
DOI reference number: 10.18293/SEKE2018-0122

Analysis of Security Failure-Tolerant Requirements

Michael Shin
Texas Tech University

Department of Computer Science
Lubbock, Texas, USA
michael.shin@ttu.edu

Don Pathirage
Texas Tech University

Department of Computer Science
Lubbock, Texas, USA
don.pathirage@ttu.edu

Dongsoo Jang
Texas Tech University

Department of Computer Science
Lubbock, Texas, USA
dongsoo.jang@ttu.edu

Abstract - This paper describes an approach to analyzing
security failure-tolerant (SFT) requirements that are specified
by means of SFT use cases, along with security use cases and
application use cases for application systems. The SFT
requirements are analyzed with the analysis model that consists
of the static model and dynamic model. A meta-modeling
approach is taken to specify the static and dynamic models for
analysis of SFT requirements. Threats are identified in the
analysis of SFT requirements, and SFT countermeasures
against the threats are specified in the analysis model. An online
shopping system is used for illustrating our approach.

Keywords – Security Failure-Tolerant Requirements; Analysis of
SFT Requirements; Static Model; Dynamic Model; Threat; Meta-
Model

I. INTRODUCTION

Security services seem to be unbreakable and they can
protect security assets in applications from attacks. However,
this appearance is not a reality. Security services, such as
authentication, encryption or non-repudiation, are incorporated
into applications in order to achieve security goals of the
applications. Although the applications are designed by means
of security services, they are still vulnerable because the
security services can always be broken down as attack skills are
getting crafty [1, 2].

Several approaches [3, 4, 5, 6, 7, 8, 9, 10] have been
developed to make applications secure in software
development. Most of the approaches have focused on
specifying and designing applications using security services in
order to build secure applications. Security requirements are
specified with Unified Modeling Language (UML) [11, 12] and
its extended notation [3, 4], separately from application
requirements [7]. Secure software architecture is designed by
means of secure connectors [8, 9, 10, 13] that encapsulate
security services. However, less attention has been paid to the
tolerance of broken security services.

Security failure-tolerant (SFT) requirements in our previous
research [14] are specified to make applications tolerable when
security services are breached. SFT requirements are modeled
as SFT use cases, along with application use cases and security
use cases, against the threats identified in application use cases.
The SFT approach aims at reducing the possibility of security
damage to security assets in the applications from the breaches
of security services.

This paper is an extension of our research [14] by analyzing
SFT requirements specification using the analysis model that
represents the static and dynamic views of applications. The
research in [14] specifies SFT requirements using SFT, security
and application use cases against threats. This paper describes
the analysis of the use cases and finds new threats, which are
not identified in SFT requirements specification, and models
the threats in the analysis model. In addition, this paper attempts
to develop security and SFT countermeasures against the
threats.

This paper is organized as follows: Section 2 describes
related work for our research. Section 3 describes SFT
requirements specification. Section 4 describes the meta-model
for the analysis model of SFT requirements. Section 5 describes
the analysis of SFT requirements in terms of the static and
dynamic models. Section 6 describes the validation of our
approach. Section 7 describes conclusions and future work.

II. RELATED WORK

Related work focuses on threat modeling, secure software
development, and efforts to mitigate security failures so that
applications become more secure. There is some research on
security, but the research does not provide an adequate solution
for developing secure software systems that tolerate the failures
of security services.

Threat Modeling. Threats in a system have been modeled
by several approaches, which include attack trees [1], data flow
diagrams [15, 16], and UML-based modeling [17, 18, 19, 20,
21]. Attack trees in [1] provide an approach to modeling and
analyzing the threats of systems, and the threats are analyzed in
terms of attackers’ capabilities. The design models in the
research [15, 16] are specified with data flow diagrams, and the
threats to the models are identified and analyzed using scenarios
of each function in a system. Several threat-modeling
approaches, such as misuse cases [17, 18, 19], abuse cases [20]
and HAZOP (Hazard and Operability Analysis) [21], have been
developed for object-oriented software systems. The
approaches model threats using the use case model in UML and
specifies security requirements against them.

The misuse case model [17, 18, 19] extends the use case
model to misuse cases, along with actions that systems should
take to support security requirements. An inverse of a use case
is a misuse case, which is a negative requirement of a system
that should not occur. The scenario of each possible attack is
modeled using a misuse case. A use case description is analyzed
to identify misuse cases and their actors.

