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Abstract—Conclusion instability is the absence of observing the 

same effect under varying experimental conditions. Deep Neural 
Network (DNN) and ElasticNet software effort estimation (SEE) 
models were applied to two SEE datasets with the view of resolving 
the conclusion instability issue and assessing the suitability of 
ElasticNet as a viable SEE benchmark model. Results were mixed 
as both model types attain conclusion stability for the Kitchenham 
dataset whilst conclusion instability existed in the Desharnais 
dataset. ElasticNet was outperformed by DNN and as such it is not 
recommended to be used as a SEE benchmark model. 
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I.  INTRODUCTION  

Software effort estimation (SEE) is part of the broader 
discipline of empirical software engineering (EMSE) that rely 
on evidence to make predictions about the estimated effort 
required to complete software projects. The importance of 
predicting software effort cannot be overemphasized as it has 
effect on the estimated budget for software projects. Both the 
research community and software engineering practitioners have 
not been able to identify a frontrunner algorithm as several 
factors such as datasets, experimental team, pre-processing 
techniques, etc [1] are known to affect the outcome of these 
algorithms.  The challenge therefore is the ability to consistently 
and uniformly present the results of empirical software 
engineering models. The current research evidence indicates 
several conflicting and confusing results especially with regard 
to the validity of results as it changes with the aforementioned 
factors. This phenomenon is known as conclusion instability. 
Conclusion instability refers to the lack of consistent results 
observed from software engineering experiments [1]. The cause 
of this effect is attributed to multiple factors such as 
preprocessing, different datasets, researcher bias, inadequate 
reporting of research protocol and so on. 

 The conclusion instability problem in empirical software 
engineering unfortunately defeats or it is at variance to the goal 
of science in general which is the ability of an effect to be 
observed in multiple experimental conditions [1]. This has 
affected the generalization of results leading to the discovery of 
the “best” effort estimation algorithm being elusive. 

There are two objectives for this study. First is to assess the 
viability of an approach introduced in this paper to address “the 
result interpretation issue” which is an aspect of the conclusion 
instability problem. This will be done by assessing whether the 
use of different prediction algorithms on a given dataset will 
yield the same results. The second objective is to evaluate 
ElasticNet as a benchmark SEE algorithm. Two classical SEE 

datasets have been used in the development of effort prediction 
models in this paper. We will adopt the same procedure 
employed in our previous paper [2] by generating three effort 
classes using the density quantile function.  

This study applies two SEE modelling techniques on each 
dataset to assess whether the results are classified into the same 
classification band. The intention is to assess whether results 
from multiple estimation models using the same dataset can be 
classified as generating the same “good” or “bad” results. The 
advantage of this is that, there will be no need to apply effect 
size on the models, thus making it easier to interpret and 
removing one layer of computation because effect size in itself 
can also lead to conclusion instability when the modelling 
technique is changed [1]. It is worth noting that we are not 
comparing estimation models, rather we seek to investigate 
whether the estimation results of multiple prediction algorithms 
can be classified into the same band under the same 
experimental condition (only the dataset changes). We will 
subsequently assess ElasticNet as a potential benchmarking 
SEE algorithm with the popular and highly efficient Deep 
Neural Network (DNN) algorithm.  

The rest of the paper is as follows. Section II presents the 
literature review. Section III is about the method employed in 
conducting the experiments. Section IV is the analysis of the 
result and Section V is the discussion and conclusion. 

II. LITERATURE REVIEW 

Menzies and Shepperd [1] gave prominence to the 
conclusion instability issue in an editorial of a Special Edition 
of the EMSE journal in 2012. The authors explained conclusion 
instability as the inability of software engineering experiments 
to discover a certain effect which can be reproduced under 
multiple experimental conditions such as the use of different 
datasets, algorithms, researchers, accuracy measures and so on. 
They  [1] identified two major sources of conclusion instability 
as bias and variance. Bias is said to measure the deviation 
between predicted values and actual values. Variance on the 
other hand is measured by the deviation between different 
predictions of the estimators.  

