
Revisiting the Conclusion Instability Issue in
Software Effort Estimation

Michael Franklin Bosu1, Solomon Mensah2, Kwabena Bennin2 and Diab Abuaiadah1

1Centre for Business, Information Technology and Enterprise, Wintec, Hamilton, New Zealand

2Department of Computer Science, City University of Hong Kong, Hong Kong
{michael.bosu, diab.abuaiadah}@wintec.ac.nz, {smensah2-c, kebennin2-c}@my.cityu.edu.hk

Abstract—Conclusion instability is the absence of observing the

same effect under varying experimental conditions. Deep Neural
Network (DNN) and ElasticNet software effort estimation (SEE)
models were applied to two SEE datasets with the view of resolving
the conclusion instability issue and assessing the suitability of
ElasticNet as a viable SEE benchmark model. Results were mixed
as both model types attain conclusion stability for the Kitchenham
dataset whilst conclusion instability existed in the Desharnais
dataset. ElasticNet was outperformed by DNN and as such it is not
recommended to be used as a SEE benchmark model.

Keywords - Conclusion Instability; Software Effort Estimation;
Prediction model; ElasticNet; Deep Neural Network

I. INTRODUCTION

Software effort estimation (SEE) is part of the broader
discipline of empirical software engineering (EMSE) that rely
on evidence to make predictions about the estimated effort
required to complete software projects. The importance of
predicting software effort cannot be overemphasized as it has
effect on the estimated budget for software projects. Both the
research community and software engineering practitioners have
not been able to identify a frontrunner algorithm as several
factors such as datasets, experimental team, pre-processing
techniques, etc [1] are known to affect the outcome of these
algorithms. The challenge therefore is the ability to consistently
and uniformly present the results of empirical software
engineering models. The current research evidence indicates
several conflicting and confusing results especially with regard
to the validity of results as it changes with the aforementioned
factors. This phenomenon is known as conclusion instability.
Conclusion instability refers to the lack of consistent results
observed from software engineering experiments [1]. The cause
of this effect is attributed to multiple factors such as
preprocessing, different datasets, researcher bias, inadequate
reporting of research protocol and so on.

 The conclusion instability problem in empirical software
engineering unfortunately defeats or it is at variance to the goal
of science in general which is the ability of an effect to be
observed in multiple experimental conditions [1]. This has
affected the generalization of results leading to the discovery of
the “best” effort estimation algorithm being elusive.

There are two objectives for this study. First is to assess the
viability of an approach introduced in this paper to address “the
result interpretation issue” which is an aspect of the conclusion
instability problem. This will be done by assessing whether the
use of different prediction algorithms on a given dataset will
yield the same results. The second objective is to evaluate
ElasticNet as a benchmark SEE algorithm. Two classical SEE

datasets have been used in the development of effort prediction
models in this paper. We will adopt the same procedure
employed in our previous paper [2] by generating three effort
classes using the density quantile function.

This study applies two SEE modelling techniques on each
dataset to assess whether the results are classified into the same
classification band. The intention is to assess whether results
from multiple estimation models using the same dataset can be
classified as generating the same “good” or “bad” results. The
advantage of this is that, there will be no need to apply effect
size on the models, thus making it easier to interpret and
removing one layer of computation because effect size in itself
can also lead to conclusion instability when the modelling
technique is changed [1]. It is worth noting that we are not
comparing estimation models, rather we seek to investigate
whether the estimation results of multiple prediction algorithms
can be classified into the same band under the same
experimental condition (only the dataset changes). We will
subsequently assess ElasticNet as a potential benchmarking
SEE algorithm with the popular and highly efficient Deep
Neural Network (DNN) algorithm.

The rest of the paper is as follows. Section II presents the
literature review. Section III is about the method employed in
conducting the experiments. Section IV is the analysis of the
result and Section V is the discussion and conclusion.

II. LITERATURE REVIEW

Menzies and Shepperd [1] gave prominence to the
conclusion instability issue in an editorial of a Special Edition
of the EMSE journal in 2012. The authors explained conclusion
instability as the inability of software engineering experiments
to discover a certain effect which can be reproduced under
multiple experimental conditions such as the use of different
datasets, algorithms, researchers, accuracy measures and so on.
They [1] identified two major sources of conclusion instability
as bias and variance. Bias is said to measure the deviation
between predicted values and actual values. Variance on the
other hand is measured by the deviation between different
predictions of the estimators.