Secure Software Development. Some research for
developing secure software has been done in terms of secure
requirements and design. The studies in [3, 4] proposed a UML-
based modeling language for the model-driven development of
secure, distributed systems. The research in [22] illustrates an
ontology-based approach that uses predefined pattern-based
templates to aid requirements engineers in the formulation of
security requirements. Security patterns in [5, 6] address a broad
range of security issues that should be taken into account in the
stages of the software development lifecycle.

In earlier work by a coauthor in [7], an approach is described
to model complex applications by modeling application
requirements and design separately from security requirements
and design using the UML notation. In later work by a coauthor
in [8], an approach is described for modeling the evolution of a
non-secure application to a secure application in terms of the
requirements and software architecture. The recent work by
coauthors in [9, 10] proposes the design of reusable secure
connectors using a component-based approach in which
reusable secure connectors are structured into reusable security
components and communication components.

Mitigation of Security Failures. Security failures can be
mitigated by several approaches, such as layered security
(defense in depth) [23], intrusion tolerance [24], and self-
protection [25]. Layered security [23] addresses multiple facets
of a security on a network. It is made up of multiple layers of
complementary security technologies, so that all the
technologies work together to provide the required level of
protection.

The study in [24] presents the systematical notion of
intrusion tolerance by rearranging the concepts and design of
intrusion tolerance. Also the work in [26] presents a way to
combine preventive maintenance with an existing intrusion
tolerance system to improve the system security.

Self-protection [25] is a part of autonomic computing in
which a self-protection component controls the security of a
system without human interaction. To defend a system against
malicious attacks or cascading failures, a self-protection system
automatically prevents the attacks or failures.

III. SPECIFICATION OF SFT REQUIREMENTS

SFT requirements [14] are specified against threats to
application systems. The threats can be identified by considering
security assets described in the use case description. The threats
are represented using the use case notation in the use case model.
A threat use case may not have a specific actor because an
attacker can be any malicious persons or parties. A threat point
[14] is defined in the use case description for an application use
case where a security asset is contaminated if a security service
is broken and there is not any SFT service to protect the asset.
The threat to make order request use case in the online shopping
system [27] is modeled in Fig. 1a in which the release ID and
password threat threatens the make order request use case at the
ID and password threat point.

The requirements of security services for an application
system are specified with security use cases [7, 14] separately
from application use cases. When an application system
requires security services, the security use cases are extended

from the application use cases at extension points. An extension
point is a location in an application use case where a security
use case extends an application use case if the system requires
the security service. An application use case designates an
extension point in the use case description where a security use
case extends the application use case. The security use case for
the make order request application use case is depicted in Fig.
1b in which the check keystroke logging security use case is
extended from the make order request application use case if
the system requires the check keystroke logging security
service.

Fig. 1 Threat and Security use case and SFT use case for Make
Order Request application use case

SFT requirements for security services are modeled using

SFT use cases [14], which tolerate breaches of security services.
By careful separation of concerns, SFT requirements are
captured in SFT use cases separately from security use cases
and application use cases. A SFT use case extends an
application use case at an extension point if the system requires
the SFT service. The verify image SFT use case (Fig. 1b)
extends the make order request application use case at the
tolerant ID and password extension point if the system requires
the SFT service. The verify image SFT use case verifies that an
image selected by a customer is matched with the image that the
customer registered in the system. Even though the customer ID
and password are released to an attacker due to failure of check
keystroke logging security use case, the attacker would have to
know of the customer’s image registered in the system in order
to make a malicious purchase order.

IV. META-MODEL FOR ANALYSIS OF SFT REQUIREMENTS

SFT requirements are analyzed from the static model for
defining structural relationships between classes and dynamic
model for defining how objects participate in use cases. SFT
requirements are specified using the use cases that describe the
requirements of SFT applications. The static model is
developed using the class diagram in UML that determines the
classes supporting each use case of SFT requirements and
relationships between classes. The dynamic model is developed
using the communication diagram in UML that describes the
sequences of message communication between objects for each
use case.

