
DOI Reference Number: 10.18293/SEKE2018-012

Ontology-based Software Architectural Pattern
Recognition and Reasoning

Nacha Chondamrongkul1, Jing Sun2 and Ian Warren3
Department of Computer Science, University of Auckland, New Zealand

1ncho604@aucklanduni.ac.nz, 2jing.sun@auckland.ac.nz, 3i.warren@auckland.ac.nz

Abstract— Designing software architecture is a knowledge-
intensive task that typically involves textual and diagrammatic
notation. Using these kinds of notation is often inconsistent,
misleading, and ambiguous. Ontology representation is, therefore,
a suitable approach, as it can semantically define architectural
design model that can be automatically verified through reasoning.
However, a large-scale software system is usually complex and
applies more than one architectural styles with various behavioral
patterns. Therefore, the scalability of automated verification for a
complex software architecture design is a challenge. We propose
an approach that helps to formally define complex architectural
design model and automate different verifications such as
consistency checking, architectural styles recognition, and
behavioral sequence inference. Ontology Web Language (OWL) is
used to semantically define basic architectural elements and
architectural styles, while a set of rules defined in Semantic Web
Rule Language (SWRL) helps to capture behavioral pattern
according to style. We evaluated the scalability of our approach.
The result shows that different levels of complexity in architectural
design model has a minor impact on the verification performance.

I. INTRODUCTION
Software architecture is typically a conceptual design that

decomposes a software system into a set of logical components.
At the early phase of software development process, software
architecture is designed to meet specific functional
requirements, non-functional requirements and business goals.
Software architecture, therefore, encapsulates set of early
design decisions tradeoffs and constraints, which provide a
guideline to implement software system throughout the
development lifecycle. Unfortunately, software architecture is
often abstract and informally presented by the combination of
textual and graphical notation that are often misleading,
ambiguous and inconsistent. Although, several standardized
architecture description languages (ADL) have been proposed,
such as ISO/IEC/42010 [1] and UML [2], they have little or no
formal semantic support. Without semantic constraints, the
verification of architecture design is, therefore, a daunting task.
Moreover, the large-scale software system is usually a complex
entity that applies predefined architectural styles, each style
characterizes specific type of component and their behavior.
Even though, a few ADLs, such as ACME [3], support
abstraction of architecture into reusable styles but they have no
semantic that enforces style constraints. ADLs has little
popularity among practitioners because they are lack of tools to
support, and yet require high learning curve [4]. The inadequate

mechanism of producing accurate software architecture model
catalyzes applying formal methods into this area.
 Formal methods have played an important role in software
engineering research for some time. A number of researchers
have applied ontology technique to software development
lifecycle [5], in order to resolve ambiguous, prevent errors and
minimize cost in different phases, from requirement gathering
[6] to software maintenance [7]. For software architecture, in
particular, architectural design model is formally specified, in
pursuance of automated verification [8]. However, the
performance of automated verification in large-scale software
is still an open issue for existing approach such as Alloy [9].
Although, Wong et al [10] proposed a solution that allows
model to be decomposed, in order to parallelize verification
process. However, dependencies between components still
require verification process to be executed in sequential
manner. The ontology has been proposed to apply in designing
software architecture because of its strength in effective large-
scale reasoning that can automate consistency checking and
hierarchy inference in the design model [11, 12, 13]. Pahl et al.
[14] integrated ontology into ACME, in order to verify
consistency of an architecture and its behaviors, but process
modeling notation is still a limitation. In pursuance of
consistency checking automation, style recognition, and
communication inference, Sun et al. [15] proposed to use
Ontology Web Language (OWL) [16] to formally specify
different entities and relationships in architectural design. The
communication flow can be captured by rules based on
Semantic Web Rule Language (SWRL) [17]. However, the
performance of automated verification was not evaluated, and
the range of provided architectural styles is limited.