Turhan [3] outlined characteristics of SEE data that could
result in conclusion instability. Covariate shift is where the
distribution of the training set is different from the validation or
test sets and as such the model that was generated by the training
data is not able to predict the test data effectively as well as any
future project. Prior probability shift is where the distribution of
the explanatory variable of the training data and test data are

DOI reference number: 10.18293/SEKE2018-126

different. Other types of data shift problems are sample
selection bias, imbalanced data, domain shift and source
component shift

Menzies et al. [4] conducted a study using 158 SEE methods
based on COCOMO dataset features. It was realized that
“different datasets sources, different evaluation methods and
different random selection of data” led to different results at
each occasion which confirm the conclusion instability in SEE
methods. They however found four methods that consistently
provided better results than the others.

Mair and Shepperd [5] reviewed the result of studies that
compared regression techniques with analogy techniques for
software cost prediction. They discovered inconsistencies in the
result. They found no clear favourite technique as an equal
number of studies favoured either approach. They also observed
results being inconsistent in cases where even the same datasets
were used. This is one of the issues this study is attempting to
explain, whether the results were actually inconsistent or there
should be a new approach in interpreting the result.

Two research questions (RQ) are used to address the
objectives of this study:

RQ1: Do SEE models of different learning algorithms result in
the same effort class?
RQ2: How does the performance of Deep Neural Network SEE
models differ from ElasticNet SEE models?

III. METHODOLOGY

A. Dataset Description
Two classical datasets from the tera-PROMISE repository

(http://openscience.us/repo/) have been used in the development
of the SEE models. Though these datasets are old, we employed
them because they have become the benchmark datasets for SEE
studies. A brief description of these datasets is provided.

The Desharnais dataset was collected by Jean-Marc
Desharnais from ten organizations in Canada. The projects in
this dataset were undertaken between 1983 and 1988. The
dataset consists of 81 records and 12 attributes, with size
measured in function points. We used the 77 version of the
dataset as a result of 4 missing records. Summary statistics for
relevant features of the dataset are provided in Table 1.

Table 1. Descriptive statistics for Desharnais dataset

Feature N Min Max Mean Std.Dev Skew Kurt
TeamExp 79 0 4 2.27 1.34 -.042 -1.26

ManagerExp 78 0 7 2.67 1.52 .20 .07

Transactions 81 9 886 179.90 143.32 2.36 7.73

Entities 81 7 387 122.33 84.88 1.34 1.48

Envergure 81 5 52 27.63 10.59 -.11 -.28

PointsNonAjust 81 62 1116 287.05 185.11 1.67 4.16

Effort 81 546 23940 5046.31 4418.77 2.01 4.72

 The Kitchenham dataset was collected from American-
based multinational Computer Sciences Corporation (CSC).
This dataset contains information related to 145 software
development and maintenance projects that CSC undertook for
several clients.

The projects were undertaken between 1994 and 1999 with
10 attributes including the start date and estimated completion

dates. Summary statistics of the relevant features of the
Kitchenham dataset are provided in Table 2.

Table 2. Descriptive statistics for Kitchenham dataset

Feature Min Max Mean Std.Dev Skew Kurt
Actual_duration 37 946 206.45 134.09 1.93 6.12

AFP 15.36 18137.48 527.67 1521.99 10.92 126.70

Actual_effort 219 113930 3113.12 9598.01 10.87 125.64

B. Data Preprocessing

In order to ameliorate the problem of data quality such as
missing data, outliers and inferential data, the two datasets were
preprocessed in the following ways for effective and efficient
model construction.
 We observed all the instances per each dataset to eliminate
missing values. Only a handful of missing entries (4 instances)
were observed in the Desharnais dataset. Out of the 145 projects
in the Kitchenham, three projects were removed as they were
found to have missing entries. With the use of kernel density
plots and data trimming technique [6], outliers were identified
and removed. Cook’s distance was used in the identification and
treatment of influential data points during the model
construction. In this study, we realized that, these influential
data points identified yielded no negative effects on the models
when the datasets were normalized using the z-score
normalization technique as done in our previous study [2].
 We selected prior features/variables which are known prior
to the development of a new software project. Thus, with regard
to the Kitchenham dataset, we made use of the adjusted function
points (AFP) and project type as the independent variables and
actual effort as the dependent variable. With regard to the
Desharnais dataset, the independent variables selected are team
experience (teamExp), manager’s experience (managerExp),
programming language, number of entities, number of
unadjusted function points (pointsNonAdjust), number of
transactions and development environment (envergure). The
dependent variable from the Deshairnais is the development
effort variable measured in person-hours.