Make Order Request
«application»

Check Keystroke
Logging

«security»

«extend»

Verify Image

«SFT»

«extend»

Secure ID and Password
Tolerant ID and Password

Customer

Customer

Make Order Request

Release
ID and Password

«threaten»
«threat» «application»

ID and Password

a) Threat to Make Order Request application use case

b) Security use cases and Security-Failure Tolerant use
cases for Make Order Request application use case

[System requires Check Keystroke
Logging security service]

[System requires Verify
Image SFT service]

 The static and dynamic models for SFT requirements
analysis are depicted in Fig. 2 using a meta-model, which is
extended from the meta-model for the class diagram and
communication diagram in UML. A meta-model describes the
meta-classes and relationships between the meta-classes. Any
class diagrams and communication diagrams instantiated from
the meta-model for SFT requirements analysis should follow
the meta-classes and relationships between the meta-classes
defined in the meta-model. The meta-model (Fig. 2) is
simplified by representing the underlying meta-classes and their
relationships associated with SFT requirements analysis.

Fig. 2 Meta-model for SFT Requirements Analysis

The meta-model for the class diagram (Fig. 2a) of SFT
requirements consists of class meta-class and relationship meta-
class. There is a relationship meta-class between class meta-
classes. A class meta-class is specialized to security class meta-
class or SFT class meta-class. A threat meta-class threatens a
class meta-class through a threaten meta-class. A threat meta-
class is described in a threat description meta-class. Similarly,
the meta-model for the communication diagram (Fig. 2b) of
SFT requirements is represented by means of object meta-class
and message meta-class in which an object meta-class may send
a message meta-class to or receive a message meta-class from
other object meta-classes. An object meta-class can be
specialized to a security object meta-class or SFT object meta-
class. An object meta-class in the meta-model for the
communication diagram is instantiated from a class meta-class
in the meta-model for the class diagram.

V. ANALYSIS OF SFT REQUIREMENTS

A. Static Modeling of SFT Requirements

The static model for SFT requirements defines the structural
relationships between application classes, security classes and
SFT classes. Application classes support application use cases,
whereas security classes are involved in realizing security use
cases. SFT classes are needed to implement SFT use cases. The
structural relationships between application, security, and SFT
classes depict the static view between the classes. The static
model for make order request application use case (Fig. 1b) is
depicted in Fig. 3 using the class diagram, which includes
Customer Interface, Customer Account and Delivery Order

classes (Fig. 3) for make order request application use case (Fig.
1b), Keystroke Logging Checker security class (Fig. 3) for check
keystroke logging security use case (Fig. 1b), and Image Verifier
SFT class (Fig. 3) for verify image SFT use case (Fig. 1b). The
Customer Interface class checks keystroke logging attack using
Keystroke Logging Checker security class, and it verifies the
image selected by a customer using Image Verifier SFT class.

Fig. 3 Static model for Make Order Request application use
case

B. Dynamic Modeling of SFT Requirements

The dynamic model for SFT requirements determines how
security objects and SFT objects participate in the sequence of
message communication between application objects. Security
objects are invoked by application objects if the application
objects require security services. Also, application objects
invoke SFT objects when they need SFT services in order to
tolerate the breaches of security objects. Security objects and
SFT objects are represented on the communication diagram
along with application objects.

The dynamic model for make order request application use
case is depicted in Fig. 4, which describes how security and SFT
objects are integrated into the sequence of message
communication between application objects. The Keystroke
Logging Checker security object checks malicious keystroke
logging software (messages M1.1 and M1.2 in Fig. 4) when a
customer initiates an order service (message M1 in Fig. 4). If
there is no keystroke logging software installed, Image Verifier
SFT object verifies whether the image selected by a customer is
matched with the customer’s image stored in the system
(messages M1.3 through M1.8 in Fig. 4). A customer’s order
request is sent to Purchase Order Manager business logic
object (messages M2 and M3 in Fig. 4), which requests a
customer’s account information from the Customer Account
entity object (message M4 in Fig. 4). The Purchase Order
Manager business logic object requests the authorization of a
customer’s credit card payment from a bank via Bank Interface
object when it receives a customer’s account information from
the Customer Account entity object (messages M5 through M6
in Fig. 4). If the bank approves a customer’s credit card payment
(message M7 in Fig. 4), Purchase Order Manager business
logic object stores an order in the Delivery Order entity object