The main challenge is how we can semantically define
complex architectural design based on multiple styles, and
evaluate how the proposed method impacts to the automated
verification performance. We propose an approach as shown in
Figure 1. The ontology library includes basic architectural
element, architectural styles, and behavioral rules. OWL is used
to define basic architectural elements, such as component and
connector. These basic architectural elements can be extended
to define various architectural styles, and a design instance that
represents the architectural design model of a specific software
system. As the ontology for architecture design is inevitable
complex, we use description logic (DL) based languages, in
order to take advantage of existing DL reasoning engine that is

effective in performing large-scale automated reasoning. The
consistency in architectural styles and design instance can be
automatically checked by the reasoning engine, based on the
ontology’s constraints defined in basic architectural elements.
In order to recognize architectural styles applied in the design,
reasoning engine classifies architectural elements into different
ontological classes specific to architectural style. After styles
are recognized, reasoning engine processes behavioral rules to
capture architectural configuration and generate behavioral
sequences, which manifest interactions between components.

Basic Architectural
Elements

Architectural Styles

Design
Instance

Ontology
Library

Behavioral
Rule

extend

create

reason

Reasoning
Enginerefer

Figure 1 Overview of architectural design approach

The rest of the paper is organized as follows. We present
ontology-based architectural styles in Section 2. Section 3
illustrates how a software architecture can be modeled and
verified against architectural styles. This paper concludes in
Section 4 with future research direction.

II. ONTOLOGY MODELING FOR ARCHITECTURE STYLES
The ontology library is based on Component & Connector

(C&C) [18] view, which aims to exhibit how the system works
at runtime. Software architects use C&C view for reasoning
about key system quality attributes such as performance,
security, and reliability [19]. In C&C, a component represents
a processing unit within the software system, while connectors
define interaction mechanism between components. The
component has a set of ports that serves communication to
another component, whereas connector has a number of roles,
each has specified set of actions it specifically performs. A
component can be associated with a connector by attaching its
port to a connector’s role. Based on C&C view’s concept, our
ontology library has consisted of ontological classes
representing fundamental architecture elements, namely
Component, Connector, Port, Role, and Action.
hasAttachement is defined as an object property to associate
component’s port with connector’s role. Action is assigned to
Role via hasAction property with minimum cardinality
restriction, in order to make sure that a role has at least one
assigned action. Below are ontology classes expressed in
description logic syntax.

ArchElement ⊑	Component ⊔	Connector⊔	Interface ⊔	Action
Interface ⊑	Port ⊔ Role
Component ⊓	Connector	⊓	Interface	⊓	Action	≡ ⏊	
Port	⊓	Role ≡ ⏊
Component ≡ ArchElement ⊓ ∃ hasPort Port
Connector≡ ArchElement ⊓ ∃ hasRole Role
Port ≡ Interface ⊓ ∃ hasAttachment Role
Role ≡ Interface ⊓ ≥1 hasAction Action

C&C can be characterized by various architectural styles. Each
style specifies a particular set of component, connector, and

behavioral pattern. The following are some architectural styles
included in our ontology library.

A. Client-Server Style
The client and server are two key component types in this

style. Cns:Client and Cns:Server are defined as classes,
extended from Component. Request and Response are port type
attached to client and server respectively. The port attachment
is defined by hasPort property with existential restriction, as a
component can be classified as several component types.

CnS:Client ≡ Component ⊓ ∃ hasPort Request
CnS:Server ≡ Component ⊓∃ hasPort Response
Request ≡Port ⊓	∃ hasAttachment Consumer
Response ≡Port ⊓	∃ hasAttachment Provider

A corresponding connectivity is defined as a connector class to
incorporate two roles, Consumer, and Provider. Consumer
requests services on the server, while Provider performs actions
to process the request and return the result back to Consumer.
SendRequest, ReceiveResult, ServerInvoked and ReturnResult
are defined as subclasses of Action, in order to represent
different activities and events in client-server style.

CnSConnector≡ Connector ⊓ ∃ hasRole Consumer
 ⊓ ∃ hasRole Provider

CnS:Consumer≡Role ⊓ ∃ hasAction SendRequest
 ⊓∃ hasAction ReceiveResult
CnS:Provider≡Role⊓∃ hasAction ServerInvoked
 ⊓∃ hasAction ReturnResult
SendRequest ⊑Action
ReceiveResult ⊑Action

ServerInvoked ⊑Action
ReturnResult ⊑Action

The behavioral rules are defined to associate relevant actions as
a sequence according to the style’s behavioral pattern. In order
to generate a behavioral sequence, the hasNextAction property
is used to define what action comes next in the sequence. Below
is a rule defined in SWRL, it captures behavioral pattern as
follows. At first, when the client sends a request, the server will
be invoked. This rule hence implies ServerInvoked as the next
action to SendRequest. After the server finishes processing and
returns the result, the client will receive the result. This rule,
therefore, implies ReceiveResult as the next action of
ServerReturn.