Turhan [3] outlined characteristics of SEE data that could 
result in conclusion instability. Covariate shift is where the 
distribution of the training set is different from the validation or 
test sets and as such the model that was generated by the training 
data is not able to predict the test data effectively as well as any 
future project. Prior probability shift is where the distribution of 
the explanatory variable of the training data and test data are 
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different. Other types of data shift problems are sample 
selection bias, imbalanced data, domain shift and source 
component shift   

Menzies et al. [4] conducted a study using 158 SEE methods 
based on COCOMO dataset features. It was realized that 
“different datasets sources, different evaluation methods and 
different random selection of data” led to different results at 
each occasion which confirm the conclusion instability in SEE 
methods. They however found four methods that consistently 
provided better results than the others.  

Mair and Shepperd [5] reviewed the result of studies that 
compared regression techniques with analogy techniques for 
software cost prediction. They discovered inconsistencies in the 
result. They found no clear favourite technique as an equal 
number of studies favoured either approach. They also observed 
results being inconsistent in cases where even the same datasets 
were used. This is one of the issues this study is attempting to 
explain, whether the results were actually inconsistent or there 
should be a new approach in interpreting the result. 

Two research questions (RQ) are used to address the 
objectives of this study: 

RQ1: Do SEE models of different learning algorithms result in 
the same effort class? 
RQ2: How does the performance of Deep Neural Network SEE 
models differ from ElasticNet SEE models? 

III. METHODOLOGY 

A. Dataset Description 
Two classical datasets from the tera-PROMISE repository 

(http://openscience.us/repo/) have been used in the development 
of the SEE models. Though these datasets are old, we employed 
them because they have become the benchmark datasets for SEE 
studies. A brief description of these datasets is provided. 

The Desharnais dataset was collected by Jean-Marc 
Desharnais from ten organizations in Canada. The projects in 
this dataset were undertaken between 1983 and 1988. The 
dataset consists of 81 records and 12 attributes, with size 
measured in function points. We used the 77 version of the 
dataset as a result of 4 missing records. Summary statistics for 
relevant features of the dataset are provided in Table 1. 

Table 1. Descriptive statistics for Desharnais dataset 

Feature N Min Max Mean Std.Dev Skew Kurt 
TeamExp 79 0 4 2.27 1.34 -.042 -1.26 

ManagerExp 78 0 7 2.67 1.52 .20 .07 

Transactions 81 9 886 179.90 143.32 2.36 7.73 

Entities 81 7 387 122.33 84.88 1.34 1.48 

Envergure 81 5 52 27.63 10.59 -.11 -.28 

PointsNonAjust 81 62 1116 287.05 185.11 1.67 4.16 

Effort 81 546 23940 5046.31 4418.77 2.01 4.72 

 The Kitchenham dataset was collected from American-
based multinational Computer Sciences Corporation (CSC). 
This dataset contains information related to 145 software 
development and maintenance projects that CSC undertook for 
several clients.  

The projects were undertaken between 1994 and 1999 with 
10 attributes including the start date and estimated completion 

dates. Summary statistics of the relevant features of the 
Kitchenham dataset are provided in Table 2.  

Table 2. Descriptive statistics for Kitchenham dataset 

Feature Min Max Mean Std.Dev Skew Kurt 
Actual_duration 37 946 206.45 134.09 1.93 6.12 