Class

Security
Class

SFT
Class

Threat
Description

Threaten Threat Has 1 1..*

Described in

1

1 Has

1

1..*

Object

Security
Object

SFT
Object

1

Instantiated from

1..*

b) Meta-Model for Communication Diagram

a) Meta-Model for Class Diagram

Relationship
2..* 0..* Has

Message 0..* 1

Sends/Receives

Customer
Account

«entity»

«SFT»

Repudiate

Order Request

«threat»

Image
Verifier

«security»

Signature
Generator

Account
Logger

«SFT»

Sign Log

Customer
Interface

«user interface»

Delivery

Order

«entity»

«security»
Keystroke
Logging
Checker

Signature
Verifier

«security»

Check Verify Verify

«threaten»
«threaten»

(messages M8 and M9 in Fig. 4) and sends a confirmation email
to a customer via Email entity object (message M10 in Fig. 4).

Fig. 4 Dynamic model for SFT Make Order Request
application use case

C. Threat Modeling of SFT Requirements Analysis

Threats in SFT requirements specification focus on the
security assets that should be protected from attacks. A security
asset can be a security-relevant input to an application, secure
data maintained in an application, and a system itself on which
an application is running [17]. A security-relevant input to an
application is a user’s input to the application or an input from
an external system or device to the application in which the
inputs require security. An account identification (ID) or
password entered by a user to an application can be an example
of a security-relevant input to an application. Secure data stored
in an application can be a target of an attack. An example of
secure data can be the credit card information maintained by an
online shopping system or a patient’s medical records stored in
a healthcare system. Also, a system on which an application is
running should be a security asset when the system’s availability
affects the application’s availability.

New threats are found in the analysis of SFT requirements in
terms of confidentiality, integrity, or non-repudiation of
messages, which can be sent from an object to another. While an
object communicates a message with another object, the
message might require confidentiality. Also, some messages
should not be tampered with in an interaction between objects.
In addition, when an object sends a message to another, it might
need to prove who sends the message, so as to protect the non-
repudiation security.

New threats can be identified by examining the message
sequence between objects described in the communication
diagrams for SFT requirements analysis. Each use case is refined
by means of a communication diagram, which represents the
business logic using objects and message sequence between
objects. Some messages involved in the business logic might
need to be secure from the application perspective. The order
request (message M2 in Fig. 4) is created by a customer and is
sent to the Delivery Order entity object through the Purchase
Order Manager business logic object (messages M3 and M8 in
Fig. 4) after the customer’s credit card payment is approved by

a bank. The customer might deny the order request later due to
this or that reason after the customer made the order request.
The order request message is under a repudiation threat from the
application perspective.

The new threats identified in an analysis of SFT
requirements are modeled in the static model, which describes
application classes, security classes, and SFT classes. A threat is
represented by means of the class notation with the stereotype
«threat», and a threat class has a «threaten» dependency
relationship with a class (Fig. 2). The Repudiate Order Request
threat is modeled in the static model (Fig. 3) in which the
Repudiate Order Request threat threatens the Customer
Interface class and the Delivery Order entity class. This means
that the Customer Interface object and the Delivery Order entity
object in the dynamic model (Fig. 4) are under the Repudiate
Order Request threat.

Each new threat is defined in a short threat description that
describes threat name, description, security asset, security goal,
security class, and SFT class. The security class and SFT class
are the security countermeasure against the new threat. An
alternative to a short threat description, a threat can be analyzed
and specified in detail in terms of threat attributes, threat effect,
and security concern [2]. The following is the short threat
description for the Repudiate Order Request threat:

 Threat Name: Repudiate Order Request
 Description: Customer can repudiate the order request.
 Security Asset: Order Request
 Security Goal: Non-repudiation of order request
 Security class:

- Signature Generator security class
- Signature Verifier security class

 SFT class: Account Logger SFT class

As the analysis model of SFT requirements reveals a new threat,
a security service and its SFT service against the threat are
incorporated into the analysis model. The security and SFT
services are modeled through classes in the static model. A
digital signature security service is taken against the Repudiate
Order Request threat, being implemented using the Signature
Generator security class (Fig. 3), which signs a customer’s order
request using the customer private key, and the Signature
Verifier security class (Fig. 3), which verifies the order request
signed by the customer using the customer’s public key. Also,
an Account Logging SFT service is created against the Repudiate
Order Request threat, which is mitigated by the Account Logger
SFT class (Fig. 3) to record a customer’s access to the customer
account.