CnSConnector(?cns) ⊓ hasRole(?cns, ?cr) ⊓	CnS:Server(?server)	⊓
isPortOf(?p, ?server), SendRequest(?sreq)	⊓ hasAction(?cr, ?sreq)	⊓
Provider(?pr), isAttachmentOf(?pr, ?p)	⊓, Consumer(?cr)	⊓
ReceiveResult(?rres)	⊓ hasRole(?cns, ?pr) ⊓ hasAction(?pr, ?invs)	⊓
ServerInvoked(?invs), ServerReturn(?sret), hasAction(?pr, ?sret)	⊓
hasAction(?cr, ?rres)	
→ hasNextAction(?sreq, ?invs)	⊓ hasNextAction(?sret, ?rres)

Below is another rule that captures an occurrence when the
server is invoked to process the request. After that, the result
will be returned to the client. This rule hence implies
ServerReturn as the next action of ServerInvoked

Response(?p)	⊓ isPortOf(?p, ?server)	⊓ hasAction(?p, ?iser)	⊓
	Provider(?pr) ⊓ isAttachmentOf(?pr, ?p) ⊓ CnSConnector(?cns) ⊓
CnS:Server(?s)	⊓ Consumer(?cr) ⊓ hasRole(?cns, ?pr) ⊓
Request(?r)	⊓ hasAction(?p, ?sret)	⊓ ServerInvoked(?iser)	⊓

ServerReturn(?sret), isAttachmentOf(?cr, ?r)	⊓ hasRole(?cns, ?cr)
→ hasNextAction(?iser, ?sret)

B. N-Tier Style
A number of clients and servers can form a multi-level

hierarchy, a tier has consisted of clients that invoke servers on
the upper tier. Each tier runs on the separate physical
environment so it can be maintained independently of other
tiers, however, interaction between tiers rely on each other. For
example, the business application typically has 3 tiers namely
client, business logic, and data management. A request to
service on business logic consequently triggers a request to data
management tier. To semantically define this, connector’s
reliance is defined by hasLink property, so a class for tier can
be formally expressed as follows:

NTier:Tier≡ Component ⊓ ∃ hasPort
 (Port ⊓ ∃ hasAttachment
 (Role ⊓ ∃ isRoleOf
 (Connector⊓ ∃ hasLink Connector)))

Below is a rule defined to capture behavioral pattern between
tiers. When a server on a tier is requested and invoked, it may
make a request to the upper tier. When the result is received, it
is forwarded to the lower tier. The actions between tiers are
related by hasDivertNextAction property.

CnSConnector(?cns) ⊓ hasRole(?cns, ?pr)	⊓ hasRole(?cns, ?cr)	⊓
Provider(?pr)	⊓ Consumer(?cr)	⊓ hasAction(?pr, ?invs1)	⊓
hasAction(?pr, ?sret1) ⊓ ServerInvoked(?invs1) ⊓
ServerReturn(?sret1)	⊓ hasLink(?cns, ?cns2)	⊓
CnSConnector(?cns2) ⊓ hasRole(?cns2, ?pr2) ⊓ hasRole(?cns2,
?cr2)	⊓ Provider(?pr2) ⊓ Consumer(?cr2) ⊓ hasAction(?cr2, ?rret2)
⊓ hasAction(?cr2, ?sreq2)	⊓	ReceiveResult(?rret2) ⊓
SendRequest(?sreq2)
→	 hasDivertNextAction(?invs1, ?sreq2)	⊓
 hasDivertNextAction(?rret2, ?sret1)

C. Publish-Subscribe Style
This style has components interacting to each other through

events. Pns:Publisher is a subclass of Component for publisher,
a component type that announces events to subscribed
component, while Pns:Subscriber is a subclass for subscriber,
a component type that listens to the events. Announce and
Register are ports for publisher and subscriber respectively. The
defined classes for component types and its ports type can be
formally expressed as follows:

PnS:Pulisher≡ Component ⊓ ∃ hasPort Announce
PnS:Subscriber≡ Component ⊓ ∃ hasPort Register
Announce≡ Port ⊓ ∃ hasAttachment Publisher
Register≡ Port ⊓ ∃ hasAttachment Subscriber

Publisher and Subscriber are defined as role class in this style.
The connector is an event bus that coordinates these two roles.

