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Abstract

Fuzzing is an important method for binary vulnerability

mining. It can analyze binary programs without the source

code of the program, which is not easy to do by other tech-

nologies. But due to the blindness of input generation, binary

fuzzing often falls into traps for a long time when the new

mutated inputs cannot generate unexplored paths. In this pa-

per, we propose an efficient and flexible fuzzing framework

named Tinker. It defines the Growth Rate of Path Coverage

to measure the current state of fuzzing. If the fuzzing falls

into low-speed or blocked states, a symbolic analysis proce-

dure is invoked to generate a new input which can help the

fuzzing jump out of the trap. In the symbolic analysis pro-

cedure, we employ dynamic execution to track the traversed

nodes. The untraversed branches are then identified accord-

ing to the recorded data of AFL. At last, we employ CFG to

construct complete paths to these branches and a new input

is generated using symbolic execution. Tinker has been im-

plemented and the experiments on DARPA CGC benchmark

show that Tinker is more efficient in vulnerability mining than

state-of-the-art binary vulnerability mining tools.

1. Introduction

Fuzzing is a representative method for software vulnera-

bility mining [1]. The basic idea of fuzzing is to provide a

large amount of invalid, unexpected, or randomly generated

data as inputs to a program. The program is then monitored

for exceptions such as crashes. Given that fuzzing does not

need the inside information of a program, it is one of the most

important techniques for binary program analysis.

Existing fuzzing techniques can be classified into two

classes: black box fuzzing and white box fuzzing. Black box

fuzzing [2] does not require any source information of the

program. Researches on this technique mainly focus on ef-

fective inputs generation. White box fuzzing [3][4] has been

widely studied in recent years. It usually combines fuzzing

with other analysis methods such as symbolic execution [5]

and dynamic blot analysis [6]. To improve the capability of

vulnerability mining, white box fuzzing usually explores the

inside structures of a program to guide the fuzzing process.

Fuzzing has many advantages compared with other vul-

nerability mining techniques. However, due to the blindness

of input generation, traditional fuzzing often falls into traps

in which most of the executed paths are redundant [7][8]. To

mitigate this problem, recently there has been some work us-

ing other analysis methods such as symbolic execution [9] to

improve the efficiency of fuzzing. However, there are still

two weaknesses for existing work: 1) Existing work is not

sensitive enough to the current state of fuzzing. They usually

invoke symbolic execution when fuzzing is in blocked states,

without considering those low-speed states in which fuzzing

may explore just several new paths for a long time. In prac-

tice, these states might be the most cases. 2) Existing work

cannot handle system calls properly. As a result, they can

only be applied to simple environments rather than real pro-

grams. For example, Driller [9] can run just on a simplified

operating system (OS) with only seven system calls [10].

This paper proposed a new binary fuzzing approach Tin-

ker. It first employs the defined Growth Rate of Path Cover-

age (GRPC) to evaluate the efficiency of fuzzing in current

state. If fuzzing is trapped into a low-speed or blocked state

which cannot efficiently find new paths, a symbolic analysis

procedure will be invoked to generate a new valid input of

the program, such that fuzzing can jump out of the trapped

state and again run in a high-speed state. We employ a tool

Angr for CFG generation, which has rewritten most of the

system calls properly. Our method can be applied to real pro-

grams. Moreover, as our unexplored paths are analyzed from

the CFG of the target binary program, the input generated in

our method is often more effective.

The main contributions of this paper include:

• We proposed an efficient and flexible binary vulnerabil-

ity mining approach Tinker. It employs GRPC to eval-

uate the current state of fuzzing. If fuzzing falls into a

trap, a symbolic analysis procedure is invoked to gener-

ate an input which helps fuzzing jump out of the trap.

• We proposed an effective symbolic analysis based new

input generation method. It supports real binary pro-

gram analysis and can always return an effective input

to an unexplored path. CFG is used in this method to

construct the paths to those untraversed branches.