Security and SFT objects against a threat identified in the
analysis of SFT requirements are incorporated into the dynamic
model. The Signature Generator security object signs a
customer’s order request using the customer private key
(messages M2.1 and M2.2 in Fig. 4) before the order request is
sent by the Customer Interface object to the Purchase Order
Manager business logic object. The signed order request is
verified by the Signature Verifier security object (messages
M8.1 through M8.4 in Fig. 4) using the customer public key
obtained from a certificate authority before the Delivery Order

M1: Initiate Order Service
M1.6: Image Input
M2: Order Request & Key

M3: Order
Request

M11: Order
Confirmation

aCustomer
M1.5: Display Image
M1.9: Image Verified
M12: Customer Output

«proxy»
:Bank

Interface

M6: Authorize Credit
Card Request

M7: Credit Card
Approved

«entity»
:Delivery

Order

M8: Store
Order

M9: Order
Confirmation

«business
logic»

PurchaseOrder
Manager

«user
interface»
:Customer
Interface

«entity»
:Customer
Account

M4: Account
Request

M5: Account Info

«entity»
:Email

«security»
:Keystroke

Logging
Checker

«security»
:Signature
Generator

«security»
:Signature
Verifier

«SFT»
:Account
Logger

M1.1:
Check

M1.2: Checked

M10: Send Order
Confirmation Email

M2.1: Sign

M2.2:
Signature

M4.1: Logs

M8.1: Verify
Signature

M8.4: Signature
Verified

«SFT»
:Image
Verifier

M1.3 [No Keystroke logging]: check Image
M1.7: Verifies Image

M1.4: Image
M1.8: Verified

aCertificate
Center

M8.2: Request
Public Key

M8.3:
Public
Key

entity object creates a new order request. Also, the Account
Logger SFT object logs a customer’s access to the Customer
Account entity object (message M4.1 in Fig. 4) for proving the
customer’s transaction later.

VI. VALIDATION

A. Implementation

The dynamic model for the make order request application
use case (Fig. 4) was implemented along with the keystroke
logging checker, signature generator, signature verifier
security objects, as well as image verifier and account logger
SFT objects. The make order request application use case was
implemented on an online hosting sever to generate real world
results. The keystroke logging checker security object (Fig. 4)
was implemented as an antivirus agent, which was developed in
C# for this paper and ran on a customer’s local machine once
every 24 hours. The antivirus agent updates the security status
of the customer’s local machine in an online database. The
antivirus agent checks if the client’s machine installed anti-
keystroke logging software, such as Symantec Endpoint
Protection. The online shopping system connects to the online
database and checks the security status of the client’s machine,
which has been updated by the antivirus agent. If the database
indicates that the client’s machine is secure from keystroke
logging attack, the system allows the customer to proceed with
the order. If the system detects that the client’s machine does
not have an antivirus agent or does not have up to date anti-
keystroke logging software, it displays an appropriate warning
massage and stops the make order request use case. However,
no SFT service was implemented to protect the database. We
assumed that the database would remain secure for the
simplicity of our approach.

The Image Verifier SFT object (Fig. 4) accesses an image
repository in the online shopping system and displays a random
set of four images, including a customer’s personal image. The
system verifies that the image selected by the customer is
matched with the customer’s personal image stored in the
system. If the customer chooses a wrong image, the system
prompts a different set of images. If the customer selects an
incorrect image consecutively twice, the customer’s account is
locked.

The signature generator and signature verifier security
objects were implemented for the non-repudiation security

service. The signature generator security object computes a
signature for an order request using a secure hash algorithm 1
(SHA1) to generate a hash value, followed by an encryption of
the hash value using the customer’s private key. The signature
verifier security object verifies that the signature is correct for
the order request using the customer’s public key.

The account logger SFT object (Fig. 4) was implemented to
tolerate the breach of a digital signature. The account logger
SFT object logs the customer’s activities, including the
transaction time, customer’s information, and order details. The
log data is used later to confirm the validity of the order request.