PnSConnector≡ Connector ⊓ ∃ hasRole Publisher
 ⊓ ∃ hasRole Subscriber
Publisher ≡ Role ⊓ ∃ hasAction SubscribeToEvent
 ⊓∃ hasAction EventAnnouced
 ⊓∃ hasAction DeliverEvent
Subscriber ≡ Role ⊓ ∃ hasAction ReceiveEvent
 ⊓∃ hasAction RequestSubscription

RequestSubscription ⊑	Action
SubscribeToEvent ⊑	Action

EventAnnounced ⊑	Action
DeliverEvent⊑	Action
ReceiveEvent ⊑	Action

The behavioral rule for publish-subscribe style is shown below.
This rule captures two occurrences in this style: 1) Subscription:
If a subscription is requested by a component, the publisher will
acknowledge and subscribe requesting component to an event.
Therefore, this rule implies SubscribeToEvent to be the next
action of RequestSubscription. 2) Event Publishing: When a
publisher announces an event, the event will be delivered to all
subscriber. This rule below infers the sequence of actions as
EventAnnounced, DeliverEvent and ReceiveEvent respectively.
This sequence is sorted through last two hasNextAction
property assertions in the rule’s implication.

PnSConnector(?cns)	⊓ Publisher(?p) ⊓ Subscriber(?s)	⊓
hasAction(?p, ?feven)	⊓ hasAction(?p, ?seven)	⊓ hasAction(?p,
?neven)	⊓ FireEvent(?feven)	⊓ NewEventOccur(?neven)	⊓
SubscribeToEvent(?seven)	⊓ hasAction(?s, ?reqs)	⊓ hasAction(?s,
?reven)	⊓ RequestSubscription(?reqs)	⊓ ReceiveEvent(?reven)
→	hasNextAction(?reqs, ?seven)	⊓
 hasNextAction(?neven, ?feven)	⊓ hasNextAction(?feven, ?reven)

D. Repository Style
The repository style organizes how data is accessed and

stored in software system through centralized repositories. Data
repository and data accessor are two major component types in
this style. Data repository (RP:DataRepository) persists data,
manages concurrent access, and supports access control. Data
accessor (RP:DataAccessor) reads and writes data at one or more
repositories.

RP:DataRepository≡ Component ⊓ ∃ hasPort
 (Port ∃ hasAttachment Store)
RP:DataAccessor≡ Component ⊓ ∃ hasPort
 (Port ∀ hasAttachment (Reader ∪Writer))

We create two connector classes corresponding to writing and
reading function in this style. Both connectors associate Store
role to address where the data persists. Writer role identifies the
component that requests to write data on the repository, whereas
Reader role identifies the component that requests to read data
on the repository.

DataReadConnector≡ Connector ⊓ ∃ hasRole Store
																																												⊓ ∃ hasRole Reader
DataWriteConnector≡ Connector ⊓ ∃ hasRole Store
 ⊓ ∃ hasRole Writer
Store≡ Role ⊓∀ hasAction (ReadData ∪WriteData)
Writer≡ Role ⊓∃ hasAction RequestWrite
Reader≡ Role ⊓∃ hasAction RequestRead
ReadData⊑Action
WriteData⊑Action

RequestRead ⊑Action
RequestWrite⊑Action

The behavioral sequence is captured by two rules below. The
first rule support reading function so it implies RequestRead as
precedence action to ReadData, likewise, the second rule
implies RequestWrite as precedence action to WriteData action.