• We implemented Tinker and evaluated it on DARPA

CGC benchmark. The experimental results demonstrate

that, compared with state-of-the-art tools, Tinker can

detect more binary vulnerabilities and is often more ef-

ficient for unexplored path exploration.
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The rest of this paper is organized as follows. Section 2

outlines the framework of Tinker. Section 3 and 4 present

our GRPC-based fuzzing evaluation and symbolic analysis

based fuzzing intervention methods, respectively. Section 5

provides the experimental results. Section 6 reviews the re-

lated work, and Section 7 concludes our paper.

2. Method Overview

In this section, we first discuss the challenge of binary

fuzzing, and then we outline the framework of Tinker.

2.1. The Challenge of Binary Fuzzing

Consider the example shown in Figure 1. The pro-

gram contains two strings order and magic byte. It runs

the fault() statement only if both order and magic byte

equal ”vuln”. For this example, fuzzing will enter the true

branch of Line 4 only if it succeeds in mutating the value of

magic byte to ”vuln”. Given that ”vuln” has 4 ∗ 8 bits, a

maximum number of 24∗8 variations of inputs are required

for fuzzing to reach Line 6. For some other long string, it

will be more difficult for fuzzing to enter the true branch. A

string like ”vuln” here that hampers fuzzing to new paths

in mutation is called “MAGIC-BYTE”. The similar problem

occurs in Line 7. In this paper, we use the growth rate of path

coverage (GRPC) to measure the efficiency of fuzzing. For

this example, the GRPC will keep zero until the true branchs

of Line 4 and Line 7 are explored.

1 i n t main ( void ){
2 char order [ 2 0 ] , magic byte [ 2 0 ] ;

3 s c a n f ( ”%s\n ” , magic byte ) ;

4 i f ( strcmp ( magic byte , ” vu ln ” )==0)

5 {
6 g e t s ( order ) ;

7 i f ( strcmp ( order , ” vu ln ” )==0)

8 f a u l t ( ) ;

9 }
10 re turn 0 ;

11 }

Figure 1: A challenging example for traditional fuzzing.

To further investigate this problem, we have analyzed the

efficiency of traditional fuzzing for three real binary pro-

grams, as shown in Figure 2. The vertical axis P represents

the number of new explored paths for each time unit (15 min-

utes). According to this figure, fuzzing might perform differ-

ently for different programs. 1) For the Multipass program,

the value of P always keeps 40 on average, and we say that

fuzzing is in “high-speed” state. 2) For the Grisword pro-

gram, the value of P always keeps in just 10 on average after

4 time units, and we say that fuzzing is in “low-speed” state.

3) For the Monster Game program, the value of P reduces

to zero after 3 time units, and we say that fuzzing falls into a

“blocked” state.
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Figure 2: Efficiency of fuzzing for three real programs.

2.2. Framework of Tinker

When fuzzing falls into a blocked or low-speed state, it is

usually difficult for fuzzing to jump out of such a state itself.

In other words, it might be trapped into such a state for a long

time, which significantly limits the efficiency of fuzzing. To

deal with this problem, we proposed a new binary fuzzing

approach called Tinker. The idea is that we continuously

compute the value of GRPC during the fuzzing process to

evaluate the current state of fuzzing. If we find that fuzzing

is trapped into some blocked or low-speed state, we employ

a symbolic analysis method to generate a new input to guide

fuzzing to search the other untraversed branches, such that

fuzzing always explores new paths and keeps in high-speed

states for vulnerability mining.