C. Effort Estimation Models

Two prediction models have been applied to the two studied
datasets. Deep Neural Network (DNN) and the ElasticNet
(ENR) algorithms have been used in the development of the SEE
models. ENR was found in our previous study [2] as a viable
benchmarking model. The ElasticNet proposed by Zou and
Hastie [7] is a regularization and variable selection technique
which helps in eliminating highly correlated predictor variables
from the estimation model.

We benchmarked the prediction results from the ElasticNet
model to a complex and robust prediction model, namely a Deep
learning model which yielded better prediction accuracy in a
previous study [8]. We constructed a DNN which makes use of
multiple hidden layers and an output layer with their respective
neurons to automatically learn from a set of project cases and
gives the resulting prediction for the target (in our case, the
software effort of new projects). The Levenberg-Marquardt
backpropagation optimization training function is employed to
update the weights of the neurons in the hidden and output layers

respectively. The hyperbolic tangent activation function is used
in each of the neurons for giving the respective outputs. We
followed the same experimental setup as done in previous study
[2] by using the leave-one-out cross validation for setting up
each of the prediction models.

In order to facilitate self-guidance in the interpretation of the
level of effort expended, we made use of the classification
scheme defined in Mensah et al. [2] to classify the results of
our modelling to the appropriate effort class. Software effort
classification is the process of categorizing estimated software
effort into its respective class. The scheme is based on historical
project datasets (historical data being the same as training set in
this study). A goal of the classification scheme is to facilitate
easy interpretation of the estimated software effort (YR) in the
context of existing organization data. In order to achieve these
levels of classification, we discretize the actual efforts of the
datasets into three classes (low, moderate and high) based on
the density quantile theory. This density quantile theory was
utilized because it gives rise to an optimal spacing selection
threshold values for categorizing the effort into their respective
classes [2].

The selected independent variables together with the
software effort (dependent variable) are used to setup the
prediction models. We denote the estimated effort values from
the models as Output (YR). The Output (YR) from the predictive
model is then classified into its respective class. The estimated
effort, Output (YR) are categorized into their respective effort
classifications. Thus, estimated effort values less than Ql are
classified as Low Effort and estimated effort values more than
Qh are classified as High Effort. Lastly, estimated effort values
falling within the thresholds [Ql Qh] are classified as Moderate.

D. Accuracy Measures

In order to evaluate the effectiveness of the SEE models,
Mean Absolute Error (MAE) and Logarithmic Standard
Deviation (LSD) accuracy measures have been employed.

MAE is a risk function that measures the average absolute
deviation of the estimated effort values from the actual or true
effort values. LSD is defined as the root of the average squared
sum of the deviations and the variances between the estimated
effort and the true effort. LSD uses the residual in the log-scale,
which is independent of size (i.e., homoscedastic). The LSD
measure of impurity was applied to the datasets. This index is
computed as the within-node variance, adjusted for frequency
or case weights (if any). MAE and LSD have been
recommended by Foss et al. [9] as a robust and reliable
performance measures in setting up SEE models.

Aside of the MAE and LSD evaluation measures, we also
considered the Yuen’s test and the Cliff’s delta (δ) effect size
measures as statistical and robust evaluation measures [6]. The
statistical test was done at 5% significance level. Even though
the Yuen’s test is a robust test statistic for assessing statistical
significance, it is not enough to make accurate assessment of a
tested hypothesis [6]. The Cliff’s δ effect size is chosen in
addition to the Yuen’s test since it yields an effective
computation measure irrespective of both the experimental and
control groups having different sample sizes. Again, it is not
affected by outliers and does not assume the sampling data to
follow any distribution. The rationale behind the Cliff’s δ effect

size is that, given two groups of observations without necessarily
following the same distribution, this effect size is able to
determine the amount of overlap between these two groups.