DataReadConnector(?con))	⊓ RequestRead(?reqr))	⊓
hasAction(?store, ?read))	⊓ ReadData(?read))	⊓

hasAction(?reader, ?reqr))	⊓ hasRole(?con, ?reader))	⊓
hasRole(?con, ?store))	⊓ Store(?Store))	⊓ Reader(?reader)
 → hasNextAction(?reqr, ?read)
DataWriteConnector(?con)	⊓ Writer(?writer)	⊓
RequestWrite(?reqw)	⊓ hasAction(?writer, ?reqw)	⊓ hasRole(?con,
?store)	⊓ Store(?store) ⊓ WriteData(?write), hasRole(?con,
?writer)	⊓ hasAction(?store, ?write)
→ hasNextAction(?reqw, ?write)

III. CASE STUDY & EVALUATION
The online shopping application system is used as a case

study to demonstrate our approach. This case study is a sample
of complex software system that applies multiple architectural
styles. Figure 2 shows its software architecture design that has
consisted of four components namely, TransactionLog,
PaymentGateway, Shopping Mobile App and ShopService. The
ports are depicted as small box attached to the components such
as LoggingRequest, and PayResponse. Shopping mobile app
has user interfaces that allow the user to purchase the products
and make a payment through payment gateway. When a
payment is submitted to the payment gateway, a transaction will
be recorded by transaction logger. If the user subscribes to price
alert service, the notification will be sent when price is updated.

Shopping
Mobile App

Payment Gateway

Pay
Request

Pay
Response

Transaction
Logger

LoggingResponse

LoggingRequest

ShopService

PriceAlertRequest

PriceAlertServe

Figure 2 Software architecture design for shopping application

We create ontology instance representing an architectural
design model for our case study. The design elements namely
actions, roles, port, connectors, and components, are created as
individuals that are instances of classes defined in the ontology
library. The object properties are used to relate these individuals
together, in order to establish a structure in the design model.
Due to page limit, we can not show all individuals definition in
this paper. The compelete definition for this case study can be
found at https://goo.gl/4ugkLB

The individuals are created for actions with one or more
types specified, and they can be formally expressed in OWL
abstract syntax as follows:

Individual(ex: ActRequestToPay type(ex: SendRequest))
Individual(ex: ActRequestToLog type(ex: SendRequest)

 type(ex: RequestWrite))
Individual(ex: ActLogTransaction type(ex: ServerInvoked)

 type(ex: WriteData))
 The roles are defined as individuals with hasAction property
to the action individuals defined previously. Below are some
individuals defined for roles.
Individual(ex:PaymentProvider

value(ex: hasAction ex:ActProcessPayment)
value(ex: hasAction ex:ActReturnPayResult))

Individual(ex: PaymentRequester
value(ex: hasAction ex: ActRequestToPay)
value(ex: hasAction ex: ActReceivePayResult))

The following are sample individual defined for port. These
individuals have one or more relationship to the role individuals
through hasAttachment property.

Individual(ex: PayRequest
value(ex: hasAttahment	ex: PaymentRequester))

Individual(ex: PayResponse
value(ex: hasAttahment	ex: PaymentProvider))

A number of individuals are created corresponding to
communication lines shown in Figure 2. The roles individual
are assigned to each connector through hasRole property.

Individual(ex: PaymentService
value(ex: hasRole ex: PaymentProvider)
value(ex: hasRole ex: PaymentRequester)
value(ex: hasLink ex: LoggingService))

Individual(ex: LoggingService
value(ex: hasRole ex: LoggingProvider)
isolate value(ex: hasRole ex: LoggingRequester))

Individual(ex: NotificationService
value(ex: hasRole ex: NotificationPublisher)
value(ex: hasRole ex: NotificationSubscriber))

Each of the components has the corresponding individual
created, each component individual is attached with one or
more port individuals through hasPort properties.

Individual(ex: PaymentGateway
value(ex: hasPort ex: PayResponse)

 value(ex: hasPort ex: LoggingRequest))
Individual(ex: ShoppingMobileApp

value(ex: hasPort ex: PayRequest)
value(ex: hasPort ex: PriceAlertRequest))

Individual(ex: ShopService
value(ex: hasPort ex: NotificationPublisher))

Individual(ex: TransactionLogger
value(ex: hasPort ex: LoggingProvider))

As mention previously, the architectural design is defined
based on OWL/SWRL, in order to take advantage of
classification performed by reasoning engine. The classification
results in automating architectural consitency checking,
architectural style recognition, and behavioral sequence
generation.