The framework of Tinker is outlined in Figure 3. Before

the fuzzing starts, the target binary program will be prepro-

cessed to generate an instrumented binary and its control

flow graph (CFG). During the process of fuzzing, we iter-

atively employ a GRPC-based fuzzing evaluation procedure

to measure the current state of fuzzing. If the fuzzing falls

into a low-speed or blocked state, we then invoke the sym-

bolic analysis based fuzzing intervention process to generate

a new input to motivate the fuzzing to a high-speed state. To

generate the new input, we first select an input from fuzzing

which leads to a redundant path. The instrumented binary is

then executed with this input to obtain the traversed nodes

of the corresponding path. According to the recorded data

of AFL, we can obtain those untraversed opposite branches

of the path. CFG is then employed to obtain the complete

paths of these untraversed branches. At last, we select one

of these paths and employ symbolic execution to generate a

new input. In such a manner, whenever the fuzzing falls into

a low-speed or blocked state, we can detect it in time and

generate a new input that helps fuzzing jump out of the trap.

In particular, in Tinker, fuzzing and symbolic-based analysis

work in parallel. The intervention of symbolic-based analy-

sis does not interrupt Fuzzing.

3. GRPC-based Fuzzing Evaluation

If the fuzzing falls into a blocked or low-speed state, it

may spent most of its effort on iteratively exploring those

redundant paths. To quantitatively evaluate the efficiency of

fuzzing, we proposed the notion of Growth Rate of Path Cov-

erage (GRPC), which defines the average number of new ex-



Figure 3: Framework of Tinker.

plored paths that grows per time unit over the latest period.

The smaller the value of GRPC is, the lower the efficiency

of fuzzing will be. If GRPC equals 0, then the fuzzing is

trapped into a blocked state.

To compute GRPC, we divide the fuzzing process into in-

tervals. Then the average number of new explored paths per

time unit for the last interval can be obtained as equation (1),

where qm represents the total number of different paths that

have been explored in the last m intervals, and ∆t represents

the time length of each interval. The value of qm can be ob-

tained from AFL directly.

pm =
qm − qm−1

∆t
, m ≥ 1 (1)

Given that there may exist some noises sometimes, one in-

terval might not reflect the actual state of fuzzing in practice.

For example, the fuzzing might fall into a low-speed state in

some interval, and have a large probability of returning back

to a high-speed state in the next interval. To avoid such cases,

we filter out those noises by using the idea of moving average

[11]. In this idea, the mth sample result is an average of the

2n+ 1 sample values on time points m− n, m− n+ 1, ...,

m+n− 1 and m+n. Similarly, we can employ the pm’s of

the last 2n+1 intervals to compute our GRPC Pm, as shown

in equation (2).

Pm=
1

2n+ 1

2n∑

k=0

pm−k, m ≥ 2n (2)

Now the problem is how to decide the value of n. If n is

too big, the fuzzing will stay in those blocked and low-speed

states for a long time; if n is too small, many of those noises

might not be filtered out in our method, which may also de-

crease the efficiency of fuzzing. According to the work of

moving average, we usually set n = 2 in practice [11]. Our

experiments also proved that fuzzing can usually obtain the

best efficiency for n = 2. For m < 2n, we use the average

of all pk for k ≤ m to compute Pm.

After obtaining GRPC, we need to decide the current state

of fuzzing. For any program, the GRPC Pm have a peak

value Pmax, which can be obtained from its execution his-

tory. We say that fuzzing obtains a highest efficiency if Pm

equals Pmax. Given that the values of Pmax for different

programs differ significantly, the threshold that determines

the state of fuzzing should also be different for different pro-

grams. Our idea is to decide the threshold according to the

value of Pmax for each program. To this end, we can decide

the current state of fuzzing using the following definition.

Definition 1 Suppose that the currently observed peak value

of GRPC is Pmax, w is a threshold factor. Then the current

state of fuzzing is determined as follows. Fuzzing is at

1) high-speed state, if Pm ≥ Pmax ∗ w;

2) low-speed state, if 0 < Pm < Pmax ∗ w;

3) blocked state, if Pm = 0.

At the beginning of fuzzing, Pmax can be set to a small

value that is greater than zero. After each interval, Pmax will

be updated to Pm if current Pm is larger. Threshold factor

w can be customized by user according to the performance

of fuzzing. In our experiments, we tried several values and

found that setting w = 0.4 can usually obtain higher effi-

ciency. If fuzzing is at low-speed or blocked state, a symbolic

analysis procedure will be started to generate a new input that

enables fuzzing to jump out of the trap.