B. Performance Analysis of SFT Requirements

This section describes the performance analysis of our
approach to see how much performance overhead occurs due to
SFT use cases that are specified for application and security use
cases. The computational performance of our approach was
measured using three approaches: (1) with standalone
application object approach, for running the application use
case with no security; (2) with security object approach, for
running the application use case with security objects; (3) with
security object and SFT object approach, for running the
application use case with security objects and SFT objects. 	

The performance was evaluated by measuring the average
time taken to complete the execution of three approaches, which
were run 20 times each to calculate the average execution time,
so that the performance evaluation would not be dependent on
a few exceptional running times. The average execution time
was calculated by measuring the run time of the program per
session, but it excluded the time that a customer interacted with
the system. Also, we assumed that the antivirus agent was
already installed on the client’s machine. Table 1 shows the
average execution time of the approaches and performance
comparison.

The second column of Table 1 shows that the average
execution time is 1.33 seconds for the make order request
application use case (Fig. 4). The third column of Table 1 shows
that the average execution time for the make order request
application use case with security objects (Fig. 4) is 1.57
seconds. The fourth column shows that the corresponding
average execution time for application use cases with both
security and SFT objects takes 1.64 seconds.

Table 1. Average execution time of approaches and performance comparison

Application use case

With

standalone

application

object

approach

With

security

object

approach

With security

object and

SFT object

approach

Time difference

between with

standalone

application

object approach

and with

security object

approach

Time difference

between with

standalone

application object

approach and with

security object and

SFT object

approach

Time difference

between with

security object

approach and with

security object and

SFT object

approach

Make order request

use case (Fig. 4)
1.33 s 1.57 s 1.64 s 0.24 s ≈ 18% 0.31 s ≈ 23% 0.07 s ≈ 3%

The fifth column of Table 1 indicates that there is the time
difference between the with standalone application object
approach and the with security object approach. Time
difference for the make order request application use case is
0.24 seconds (17 %) because the with security object approach
provides the application use case with security services. The
security services in the with security object approach consume
17% more processing time for logging account, and generating
and verifying a digital signature in the system; the with
standalone application object approach is faster because it
provides no security services.

Similarly, when an application use case is deployed with
both security and SFT objects, the average execution time is
increased further, as shown in the sixth column of Table 1. The
make order request application use case (Fig. 4) with security
and SFT objects takes 0.31 seconds, which is a 23% increase in
run time.

The last column indicates that the time difference between
with security object approach and with security object and SFT
object approach is 0.07 seconds for the make order request
application use case. This result indicates that with security
object and SFT object approach takes more execution time
(3%). However, the with security object and SFT object
approach makes the system more secure compared to the with
security object approach alone.

VII. CONCLUSIONS AND FUTURE WORK

This paper has described an approach to analyzing SFT
requirements. SFT requirements were analyzed by means of the
analysis model, which was represented using the class diagram
and communication diagram. The meta-model for the class
diagram and communication diagram was developed to specify
the static and dynamic models for an analysis of SFT
requirements. New threats were identified in the analysis of
SFT requirements, and security and SFT objects against the
threats were specified in the analysis model. Our approach can
be used by requirements engineers to specify security
requirements for applications, as well as SFT requirements
against the failures of security requirements.

This paper can be strengthened with further research. The
SFT requirements specification and analysis can be extended to
the SFT software architecture that describes the components
and their interaction for SFT applications. New threats could be
identified in the SFT software architecture and, if so, it is
necessary for both security and SFT services to be incorporated
into the software architecture. Also, we can investigate how
both security services and SFT services are encapsulated in
secure connectors [8, 9, 10, 13], along with communication
patterns.

REFERENCES
[1] B. Schneier, “Attack trees: Modeling security threats,” Dr.Dobbs Journal, pages 21–29,

December 1999.

[2] M. E. Shin, S. Dorbala, and D. Jang, “Threat Modeling for Security Failure-Tolerant
Requirements”, ASE/IEEE International Conference on Privacy, Security, Risk and
Trust (PASSAT2013), Washington D.C., USA, 2013.

[3] T. Lodderstedt, D. Basin, J. Doser, “SecureUML: A UML-Based Modeling Language
for Model-Driven Security”, Fifth International Conference on the Unified Modeling
Language, London, UK., 2002.

[4] J. Jürjens, “UMLsec: Extending UML for Secure Systems Development”, Fifth
International Conference on the Unified Modeling Language, London, UK, 2002.