IV. RESULTS

We discuss the results of the SEE models built in this section.
We provide the classification of the software effort values using
the density-quantile function for the normalized/un-normalized
datasets in Table 3. Three classes (low, moderate and high) have
been created.

Table 3. Software effort classification based on Density-
quantile function

Dataset
Normalized data

Low Moderate High
Kitchenham 0 - 0.1295 0.1296 - 0.2628 > 0.2628

Desharnais 0 - 0.2995 0.2996 - 0.8870 > 0.8871

 Un-normalized data
 Low Moderate High
Kitchenham 0 - 846.2 846.3 - 2.9122 > 2.9122

Desharnais 0 – 2346.8 2346.9 – 6042.8 > 6042.8

RQ1: Do SEE models of different learning algorithms result in
the same effort class?

Table 4 presents the recorded losses of the estimated and
classified effort from the two learners across each
normalized/un-normalized dataset. Here, a ‘1’ denotes a correct
classification of the estimated effort and a ‘0’ denotes a wrong
classification. It was observed that the estimated effort from the
DNN model resulted in correct classification of the effort in both
cases of the normalized/un-normalized datasets (Table 4).

Table 4. Classification performance of predicted effort wrt to
number of losses

Dataset
Normalized data Un-normalized data

ENR DNN ENR DNN
Kitchenham 1 1 1 1

Desharnais 0 1 0 1

Thus, irrespective of applying data normalization technique,
we realized that the DNN resulted in correct classification of the
estimated effort values. Table 5 denotes the predicted effort from
the two learners for each dataset against the actual effort
benchmark.

Table 5. Actual vs. Predicted effort and their respective effort
classes

Dataset

Normalized data Un-normalized data

Actual
effort

Predicted effort Actual
effort

Predicted effort

ENR DNN ENR DNN

Kitchenham
0.2918

(H)
0.5048

(H)
0.3403

(H)
3113.1

(M)
2214.411

(M)
3128.0

(M)

Desharnais
0.7183

(M)
0.9305

(H)
0.8099

(M)
4833.9

(M)
2203.6

(L)
4494.8

(M)

We found that the DNN resulted in improved prediction

accuracy against the ElasticNet regression approach.

For the Kitchenham dataset, both normalized and un-
normalized, the two learners, ElasticNet and DNN modeling
results were correctly classified into the same respective effort
class as shown in Table 5. Only the DNN made accurate
classification of the estimated effort into the correct classes for
the Desharnais dataset whilst the ElasticNet did not. Thus, the
Desharnais dataset can be said to exhibit traits of conclusion
instability with respect to the ElasticNet prediction model.

RQ2: How does the performance of Deep Neural Network SEE
models differ from ElasticNet SEE models?

We compared the prediction performance of the Elastic and

DNN models using MAE and LSD as shown in Table 6. Note
that the shaded cells denote the best performance (minimum
values) for either the ElasticNet or the DNN in each case of the
normalized/un-normalized dataset. For example, with regard to
the normalized Desharnais dataset, we found that the DNN
yielded improved prediction accuracy on average irrespective of
using the MAE or LSD for evaluation. The results from the
statistical test in Table 7 show that the p-values from the Yuen’s
test resulted in significant differences between the DNN and the
ElasticNet irrespective of the application of data normalization.
We found from the Cliff’s δ effect size that there exists
significant differences between using the DNN and ElasticNet
for estimating the software effort in all cases with the exception
of the normalized Kitchenham dataset (where δ was
0.255<0.276).

Table 6. Performance Evaluation of Learners using MAE and
LSD

Dataset

Learner
Normalized data Un-normalized data

MAE LSD MAE LSD
Kitchenham ENR 0.2502 0.5531 3096.7 9598.0

DNN 0.2177 0.9562 2350.9 7310.6

Desharnais ENR 0.9922 1.1470 4829.7 4187.8

DNN 0.5148 0.6908 3136.0 4186.2

Table 7. Statistical significant differences of predicted effort
across learners

Learner

Normalized data Un-normalized data

Yuen’s test Cliff’s
δ

Yuen’s test Cliff’s
δ t-value p-value t-value p-value

Kitchenham Dataset
DNN vs.