4. Symbolic Analysis Based Fuzzing Interven-

tion

The purpose of symbolic analysis based fuzzing interven-

tion is to generate a test input which can help the fuzzing

to explore new branches. The idea is that we first select an

untraversed branch and then use symbolic execution to gen-

erate an input to this branch. However, given that we have no

source information of the target binary program, a problem is

how to obtain the path of an input and generate the path con-

dition constraints for an untraversed branch. To address this

problem, we propose to use existing disassemble techniques

to generate the CFG of the target binary program first, and

then we use existing binary instrumentation tools to generate



an instrumented binary which can obtain the execution path

of an input. With the instrumented binary, we use dynamic

execution to identify a path explored by fuzzing. According

to the recorded data of AFL, we can obtain the untraversed

opposite branches of the path. Then CFG is employed to

generate the condition constraints of these branches, which

are then solved by a constraint solver to generate valid inputs

to these branches. The main steps of our symbolic analysis

method are as follows.

1) Instrumented binary and CFG generation. To per-

form our symbolic analysis, we should generate an instru-

mented binary and the CFG of the target binary program first.

For instrumented binary, dyninst [12] is a binary instrumen-

tation tool satisfying all our requirements. Hence, we select

dyninst for instrumented binary generation in our work. For

CFG generation, an issue here is how to generate those sys-

tem call nodes which cannot be disassembled directly. We

found that Angr [13] can rewrite most of the system calls

and generate a CFG with system call nodes, which makes

our method work well for most real programs. Hence, we

select Angr to perform the CFG generation.

Figure 4: An example CFG used in symbolic analysis

2) Untraversed branches identification. Dynamic exe-

cution is a technique which can track an instrumented pro-

gram under an input and record the traversed nodes. To ob-

tain an untraversed branch, we select an input from fuzzing,

and then use dynamic execution to obtain the traversed path

of the input. Then for each branch of this path, we will check

if the opposite branch has been explored yet. In AFL, it has

recorded all the traversed nodes during the fuzzing process.

If an opposite branch has not been explored yet, then an un-

traversed branch has been found. We will generate an input

to this branch in the following steps. Given that some branch

may be unreachable in an real execution, we will obtain all

untraversed branches of the path in this step.

3) Unexplored paths construction. To generate the input

of an untraversed branch, we should identify the path to it and

then generate the condition constraint of the path. To achieve

this, we map the path to the CFG, and then construct a sub-

graph of the CFG which contains just nodes of the path. For

the example shown in Figure 4, the subgraphs for F and G in

Figure 4 can be represented by GF = {A,B,C,D,E, F},

and GG = {A,B,C,D,E,G}, respectively. An issue here

is that dynamic execution does not consider those system

calls. In other words, there are some system call nodes which

have been traversed by fuzzing but not marked as traversed

in the CFG yet. We should detect these nodes and mark them

as traversed in the CFG before the subgraph generation.

4) New test input generation. In this step, we will gen-

Algorithm 1 Symbolic analysis based test input generation

Input: The binary bin, selected input fin from fuzzing.

Output: New test input testcase.

//Instrumented binary and CFG generation

ins bin = Instrument(bin);
cfg = CreateCFG(bin)
//Untraversed branches identification;

path = DynamicExecution(ins bin, fin);
n list = UntraversedBranches(path);
//Unexplored paths construction;

PathMap(path, cfg);
MissedNodesAdd(cfg);
g list = ∅;

for each untraversed branch n ∈ n list do

g list = g list ∪ PathConstruct(n);
end for

//New test input generation;

for each subgraph g ∈ g list do

cons = ConstraintGeneration(g);
input = Solve(cons);
if input is VALID then

RETURN testcase;

end if

end for

RETURN NULL ;

erate a new test input which explores an unexplored path and

helps the fuzzing jump out of a trapped state. The idea is

that for each subgraph we have constructed, we first con-

struct a constraint formula according to it. The constraint

formula is then solved by a constraint solver. In this paper,

Z3 is employed as our constraint solver. Given a constraint,

it can generate an input of the program if the constraint is

satisfiable. Setting this input as the input of the binary pro-

gram will generate a path to the untraversed branch. If Z3

returns unsatisfiable, then the selected path is invalid and we

will generate the new input according to another unexplored

path.