AFP 15.36 18137.48 527.67 1521.99 10.92 126.70 

Actual_effort 219 113930 3113.12 9598.01 10.87 125.64 

B. Data Preprocessing 

In order to ameliorate the problem of data quality such as 
missing data, outliers and inferential data, the two datasets were 
preprocessed in the following ways for effective and efficient 
model construction.  
 We observed all the instances per each dataset to eliminate 
missing values. Only a handful of missing entries (4 instances) 
were observed in the Desharnais dataset. Out of the 145 projects 
in the Kitchenham, three projects were removed as they were 
found to have missing entries. With the use of kernel density 
plots and data trimming technique [6], outliers were identified 
and removed. Cook’s distance was used in the identification and 
treatment of influential data points during the model 
construction. In this study, we realized that, these influential 
data points identified yielded no negative effects on the models 
when the datasets were normalized using the z-score 
normalization technique as done in our previous study [2]. 
 We selected prior features/variables which are known prior 
to the development of a new software project. Thus, with regard 
to the Kitchenham dataset, we made use of the adjusted function 
points (AFP) and project type as the independent variables and 
actual effort as the dependent variable. With regard to the 
Desharnais dataset, the independent variables selected are team 
experience (teamExp), manager’s experience (managerExp), 
programming language, number of entities, number of 
unadjusted function points (pointsNonAdjust), number of 
transactions and development environment (envergure). The 
dependent variable from the Deshairnais is the development 
effort variable measured in person-hours. 

C. Effort Estimation Models 

Two prediction models have been applied to the two studied 
datasets. Deep Neural Network (DNN) and the ElasticNet 
(ENR) algorithms have been used in the development of the SEE 
models. ENR was found in our previous study  [2]  as a viable 
benchmarking model. The ElasticNet proposed by Zou and 
Hastie [7] is a regularization and variable selection technique 
which helps in eliminating highly correlated predictor variables 
from the estimation model.  

We benchmarked the prediction results from the ElasticNet 
model to a complex and robust prediction model, namely a Deep 
learning model which yielded better prediction accuracy in a 
previous study [8]. We constructed a DNN which makes use of 
multiple hidden layers and an output layer with their respective 
neurons to automatically learn from a set of project cases and 
gives the resulting prediction for the target (in our case, the 
software effort of new projects). The Levenberg-Marquardt 
backpropagation optimization training function is employed to 
update the weights of the neurons in the hidden and output layers 



respectively. The hyperbolic tangent activation function is used 
in each of the neurons for giving the respective outputs. We 
followed the same experimental setup as done in previous study 
[2] by using the leave-one-out cross validation for setting up 
each of the prediction models. 

In order to facilitate self-guidance in the interpretation of the 
level of effort expended, we made use of the classification 
scheme defined in Mensah et al. [2]  to classify the results of 
our modelling to the appropriate effort class. Software effort 
classification is the process of categorizing estimated software 
effort into its respective class. The scheme is based on historical 
project datasets (historical data being the same as training set in 
this study). A goal of the classification scheme is to facilitate 
easy interpretation of the estimated software effort (YR) in the 
context of existing organization data. In order to achieve these 
levels of classification, we discretize the actual efforts of the 
datasets into three classes (low, moderate and high) based on 
the density quantile theory. This density quantile theory was 
utilized because it gives rise to an optimal spacing selection 
threshold values for categorizing the effort into their respective 
classes [2].   

The selected independent variables together with the 
software effort (dependent variable) are used to setup the 
prediction models. We denote the estimated effort values from 
the models as Output (YR). The Output (YR) from the predictive 
model is then classified into its respective class. The estimated 
effort, Output (YR) are categorized into their respective effort 
classifications. Thus, estimated effort values less than Ql are 
classified as Low Effort and estimated effort values more than 
Qh are classified as High Effort. Lastly, estimated effort values 
falling within the thresholds [Ql Qh] are classified as Moderate.   

D. Accuracy Measures 

In order to evaluate the effectiveness of the SEE models, 
Mean Absolute Error (MAE) and Logarithmic Standard 
Deviation (LSD) accuracy measures have been employed. 