[5] M. Schumacher, E. B. Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad,
“Security Patterns”, Wiley, 2006.

[6] E. B. Fernandez, “Security Patterns in Practice”, Wiley, 2013.

[7] H. Gomaa and M. E. Shin, “Modeling Complex Systems by Separating Application and
Security Concerns”, 9th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2004), Italy, April, 2004.

[8] M. E. Shin and H. Gomaa, “Software Modeling of Evolution to a Secure Application:
From Requirements Model to Software Architecture”, Science of Computer
Programming, Volume 66, Issue 1, pp. 60-70, 2007.

[9] M. E. Shin, B. Malhotra, H. Gomaa, and T. Kang, “Connectors for Secure Software
Architectures”, 24th International Conference on Software Engineering and
Knowledge Engineering (SEKE’2012), San Francisco, July 1-3, 2012.

[10] M. E. Shin, H. Gomaa, D. Pathirage, C. Baker, and B. Malhotra, “Design of Secure
Software Architectures with Secure Connectors”, International Journal of Software
Engineering and Knowledge Engineering, Vol. 26, No. 5, pp 769–805, 2016.

[11] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling Language User
Guide”, Second Edition, Addison Wesley, Reading MA, 2005.

[12] J. Rumbaugh, G. Booch, and I. Jacobson, “The Unified Modeling Language Reference
Manual (2nd Edition),” Addison Wesley, Reading MA, 2004.

[13] M. E. Shin, H. Gomaa, and D. Pathirge, Model-based Design of Reusable Secure
Connectors,” 4th International Workshop on Interplay of Model-Driven and
Component Based Software Engineering (ModComp2017), September 17, Austin,
Texas, USA, 2017.

[14] M. Shin and D. Pathirage, “Security Requirements for Tolerating Security Failures,”
29th International Conference on Software Engineering and Knowledge Engineering,
Pittsburgh, USA, July 5-7, 2017.

[15] P. Torr, "Demystifying the Threat-Modeling Process," IEEE Security and Privacy,
vol. 03, no. 5, pp. 66-70, Sept/Oct, 2005.

[16] M. Abi-Antoun, D. Wang and P. Torr, “Checking Threat Modeling Data Flow
Diagrams for Implementation Conformance and Security”, ASE 2007, 21 pages,
2006.

[17] G. Sindre and L. Opdahl, “Eliciting Security Requirements with Misuse Cases,”
Requirements Engineering, Volume 10 Issue 1, January 2005, pp. 34 - 44.

[18] P. Hope, G. McGraw, and A. I. Anton, ”Misuse and Abuse Cases: Getting Past the
Positive,” IEEE Software, 2003.

[19] I. Alexander, “Misuse Cases: Use Cases with Hostile Intent,” IEEE Software, vol.20,
no. 1, pp. 58-66, 2003.

[20] J. McDermott and C. Fox, “Using Abuse Case Models for Security Requirements
Analysis,” In Proceedings of 15th Annual Computer Security Applications
Conference (ACSAC`99), pp. 55-64, Phoenix, Arizona, December, 1999.

[21] T. Srivatanakul, “Security Analysis with Deviational Techniques,” PhD thesis,
Department of Computer Science, University of York, UK, 2005.

[22] D. Olawande, G. Sindre, and T. Stalhane, "Pattern-based security requirements
specification using ontologies and boilerplates", IEEE Second International
Workshop on Requirements Patterns (RePa), 2012.

[23] S. Gantz, “Layered Security Architecture: Establishing Authentication, Authorization,
and Accountability”, securityarchitecture.com/docs/, 2008.

[24] P. E. Veríssimo, N. F. Neves, and M. P. Correia, “Intrusion-Tolerant Architectures:
Concepts and Design”, Architecting Dependable Systems, Springer-Verlag, Berlin,
Heidelberg, 2003.

[25] P. Horn, “Autonomic Computing: IBM’s Perspective on the State of Information
Technology”,
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf,
2001.

[26] Iman El Mir, D. S. Kim, and A. Haqiq. "Security modeling and analysis of a self-
cleansing intrusion tolerance technique." IEEE 11th International Conference on
Information Assurance and Security (IAS), 2015.

[27] H. Gomaa, “Software Modeling and Design: UML, Use Cases, Patterns, and Software
Architectures”, Cambridge University Press, 2011.