The whole procedure of our test input generation process

is demonstrated in Algorithm 1. The input is a target bi-

nary program bin, and an input fin selected from fuzzing.

We first use dyninst and Angr to obtain the instrumented

binary ins bin and the CFG cfg, respectively. Then the

function DynamicExecution is invoked to obtain the ex-

ecution path of fin. The function UntraversedBranches

identifies those untraversed opposite branches of the path

according to the recorded data of AFL and stores them in

n list. To generate the condition constraints of these untra-

versed branches, the path is mapped to cfg. The function

MissedNodesAdd detects those missed system call nodes

and adds them to the path in the CFG. For each untraversed

branch n, PathConstruct constructs a subgraph which con-

tains all nodes of the path leading to n. Given a subgraph, the

function ConstraintGeneration generates a constraint for-



mula, which is then solved by Z3 using the function Solve.

If a valid input is generated, then we have obtained a new test

input and the procedure terminates. Otherwise, the selected

untraversed branch is unreachable and we need to continue

the loop and analyze another untraversed branch.

5. Experimental Evaluation

We implemented Tinker based on the open source tools

AFL 2.33b [14], Angr [13], dyninst [12], and Z3 [15]. AFL is

used as the fuzzer in Tinker and we extended it with an infor-

mation collection interface to dynamically obtain the num-

ber of explored different paths to compute GRPC. Angr is a

python-based binary analysis framework integrating a vari-

ety of existing analytic techniques. In Tinker, it is used to

translate the target binary program into an intermediate rep-

resentation, and generate its CFG. Dyninst is used to gener-

ate the instrumented binary and Z3 is used as the solver to

generate a new input of an unexplored path.

Our experiments were performed on a machine with four

Intel Core i7-6700 cores and 16GB memory. The operating

system is 64-bit Ubuntu 16.04 LTS. Although AFL supports

parallelism, it will produce deviations and influence the com-

parison results. Hence, we used only one fuzzing process in

the experiments.

We use the DARPA CGC sample binaries [16, 17] as our

benchmark to evaluate the vulnerability mining capability of

our method. However, these binaries can only run under the

DARPA Experimental Cyber Research Evaluation Environ-

ment (DECREE), which is a simplified OS with only seven

system calls. Tinker aims to find vulnerabilities in real-world

binaries. Therefore, we select the data set CB-multios pro-

vided by TrailofBits team [18], who migrated the DARPA

CGC benchmark from DECREE to Linux.

For the 244 binary programs in CB-multios, we filtered

some special types of programs that could not be used in

fuzzy test analysis.

We performed our experiments on the remaining 211 pro-

grams. To evaluate the efficiency of our method, we com-

pared the results of Tinker with that of Angr and AFL-qemu,

which employ symbolic execution and pure fuzzing tech-

niques for vulnerability mining, respectively. Both of them

are state-of-the-art binary analyzers. We use two hours as the

time limit. For the symbolic execution in Angr and Tinker,

the depth of loop exploration is limited to 500 to avoid ex-

plosion. The more programs can be triggered to crash, the

stronger a tool’s vulnerability mining ability will be.

The experimental results are shown in Figure 5. Tinker

detected 116 vulnerable programs, AFL found 96 vulnera-

ble programs, and Angr found only 47 vulnerable programs.