A. Architectural Consistency Checking

The architectural consistency checking relies on the
ontology classification process that verifies consistency in the
ontology model and computes hierarchies of defined classes.
Figure 3 (a) shows inferred hierarchy of the ontology library
when it is consistent. If the classes are consistent, they will be
classified into subclasses of basic architectural elements such as
component, connector, port, and interface. The inconsistency
may be caused by a number of reasons. For example,
incompatible classes are associated with domain or range of an
object property, or a class has two parents that are disjoint
classes. Figure 3 (b) shows a scenario when the ontology
library is inconsistent. In this scenario, a class definition for tier

(NTier:Tier) contains an axiom ∃	hasLink Component, which
violates hasLink property’s constraints that requires Connector
class as a range. NTier:Tier class is, therefore, inconsistent, and
it is denoted as a subclass of owl:Nothing.

(a) Consistent ontology (b) Inconsistent ontology

Figure 3 Inferred Hierarchy

When a set of individuals are defined for an architectural
design model, careful reader may notice that action is the only
design element defined as individual with explicit types. If the
archtectural design model is consitent, the type of individuals,
representing role, port, component and connector, is
transitively inferred based solely on their relationships. The
architectural styles can be recognized along with inferred types.
For example, Cns:Consumer in client-server style is a role that
has actions namely ReceiveResult and SendRequest.
PaymentRequester is thus inferred as an instance of
Cns:Consumer role, because it has relations to two action
individuals namely ActReceiveResult and ActRequestToPay,
which are instances of ReceiveResult and SendRequest
respectively. According to ports class definition, Request is a
port with some attachment to consumer role. PayRequest is thus
inferred as an instance of Request port, because PayRequest is
attached to PaymentRequester as shown in Figure 4. As defined
in Cns:Client class, a component is client, if it has some Request
port. Therefore, ShoppingMobileApp is inferred as an instance
of Cns:Client due to its relation to PayRequest port, as shown
in Figure 5. 	

Figure 4 PayRequest Port

B. Composite Architectural Style Recognition
When more than one architectural styles are applied to the

design model, the classification can also identify a composite
architectural styled component. The composite architectural
styled component is a component that is an instance of several
classes from not only the same style but also different styles. As
shown in Figure 5, ShoppingMobileApp is not only a client but
also a tier (NTier:Tier) in the multi-tier style. Because

ShoppingMobileApp transitively relates to PaymentService
connector, which has a link to LoggingService connector.
According to NTier:Tier class definition, a tier is a component
that transitively relates to a connector, which has a link to
another connector. For the same reason, PaymentGateway and
TransactionLogger are also denoted as instances of NTier:Tier.
Also, ShoppingMobileApp has a Subscribe port namely
PriceAlertRequest, it is hence a subscriber in publish-subscribe
styles too.

Figure 5 ShoppingMobileApp Component

C. Behavioral Sequence Generation
After the reasoning engine identifies the type of individuals

and the architectural styles are recognized, the reasoning engine
will automatically capture the sequence of behavioral activities
based on the behavioral rules specific to style. Figure 6 depicts
the payment sequence in the online shopping application
system. The behavioral rules logically imply hasNextAction and
hasDivertNextAction properties to the action individuals, in
order to connect series of action individuals as a sequence. The
behavioral rule of client-server style implies
ActProcessPayment as the next action of ActRequestToPay. As
ActProcessPayment is also involved in N-tier style, it has thus
value of hasDivertNextAction property as ActRequestToLog,
implied by the behavioral rule of N-Tier style. According to the
behavioral pattern of N-Tier style, when a payment is requested
to PaymentGateway, PaymentGateway will process the request
and call TransactionLogger in the upper tier to log a transaction.
The behavioral rule of client-server style also implies
ActReturnPayResult as the next action of ActProcessPayment,
in case the payment result is returned without logging
transaction (for example, when an error occurs during
processing a payment). Other behavioral sequence, such as
price alert, can also be generated in the same way using the
behavioral rule for publish-subscribe style.

Shopping
Mobile App

Payment
Gateway

Transaction
Logger

ActProcessPayment

ActRequestToLog

ActLogTransaction

ActReceiveLogResult

ActReceivePayResult

ActReturnLogResult

ActReturnPayResult

ActReturnPayResult

ActRequestToPay

Figure 6 Part of payment process

D. Performance Evaluation
We evaluated performance of reasoning process. This

evaluation focuses on measuring two parameters that impact the
performance of automated verification: 1) number of
architectural style applied to software design, and 2) software
size that can be reflected by the number of axioms. The more
axioms the ontology has, the larger scale a software is. We ran
regression testing 50 times on four ontologies that have
different parameter values as follows, A contains 0 styles with
144 axioms, B contains 2 styles with 216 axioms, C contains 3
styles with 246 axioms, and D contains 4 styles with 276
axioms.

