
Formalization and Verification of the OpenFlow
Bundle Mechanism Using CSP

Huiwen Wang Huibiao Zhu∗ Yuan Fei Lili Xiao
Shanghai Key Laboratory of Trustworthy Computing,

School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China

Abstract—Software Defined Network (SDN) is an emerging
architecture of computer networking. The most important feature
of SDN is that it separates the control plane from the data
plane. OpenFlow is considered as the first and currently most
popular standard southbound interface of SDN. It is a commu-
nication protocol which enables the SDN controller to directly
interact with the forwarding plane. The widespread use makes
the reliability of OpenFlow important. The OpenFlow bundle
mechanism is a new mechanism proposed by OpenFlow protocol
to guarantee the completeness and consistency of the messages
transmitted between SDN switches and controllers during the
communication process. Due to the requirement of reliability and
security of OpenFlow, we think that it is of great significance to
formally analyze and verify the safety-relevant properties of the
mechanism. In this paper, we apply Communication Sequential
Processes (CSP) and the model checker Process Analysis ToolKit
(PAT) to model and verify the OpenFlow bundle mechanism.
Our formalization and verification show that the mechanism can
satisfy four properties: deadlock freeness, parallelism, atomicity
and order property, from which we can conclude that the
mechanism offers a better way to guarantee the completeness
and consistency.

Keywords—OpenFlow; Bundle Mechanism; Formalization;
Verification

I. INTRODUCTION

Software Defined Network (SDN) is an emerging archi-
tecture of computer networking which is totally different
from the current network infrastructure. SDN separates the
control plane and the data plane to realize the flexibility
and programmability of the network. OpenFlow protocol was
originally proposed for campus network [1]. It is the first and
currently the most popular southbound interface of SDN. It
first defines the communication protocol which enables the
SDN controller to directly interact with the forwarding plane
consisting of network devices such as switches [2]. Therefore,
formalizing and verifying the mechanism of OpenFlow proto-
col is necessary.

OpenFlow protocol supports three kinds of messages:
controller-to-switch messages, asynchronous messages and
symmetric messages [3]. The bundle message is a kind of
controller-to-switch messages put forward to guarantee the
consistency and completeness of communication. In recent
years, several methods have been given to solve problems
like packet losses and duplications [4]. The bundle mechanism
is one of the solutions proposed by OpenFlow. A bundle is

∗Corresponding Author. E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu).

a sequence of OpenFlow messages sent from the controller
to the switch and all the modifications in these messages
are applied as a single operation. The bundle mechanism
groups related changes and applies them together so that the
completeness can be guaranteed [5]. And it also supports the
order property. It means that the modifications inside a bundle
should be applied in sequence. Our work in this paper is to
model and verify the mechanism.

The remainder of this paper is organized as follows. In
section 2, we present an overview of the OpenFlow bundle
mechanism and a brief introduction to CSP. Section 3 shows
the formalization of the OpenFlow bundle mechanism. The
implementation and verification of the model are presented in
section 4. Finally, we conclude the paper and discuss some
possible future work in section 5.

II. BACKGROUND

In this section, we give an overview of the OpenFlow bundle
mechanism and a brief introduction to the CSP is presented
as well.

A. The OpenFlow Bundle Mechanism

OpenFlow specification has defined a configuration that the
switch uses bundle messages as a transmission manner. A
sequence of OpenFlow messages sent from the controller to
the switch is stored in a bundle. Each bundle is specified with
a unique bundle ID in a specific controller connection.

The bundle messages are transmitted between the controller
and the switch. And there are two kinds of bundle messages:
the bundle control message and the bundle add message. The
bundle control message is used to perform operations on
a bundle, e.g. open operation, close operation and commit
operation. The bundle add message is formatted as a regu-
lar OpenFlow message which includes modifications in the
message to be applied later. The bundle message has two
properties: atomicity and order property, which are shown by
the parameter flag. Atomicity means that the modifications
should be done all or nothing. And order property means that
the modifications should be executed in the order they are
added in the bundle.

