these techniques take
only either the client-, or only the server-side into con-
sideration and are unaware of integration implications
that can be observed if both sides are taken into ac-
count. To the best of our knowledge, no other ap-
proaches have used the constraints generated during
symbolic execution of web service clients and reused
them to generate a dedicated test suite for the purpose
of detecting potential integration test failure ahead of
the integration test phase.

5 Conclusion

Integration testing requires significant amount of
time and resources to complete, which is why some

larger companies restrict the use of integration testing
to high profile features [21]. To answer this, we have
presented an approach to move the detection of po-
tential errors regarding the integration of service from
the integration phase to earlier phases, by enabling the
detection of potential problems during test case gener-
ation for single component (mock-less) unit testing.

The approach extends an existing symbolic execu-
tion automated test case generation tool, capable of
generating web service mocks and stubs, with the abil-
ity of reusing constraints as test artifacts for future test
case generation runs. This allows us to detect if service
consuming clients—even from other organizations—
may be affected by changes in the source code of
the service providing classes, without doing integration
testing.

Due to the prototypical nature of this work, the con-
straint store only stores its artifacts directly as objects,
so a more robust architecture for storing constraints
would be preferable. Currently, the work focused on
web services, as they are a popular means of integrat-
ing components across organizational boundaries, but
it can be easily applied to other modes of interaction,
e.g. message oriented middleware.
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