ENR
6.37 2.2e-08* 0.255 -9.19 9.9e-14* 0.763**

Desharnais Dataset
DNN vs.

ENR
4.54 2.7e-05* 0.363** -23.95 4.4e-32* 0.410**

Statistical Significance: *p<0.05; Practical Significance: **δ≥0.276

V. DISCUSSION AND CONCLUSION

In this paper, we built two SEE models, ElasticNet and DNN
and applied them to two SEE datasets. The SEE models were
executed using both normalized and un-normalized data. The
following questions were addressed by the models:

RQ1: Do SEE models of different learning algorithms result in
the same effort class?

For the Kitchenham dataset, when normalized and un-
normalized data were used, both ElasticNet and Deep Neural
Network (DNN) modeling results were classified into the correct
effort class as the actual classes of the software effort. Correct
effort class classification was however, not achieved by
ElasticNet models when applied to the Desharnais dataset. This
result is particularly interesting as it demonstrates that by using
the classification of efforts values it is possible to address the
conclusion instability problem as has been achieved for the
Kitchenham dataset. Thus, DNN and ElasticNet can achieve
conclusion stability irrespective of whether the data is
normalized or not.

RQ2: How does the performance of Deep Neural Network SEE
models differ from ElasticNet SEE models?

Although the ElasticNet models proved superior against

other linear regression based SEE models [2], it has performed
abysmally against the DNN SEE models and as such it cannot
be considered for use as a benchmark model for SEE models.
Though this is negative result, we report it in alluding to some
of the reasons offered by Kocaguneli et al. [10] in reporting
negative scientific results. The result reported in this paper
should inform researchers of future studies not to benchmark the
ElasticNet SEE models against DNN SEE models. It also offers
positive knowledge as it establishes the certainty of the result
due to the rigorous experimental approach followed in
developing the SEE models in this paper.

Future work will apply DNN and other learners to multiple
industrial datasets to determine the existence or otherwise of the
conclusion instability issue.

REFERENCES

[1] T. Menzies and M. Shepperd, “Special issue on repeatable results in
software engineering prediction,” Empir. Softw. Eng., vol. 17, no. 1–2, pp.
1–17, 2012.

[2] S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin, “Duplex output
software effort estimation model with self-guided interpretation,” Inf.
Softw. Technol., vol. 94, pp. 1–13, 2018.

[3] B. Turhan, “On the dataset shift problem in software engineering
prediction models,” Empir. Softw. Eng., vol. 17, no. 1, pp. 62–74, 2012.

[4] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum, “Stable rankings for
different effort models,” Autom. Softw. Eng., vol. 17, no. 4, pp. 409–437,
2010.

[5] C. Mair and M. Shepperd, “The consistency of empirical comparisons of
regression and analogy-based software project cost prediction,” 2005 Int.
Symp. Empir. Softw. Eng. ISESE 2005, pp. 509–518, 2005.

[6] B. Kitchenham et al., “Robust Statistical Methods for Empirical Software
Engineering,” Empir. Softw. Eng., vol. 22, no. 2, pp. 579–630, 2017.

[7] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” J. R. Stat. Soc. Ser. B (Statistical Methodol., vol. 67, no. 2, pp. 301–
320, 2005.

[8] S. Mensah, J. Keung, S. G. MacDonell, M. F. Bosu, and K. E. Bennin,
“Investigating the significance of bellwether effect to improve software
effort estimation,” Proc. - 2017 IEEE Int. Conf. Softw. Qual. Reliab.
Secur. QRS 2017, pp. 340–351, 2017.

[9] T. Foss, E. Stensrud, B. Kitchenham, I. C. Society, and I. Myrtveit, “A
Simulation Study of the Model Evaluation Criterion MMRE,” IEEE
Trans. Softw. Eng vol. 29, no. 11, pp. 985–995, 2003.

[10] E. Kocaguneli, T. Menzies, and J. W. Keung, “Kernel methods for
software effort estimation. Effects of different kernel functions and
bandwidths on estimation accuracy,” Empir. Softw. Eng., vol. 18, no. 1,
pp. 1–24, 2013.