When a bundle is open, messages can be stored in the
bundle without being applied. When the switch commits a
bundle, the bundle should be closed and the switch should pre-
validate the modifications inside the bundle and commit the

DOI reference number: 10.18293/SEKE2018-127

bundle afterwards. The whole process includes the following
five oprations: opening a bundle, adding a message to a bundle,
closing a bundle, committing a bundle and discarding a bundle.
The detailed descriptions are presented as below:

1) Opening a bundle: The switch opens a new bundle
according to the connection ID and bundle ID pairs. The
switch should guarantee the validity of the connection
ID, by checking whether the bundle already exists and
verifying the correctness of other properties.

2) Adding a message to a bundle: The switch adds mes-
sages into a bundle and then the switch fetches the
bundle by the ID pairs. Once fetched successfully,
the switch validates properties of the added OpenFlow
messages. For example, the switch should guarantee the
consistency of the OpenFlow messages.

3) Closing a bundle: The switch closes the fetched bundle.
A bundle should be closed before it is committed while
a nonexistent bundle can not be closed.

4) Committing a bundle: The switch commits the fetched
bundle. If a bundle is not closed, the switch closes
the bundle and then commits it. The process of com-
mitting should satisfies the features of atomicity and
order property. The modifications should be applied in
all or nothing and in order. Whether the committing
is successful or not, the switch discards the bundle
afterwards.

5) Discarding a bundle: A bundle can be discarded during
the whole process from the creation of the bundle. But
if the bundle does not exist, the operation fails.

In addition, the switch must support the exchange of echo
messages during the transmission of bundle messages to
guarantee the liveness of the connection.

B. CSP

A brief overview of CSP is given in this subsection. Process
algebra is a representative of the formal methods, which can
illustrate concurrent systems easily using intuitive expressions
and strict mathematical theories. CSP is proposed by C.A.R
Hoare in 1978, which enriches process algebra [6]. Due to the
powerful expression, CSP has been successfully applied in
many fields [7], [8]. CSP processes are composed of primitive
processes and actions. The syntax of a subset of the CSP is
given as below. P and Q are two processes. a and b are two
actions. And c is a channel.

P,Q ::=Skip|Stop|a → P |c?x → P |c!v → Q|P / b . Q

|P ;Q|P�Q|P ||Q|P |||Q||P [|X|]Q

• Skip denotes that a process does nothing but terminates
successfully.

• Stop denotes that the process is in the state of deadlock
and does nothing.

• a → P represents that the process first engages in action
a, then the subsequent behaviour is like P .

• c?x → P receives a message through the channel c and
assigns it to a variable x, then behaves like P .

• c!v → Q sends a message v using the channel c, then the
behaviour is like P .

• P / b .Q denotes if the condition b is true, the behaviour
is like P , otherwise, like Q.

• P ;Q performs P and Q sequentially.
• P�Q behaves like either P or Q and the choice is made

by the environment.
• P ||Q denotes that P runs in parallel with Q.
• P |||Q indicates that P interleaves Q which means P and

Q run concurrently and randomly.
• P [|X|]Q indicates that P and Q perform the concurrent

events on the set X of channels.

III. FORMALIZATION OF THE OPENFLOW BUNDLE
MECHANISM

In this section, we model the OpenFlow bundle mechanism
using CSP. The formalization is based on the description of
the mechanism presented in section 2.

A. Sets, Messages and Channels

For convenience, we define seven sets in our model. The
set ConnectionID represents identities of connections and
the set BundleID represents identities of bundles. The set
Type denotes types of bundle messages, e.g echo, open,
close, commit and discard. The set Flag shows the two
properties of a bundle, e.g. atomicity and order property. The
set Operator represents operations of switches. The set State
indicates the states of the bundle including open and close.
And the set Content represents other message contents. Based
on the definitions above, we model the messages used in the
mechanism as below:

MSG=dfMSGecho ∪MSGcon swt ∪MSGswt bun,

MSGcon swt=dfMSGcon ∪MSGadd ∪MSGerr,

MSGswt bun=dfMSGreq ∪MSGrep ∪MSGerr,

MSGecho=df{connection id.content|content ∈ Content,
connection id ∈ ConnectionID}.