MAE is a risk function that measures the average absolute 
deviation of the estimated effort values from the actual or true 
effort values. LSD is defined as the root of the average squared 
sum of the deviations and the variances between the estimated 
effort and the true effort. LSD uses the residual in the log-scale, 
which is independent of size (i.e., homoscedastic). The LSD 
measure of impurity was applied to the datasets. This index is 
computed as the within-node variance, adjusted for frequency 
or case weights (if any). MAE and LSD have been 
recommended by Foss et al. [9] as a robust and reliable 
performance measures in setting up SEE models. 

Aside of the MAE and LSD evaluation measures, we also 
considered the Yuen’s test and the Cliff’s delta (δ) effect size 
measures as statistical and robust evaluation measures [6]. The 
statistical test was done at 5% significance level. Even though 
the Yuen’s test is a robust test statistic for assessing statistical 
significance, it is not enough to make accurate assessment of a 
tested hypothesis [6]. The Cliff’s δ effect size is chosen in 
addition to the Yuen’s test since it yields an effective 
computation measure irrespective of both the experimental and 
control groups having different sample sizes. Again, it is not 
affected by outliers and does not assume the sampling data to 
follow any distribution. The rationale behind the Cliff’s δ effect 

size is that, given two groups of observations without necessarily 
following the same distribution, this effect size is able to 
determine the amount of overlap between these two groups.  

IV. RESULTS  

We discuss the results of the SEE models built in this section.  
We provide the classification of the software effort values using 
the density-quantile function for the normalized/un-normalized 
datasets in Table 3. Three classes (low, moderate and high) have 
been created.  

Table 3. Software effort classification based on Density-
quantile function 

Dataset 
Normalized data 

Low Moderate High 
Kitchenham 0 - 0.1295 0.1296 - 0.2628 > 0.2628 

Desharnais 0 - 0.2995 0.2996 - 0.8870 > 0.8871 

 Un-normalized data 
 Low Moderate High 
Kitchenham 0 - 846.2 846.3 - 2.9122 > 2.9122 

Desharnais 0 – 2346.8 2346.9 – 6042.8 > 6042.8 

RQ1: Do SEE models of different learning algorithms result in 
the same effort class? 

Table 4 presents the recorded losses of the estimated and 
classified effort from the two learners across each 
normalized/un-normalized dataset.  Here, a ‘1’ denotes a correct 
classification of the estimated effort and a ‘0’ denotes a wrong 
classification. It was observed that the estimated effort from the 
DNN model resulted in correct classification of the effort in both 
cases of the normalized/un-normalized datasets (Table 4).      

Table 4. Classification performance of predicted effort wrt to 
number of losses 

Dataset 
Normalized data Un-normalized data 

ENR DNN ENR DNN 
Kitchenham 1 1 1 1 

Desharnais 0 1 0 1 

Thus, irrespective of applying data normalization technique, 
we realized that the DNN resulted in correct classification of the 
estimated effort values. Table 5 denotes the predicted effort from 
the two learners for each dataset against the actual effort 
benchmark.  

Table 5. Actual vs. Predicted effort and their respective effort 
classes  

Dataset 

Normalized data Un-normalized data 

Actual 
effort 

Predicted effort Actual  
effort 

Predicted effort 

ENR DNN ENR DNN 

Kitchenham 
0.2918 

(H) 
0.5048 

(H) 
0.3403 

(H) 
3113.1 

(M) 
2214.411 

(M) 
3128.0  

(M) 

Desharnais 
0.7183 

(M) 
0.9305 

(H) 
0.8099 

(M) 
4833.9 

(M) 
2203.6 

(L) 
4494.8  

(M) 

 
We found that the DNN resulted in improved prediction 

accuracy against the ElasticNet regression approach. 



For the Kitchenham dataset, both normalized and un-
normalized, the two learners, ElasticNet and DNN modeling 
results were correctly classified into the same respective effort 
class as shown in Table 5. Only the DNN made accurate 
classification of the estimated effort into the correct classes for 
the Desharnais dataset whilst the ElasticNet did not. Thus, the 
Desharnais dataset can be said to exhibit traits of conclusion 
instability with respect to the ElasticNet prediction model. 