Angr found 10 vulnerable programs which were not detected

by AFL. Tinker found all the 106 vulnerable programs that

AFL and Angr have found, and it found 10 more vulner-

able programs which were not detected by either Angr or

AFL. These results suggest that under the same time limita-

tion and conditions, Tinker can usually find more program

crashes than existing binary fuzzing and symbol execution

techniques.

Figure 5: The crashed programs found by Tinker, AFL and

Angr in DARPA CGC benchmark.

To further analyze the efficiency benefited from our

method, we compare the number of explored paths within

two hours between Tinker and the traditional fuzzing which

contains no fuzzing intervention. All the 116 vulnerable pro-

grams that have been detected by Tinker are considered as

the benchmark. The comparison is shown in Figure 6.

In this figure, the examples are divided into 3 categories

based on the improvement rate. The Y-axis represents the

number of examples for each category. From this figure, our

method explores more paths than traditional fuzzing for all

examples. Particularly, our method searched more than 20%

of paths for 26 examples, searched 10%-20% more paths for

36 examples, and searched less than 10% more paths for 54

examples. We further studied the programs in which the ef-

ficiency is improved less than 10%. Most of these programs

contain simple string comparisons which can be well han-

dled by traditional fuzzing. For those programs with complex

structures, our method can usually obtain more than 20% of

the efficiency. In this sense, Tinker is more suitable to deep

vulnerabilities in practice.

Figure 6: Efficiency benefited from fuzzing intervention.

6. Related Work

A variety of binary fuzzers have been proposed in recent

years. Most of them focus on seed generation. Some fuzzers

try to generate highly structured input, such as Skyfire [19].

The others mainly aim to improve the efficiency of fuzzing,

such as AFL-lafintel [20], which converts a program into



LLVM IR [21]. Moreover, most of the fuzzers need to work

at the source level. Although there exist some fuzzers such

as AFL-qemu, AFL-dyninst [22] and Aflpin [23], which sup-

port binary programs without source code, their efficiency

for vulnerability mining still requires further improvement.

Symbolic execution is one of the most successful tech-

niques for binary program analysis. Tools adopting this tech-

nique include Angr [13], Mayhem [24] and S2E [25]. The

main problem for this technique is the path explosion prob-

lem. In order to mitigate this problem, various approaches

have been proposed (e.g. veritesting [26]).However, existing

techniques and tools are still not effective enough for real

binary program analysis.

To address the problems faced by above methods, white

box fuzzing has been proposed and widely studied in re-

cent years. It explores analysis methods to guide fuzzing

to generate more effective test cases (e.g. Steelix [27] and

Vuzzer [28]), such that the path coverage of fuzzing can be

improved. However, due to the high frequency of additional

analysis invoking, this technique usually brings heavy load.

Driller [9] is the closest work to Tinker. If fuzzing falls

into a blocked state, it uses concolic execution to guide

fuzzing to a new path. Compared with Driller, Tinker has

a more efficient and flexible efficiency evaluation method

which makes it more sensitive to the current state of fuzzing.

In addition, Tinker employs Angr for CFG generation which

has rewritten most of the system calls and can generate a

CFG with those system call nodes. Hence, Tinker works well

for real binary programs, while Driller can only be applied to

binaries running on DECREE.

7. Conclusions

This paper presents a new fuzzing framework named Tin-

ker. Unlike traditional white box fuzzing techniques, Tin-

ker uses GPRC to measure the current work state of fuzzing,

and invokes a symbolic analysis approach when fuzzing is

in blocked or low-speed states. In the symbolic analysis ap-

proach, new input is generated using symbolic execution to

guide fuzzing jump out of the trap. Tinker is implemented

based on open source tools AFL, Angr, dyninst and Z3. Ex-

periments on DARPA CGC benchmark show that Tinker has

higher efficiency in vulnerability mining than the other state-

of-the-art fuzzing tools such as AFL and Angr. In future

work, we will try to integrate existing efficient symbolic ex-

ecution algorithms in to our approach so that the vulnerabil-

ities in more complex binary programs can be detected.
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