MSGcon=df{connection id.bundle id.type.flag|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
type ∈ Type, flag ∈ Flag},

MSGadd=df{connection id.bundle id.flag.content|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
flag ∈ Flag, content ∈ Content},

MSGerr=df{connection id.bundle id.type|
connection id ∈ ConnectionID,
bundle id ∈ BundleID, type ∈ Type},

MSGreq=df{connection id.bundle id.operator.content|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
operator ∈ Operator, content ∈ Content},

MSGrep=df{connection id.bundle id.operator.state|
connection id ∈ ConnectionID,
bundle id ∈ BundleID,
operator ∈ Operator, state ∈ State}.

We define three kinds of channels to model the communi-
cation among components:
• ComCS is a channel for controllers and switches to

transmit bundle messages.
• ComSB is a conceptual channel used to represent the

communication between the switch and its bundle process
field.

• ComEcho is an optional channel for controllers and
switches to transmit echo messages.

B. Components

In this subsection, we use CSP to model OpenFlow con-
trollers and switches which adopt bundle messages in the
transmission manner. There are two levels in the model system.
The first level happens between the controller and the switch.
In the second level, the switch will search the bundle field it
stores for the specific connection. To simplify, we abstract
a component Bundle communicating with the switch to
simulate the process that the switch searches the bundle field.
Our whole model is composed of three processes: Controller,
Switch and Bundle.
Controller. The controller sends a sequence of OpenFlow
modification requests in a bundle to switches. After that the
controller will receive the response messages from switches.
Each connection between a controller and a switch has an
identity. At the same time, the controller supports exchanging
echo messages to check the liveness of the connection. We
model the behaviors as followed:

Controller(connection id, bundle id, type)=df (ComEcho!Msgecho → ComEcho?Msgecho)
/type = echo.
(ComCS!Msgcon swt → ConCS?Msgcon swt)

→ Controller(connection id, bundle id, type);

Switch. After receiving the message sent from the controller,
the switch will search its bundle field to perform validations
corresponding to the message received. We abstract the process
as the communication between the switch and its bundle field.
The switch sends a request message to its bundle field and
receives a response after the bundle field checks the request
message. Then the switch sends a corresponding response
message to the controller. We model the behaviors as below:

Switch(connection id, bundle id, type)=df

ComEcho?Msgcon swt →
(ComEcho!Msgecho)
/type = echo.
(ComSB!Msgswt bun → ComSB?Msgswt bun

→ ComCS?Msgcon swt)

→ Switch(connection id, bundle id, type);

Bundle. It is a process abstracted out from the performance
of switches after receiving bundle messages. The bundle fields

store bundles created by a switch. And the pre-validations of
messages happen in this process. The detailed description can
be found in section 2.The behaviors are modelled as below:

Bundle(connection id, bundle id, operator)=df

Com?MSGswt bun →
Assort(connection id, bundle id, operator);(

Com!MSGswt bun →
Bundle(connection id, bundle id, operator)

)
;

Assort(connection id, bundle id, operator)=df

if(operator == opn)
then(openBundle(connection id, bundle id, operator))
elseif(operator == add)
then(addBundle(connection id, bundle id, operator))
elseif(operator == cls)
then(clsBundle(connection id, bundle id, operator))
elseif(operator == cmt)
then(cmtBundle(connection id, bundle id, operator))
elseif(operator == dis)
then(delete());

The five operations are described respectively as below:
1) openBundle(connection id, bundle id, operator)

creates a new bundle in the switch’s bundle field. The
switch must perform the following validations. The
connection should be reliable and the bundle id should
refer to a nonexistent bundle. And if the two conditions
are satisfied, the value of bundle id should be set to
false and the state of the bundle is set to open and
then return true.

openBundle(connection id, bundle id)=df
setContent(true, setBundleID(false),
setState(open))

/

(
(connection id ∈ ConnectionID)