RQ2: How does the performance of Deep Neural Network SEE 
models differ from ElasticNet SEE models? 

 
We compared the prediction performance of the Elastic and 

DNN models using MAE and LSD as shown in Table 6. Note 
that the shaded cells denote the best performance (minimum 
values) for either the ElasticNet or the DNN in each case of the 
normalized/un-normalized dataset. For example, with regard to 
the normalized Desharnais dataset, we found that the DNN 
yielded improved prediction accuracy on average irrespective of 
using the MAE or LSD for evaluation. The results from the 
statistical test in Table 7 show that the p-values from the Yuen’s 
test resulted in significant differences between the DNN and the 
ElasticNet irrespective of the application of data normalization. 
We found from the Cliff’s δ effect size that there exists 
significant differences between using the DNN and ElasticNet 
for estimating the software effort in all cases with the exception 
of the normalized Kitchenham dataset (where δ was 
0.255<0.276).  

Table 6. Performance Evaluation of Learners using MAE and 
LSD 

 
Dataset 

Learner 
Normalized data Un-normalized data 

MAE LSD MAE LSD 
Kitchenham ENR 0.2502 0.5531 3096.7 9598.0 

DNN 0.2177 0.9562 2350.9 7310.6 

Desharnais ENR 0.9922 1.1470 4829.7 4187.8 

DNN 0.5148 0.6908 3136.0 4186.2 

Table 7. Statistical significant differences of predicted effort 
across learners 

Learner 

Normalized data Un-normalized data 

Yuen’s test Cliff’s  
δ 

Yuen’s test Cliff’s 
δ  t-value p-value t-value p-value 

Kitchenham Dataset 
DNN vs. 

ENR 
6.37 2.2e-08* 0.255 -9.19 9.9e-14* 0.763** 

Desharnais Dataset 
DNN vs. 

ENR 
4.54 2.7e-05* 0.363** -23.95 4.4e-32* 0.410** 

Statistical Significance:  *p<0.05;    Practical Significance: **δ≥0.276  

V. DISCUSSION AND CONCLUSION 

In this paper, we built two SEE models, ElasticNet and DNN 
and applied them to two SEE datasets. The SEE models were 
executed using both normalized and un-normalized data. The 
following questions were addressed by the models: 

RQ1: Do SEE models of different learning algorithms result in 
the same effort class? 

For the Kitchenham dataset, when normalized and un-
normalized data were used, both ElasticNet and Deep Neural 
Network (DNN) modeling results were classified into the correct 
effort class as the actual classes of the software effort. Correct 
effort class classification was however, not achieved by 
ElasticNet models when applied to the Desharnais dataset. This 
result is particularly interesting as it demonstrates that by using 
the classification of efforts values it is possible to address the 
conclusion instability problem as has been achieved for the 
Kitchenham dataset. Thus, DNN and ElasticNet can achieve 
conclusion stability irrespective of whether the data is 
normalized or not. 

 
RQ2: How does the performance of Deep Neural Network SEE 
models differ from ElasticNet SEE models? 

 
Although the ElasticNet models proved superior against 

other linear regression based SEE models [2], it has performed 
abysmally against the DNN SEE models and as such it cannot 
be considered for use as a benchmark model for SEE models. 
Though this is negative result, we report it in alluding to some 
of the reasons offered by Kocaguneli et al. [10] in reporting 
negative scientific results. The result reported in this paper 
should inform researchers of future studies not to benchmark the 
ElasticNet SEE models against DNN SEE models. It also offers 
positive knowledge as it establishes the certainty of the result 
due to the rigorous experimental approach followed in 
developing the SEE models in this paper. 

Future work will apply DNN and other learners to multiple 
industrial datasets to determine the existence or otherwise of the 
conclusion instability issue. 
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