∧ (bundle id /∈ BundleID)

)
.

setContent(false)

; openBundle(connection id, bundle id);

2) addBundle(connection id, bundle id, operator)
adds messages to a bundle. When the switch adds
messages, it should first fetch the bundle using the
bundle id and connection id pair. We define the
parameter vars as the number of messages to be added.
If the fetched bundle is open and other properties are
legal, the switch can add the message successfully and
return true.

addBundle(connection id, bundle id)=df |||i∈vars
setContent(true, setMsgNum(num+ 1))

/

 (connection id ∈ ConnectionID)
∧ (bundle id ∈ BundleID)
∧ (statebundle id = open)

 .

setContent(false)

; addBundle(connection id, bundle id);

3) clsBundle(connection id, bundle id, operator) clos-
es a bundle after finishing adding messages. And the

bundle to be closed should be fetched successfully with
connection id and bundle id pairs and its state should
be open. Once all these validations are successful, the
bundle state is set to close and return true.

clsBundle(connection id, bundle id)=df
setContent(true, setState(close))

/

 (connection id ∈ ConnectionID)
∧ (bundle id /∈ BundleID)
∧ (statebundle id = open)

 .

setContent(false)

; clsBundle(connection id, bundle id);

4) cmtBundle(connection id, bundle id, operator)
commits the bundle. After fetching the bundle with
legal connection id and bundle id pairs, the switch
performs the following actions. Firstly, if the bundle
state is open, the switch closes the bundle and then
continues to commit the bundle. Secondly, it verifies
the flag associated with the bundle and performs the
corresponding actions.

cmtBundle(connection id, bundle id)=df

appMsg(connection id, bundle id);(
setContent(true, setCmtNum(MsgNum));
disBundle(connection id, bundle id)

)
/

 (connection id ∈ ConnectionID)
∧ (bundle id ∈ BundleID)
∧ (statebundle id = close)

 .

(
clsBundle(connection id, bundle id);
cmtBundle(connection id, bundle id)

)
/

 (connection id ∈ ConnectionID)
∧ (bundle id ∈ BundleID)
∧ (statebundle id = open)

 .(
setContent(false, setCmtNum(0));
disBundle(connection id, bundle id)

)

; cmtBundle(connection id, bundle id);

5) disBundle(connection id, bundle id, operator) dis-
cards the bundle fetched with the connection id and
bundle id pair. Then it sets the bundle id to be 1 and
deletes all the messages in the bundle regardless of the
bundle state.

disBundle(connection id, bundle id)=df
setContent(true, setBundleID(true),
setMsgNum(null))

/

(
(connection id ∈ ConnectionID)

∧ (bundle id ∈ BundleID)

)
.

setContent(false)

; disBundle(connection id, bundle id);

And the mechanism should support the exchange of echo
messages and creations of multiple bundles. We add the two
processes into our model as below:
Echo. Exchanging echo request and echo reply messages
is supported during the whole process of the bundle. Echo
messages are not included in a bundle and only transmit-
ted between the controller and the switch with the channel

ComEcho. And multiple connections may be included. Mul-
tiple bundles can be created in parallel. We use N to represent
the number of interleaving connections.

Echo()=df |||i∈N Controller(i, bundle id, echo)
|[ComEcho]|
Switch(i, bundle id, echo)

BundleSys. The process of the creation of the bundle can
be modeled as the parallel composition of the the controller,
switch and bundle process and multiple connections may be
included. N and M represents the number of connections and
the number of bundles respectively.

BundleSys()=df |||i∈N,j∈M,type∈Type Controller(i, j, type)|[ComCS]|
Switch(i, j, type)|[ComSB]|
Bundle()

C. System

After modeling the processes Echo() and Bundle(), the
OpenFlow Bundle architecture can be modeled as the con-
currence of the two processes.

System()=dfEcho()|||BundleSys()

Fig.1 shows the whole system we have modeled. We
mark the Echo part of the system with color blue and the
BundleSys part with color black.

Fig. 1. Modeled System of OpenFlow Bundle Mechanism

IV. IMPLEMENTATION AND VERIFICATION

In this section, we encode the CSP description above in PAT
code and perform a series of validations. The verification is
about four key properties of the OpenFlow Bundle Messages
transmission. They are Deadlock Freeness, Parallelism, Atom-
icity and Order Property. In the following part, we give the
detailed description.

A. Implementation in PAT

PAT is a model checker tool for automatic system analysis
based on CSP [9]. Many systems can be verified in PAT such
as concurrent real-time system, probabilistic systems and other

domains [10], [11]. In this subsection, we encode our model
in PAT and verify it.

We define some significant channels and variables. N repre-
sents the number of connections between multiple controllers
and a switch. M denotes the number of bundles stored in
bundle field. P indicates the number of messages added into
a bundle. We use channel ComCS[N], channel ComSB[N]
and channel ComEcho[N] to describe different transmissions.

In the trial, we set N to be 3, M to be 2 and M to be
4 randomly respectively. And the buffer size is set to be 0 to
ensure the communication among components is synchronous.

#define N 3;
#define M 2;
#define P 4;
channel ComCS[N] 0;
channel ComSB[N] 0;
channel ComEcho[N] 0;

We define some arrays to determine whether the process is
successfully executed. We set the variables to be 1 to represent
true and 0 to represent false. We also define some other arrays
to record the state of the bundle, the messages added inside
the bundle and the message committed as the executed results.
Some of the declarations are given as below:

var EchoReturn = true;
var msgNum[N*M];
var cmtNum[N*M];

We define five functions with the same passing parameters
and call them with different values. Then we implement the
processes from the creation to the discard of a bundle. Because
there may be multiple controllers connected to a switch and
more than one bundle, we use subBundleSys to represent a
single connection and use i,j as connection id and bundle id
to distinguish it.

subBundleSys(i,j)=
(OpenBundle(i,j);AddBundle(i,j);
CloseBundle(i,j);CommitBundle(i,j)
|||Echo(i);

The OpenFlow Bundle message transmission system can
be implemented by taking advantages of non-determinism and
interleaving, with i identifying the number of each connection.
We give the definition of the complete system as follows:

BundleSystem()=
Init();(|||i:{0..N-1}@subBundleSys(i,0));

B. Verification

In this subsection, we use model checker PAT to simulate
the execution of transmission of OpenFlow bundle messages
and verify the properties. PAT searches the state space of the
system until it locates a counterexample or exhausts the state
space.
Property 1: Deadlock Freeness

If a component waits to receive information and no other
components feel like sending messages to it, the system gets

stuck in a deadlock state. A security protocol should be free
of deadlock. PAT tool provides a primitive assertion to verify
the property as below:

#assert BundleSystem() deadlockfree;

We can conclude from Fig 2 that the system is free of
deadlock.
Property 2: Parallelism

The system must support exchanging echo messages. Par-
allelism means echo messages can be transmitted without
waiting for the end of the bundle and support multiple
controller channels as well. It allows multiple bundles to be
created in parallel. Randomly, we define three bundles created
by different controllers and we add four messages into each
bundle. Our goal is that in the end, the number of messages
that each bundle commits successfully is four.

#define Parallelism(cmtNum[0] == 4&&
cmtNum[1] == 4&&
cmtNum[2] == 4);

#assert BundleSystem() reachesParallelism;

Fig 2 shows that the verification result of parallelism is
valid which means that the mechanism can support exchange
echo messages with multiple bundle messages transmitted in
parallel.
Property 3: Atomicity

Atomicity means that the switch should commit the mes-
sages inside the bundle in an all-or-nothing way. If one or more
messages stored in the bundle can not be committed properly,
then no messages will be committed. All the messages should
be pre-validated. We set the values to true or false to determine
whether it can be committed successfully. Then we check
whether the number of committed messages of each bundle
is zero or all.

#define Atm0(cmtNum[0] == 0 xor cmtNum[0] == 4);
#define Atm1(cmtNum[1] == 0 xor cmtNum[1] == 4);
#define Atm2(cmtNum[2] == 0 xor cmtNum[2] == 4);
#define Atomicity(Ato0 && Ato1 && Ato2);

If the verification is valid, the OpenFlow bundle mechanism
can guarantee atomicity.

#assert BundleSystem() |= Atomicity;

As shown in Fig 2, the bundle commits either all the
messages inside it or none of the messages which satisfies
the atomicity property.
Property 4: Order Property

If the switch supports the order property, it should strictly
commit the messages according to the order they added. We
use array msgApplied to represent whether the message is
committed. There are three valid conditions listed as follows.
None of the messages is committed. The former messages are

committed and the latter ones are not. And all of the messages
are committed.

#define NoApl(msgApplied[0] == 0&&
msgApplied[1] == 0);

#define ForApl(msgApplied[0] == 1&&
msgApplied[1] == 0);

#define AllApl(msgApplied[0] == 1&&
msgApplied[1] == 1);

#define Order(NoApl xor ForApl xor AllApl);

The system should satisfy any one of the three conditions.

#assert BundleSystem() |= Order;

The messages are committed in sequence which satisfies the
order property as shown in Fig 2.

Fig.2 shows the verification results of all the properties
and they are all valid. We can conclude that the OpenFlow
bundle mechanism can guarantee the four properties to keep
consistency and completeness of the communication.

V. CONCLUSION

The OpenFlow bundle mechanism is proposed to provide
a method for guaranteeing consistency and completeness of
network updates. In this paper, we construct a formal model for
the OpenFlow bundle mechanism based on CSP. In addition,
we encode the CSP description in the model checker tool
PAT and perform the validation of four properties including
deadlock freeness, parallelism, atomicity and order property.
Corresponding to the verification results, we conclude that the
mechanism can guarantee these transmission properties.

In the future, we will continue our work on the formal-
ization and verification of OpenFlow. As the communication
process we model in this paper is synchronous, We plan to
explore a more general method which can fully guarantee
consistency and completeness of the communication process
in asynchronous situations based on time.

Acknowledgement. This work was partly supported by
Shanghai Collaborative Innovation Center of Trustworthy Soft-
ware for Internet of Things (No. ZF1213).

REFERENCES

[1] Mckeown, Nick, et al. ”OpenFlow:enabling innovation in cam-
pus networks.” Acm Sigcomm Computer Communication Review
38.2(2008):69-74.

[2] Kreutz D, Ramos F M, Verissimo P, et al. Software-Defined Networking:
A Comprehensive Survey. Proceedings of the IEEE, 2015, 103(1): 14-
76.

[3] Lara A, Kolasani A, Ramamurthy B. Network Innovation using Open-
Flow: A Survey. IEEE Communications Surveys & Tutorials, 2014,
16(1):493-512.

[4] Kohler, Thomas, F. Drr, and K. Rothermel. ”Update consistency in
software-defined networking based multicast networks.” Network Func-
tion Virtualization and Software Defined Network IEEE, 2016:177-183.

[5] Azodolmolky, Siamak. Software Defined Networking with OpenFlow.
Packt Publishing, 2013.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice/Hall
International, 1985.

[7] Lowe G, Roscoe B. Using CSP to detect errors in the TMN protocol.
IEEE Transactions on Software Engineering, 1997, 23(10): 659-669.

[8] Roscoe A W, Huang J. Checking noninterference in Timed CSP. Formal
Aspects of Computing, 2013, 25(1): 3-35.

Fig. 2. Verification Results of Four Properties

[9] PAT, PAT: Process analysis toolkit. [Online]. Avail-
able:http://pat.comp.nus.edu.sg/

[10] J. Sun, Y. Liu, and J. S. Dong, Model checking CSP revisited: Intoducing
a process analysis toolkit, in Leveraging Applicaions of Formal Methods,
Verification and Validation. Springer, pp. 307-322, 2009.

[11] Yuanjie, S. I., et al. ”Model checking with fairness assumptions using
PAT.” Frontiers of Computer Science 8.1(2014):1-16.