Figure 7 Result of performance testing

This evaluation was carried out using an Intel Core i7-7500U
CPU @ 2.7GHz with 8.00 GB Ram computer, and we used
HermiT as the reasoning engine. The time taken to reason
ontologies are shown as a graph in Figure 7. The horizontal axis
represents the number of time we run reasoning process.
According to the test result, average time spending on reasoning
is between 20-60 milliseconds and shows insignificant variation
between test ontologies. Therefore, we can conclude that our
approach supports scalability for complex software
architectural design, as the number of applied styles and
software size has minor impact on the reasoning performance.

IV. CONCLUSION
An architectural design model for a complex software system

can be formally specified and verified with our approach. The
ontology library includes extensible architectural elements that
are defined semantically by OWL, whereas SWRL rules are
used to capture dynamic behavior within the design. We
demonstrate our approach by creating an ontology instance for
an architectural design model. The reasoning engine performs
classification that automates verification as follows: 1)
architectural consistency is checked against constraints in the
ontology, 2) architectural elements and styles are recognized, 3)
behavioral sequences are automatically generated according to
rules specific to architectural style. We found that complexity
level in architectural design has minor impact on the automated
verification performance. With automated verification, the user
can concentrate on determining whether the design meets
requirements, which are the most significant aspect of the
software architecture design.

This paper only takes a small step toward our ultimate goal,
which we aim to prevent architectural design erosion and lower

maintenance cost. We plan to achieve this by extending
proposed approach in this paper and integrate it to the software
evolution cycle.

REFERENCES

[1] R. Hilliard, "ISO/IEC/IEEE 42010," [Online]. Available:

http://www.iso-architecture.org/42010/.
[2] J. Rumbaugh, I. Jacobson and G. Booch, Unified Modeling Language

Reference Manual, The (2nd Edition), Pearson Higher Education, 2004.
[3] D. Garlan, R. T. Monroe and D. Wile, "Acme: Architectural

Description of Component-Based Systems," in Foundations of
Component-Based Systems, Cambridge University Press, 2000, pp. 47-
68.

[4] M. Ozkaya, "Do the informal & formal software modeling notations
satisfy practitioners for software architecture modeling?," Information
and Software Technology, vol. 95, pp. 15-33, 2018.

[5] L. Kaur and AshutoshMishra, "Software component and the semantic
Web: An in-depth content analysis and integration history," Journal of
Systems and Software, no. 125, pp. 152-169, 2017.

[6] H. Kaiya and M. Saeki, "Using Domain Ontology as Domain
Knowledge for Requirements Elicitation," in 14th IEEE International
Requirements Engineering Conference (RE'06), 2006.

[7] H.-H. Song and Z.-X. Zhang, "Study on Approach of Software
Maintenance Based on Ontology Evolution," in International
Conference on Computer Science and Software Engineering, 2008.

[8] R. Allen and D. Garlan, "A Formal Basis for Architectural Connection,"
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 6, no. 3, pp. 213-249 , 1997.

[9] J. S. Kim and D. Garlan, "Analyzing Architectural Styles with Alloy,"
in Workshop on the Role of Software Architecture for Testing and
Analysis 2006 (ROSATEA06), Portland, 2006.

[10] S. Wong, J. Sun, I. Warren and J. Sun, "A Scalable Approach to Multi-
style Architectural Modeling and Verification," in 13th IEEE
International Conference on Engineering of Complex Computer
Systems (iceccs), 2008.

[11] S. Schröder and M. Riebisch, "Architecture Conformance checking
with Description Logic," in The 11th European Conference on Software
Architecture, 2017.

[12] J. Simmonds and M. C. Bastarrica, "Description Logics for Consistency
Checking of Architectural Features in UML 2.0 Models," 2004.

[13] E. Yuan, "Towards Ontology-Based Software Architecture
Representations," in IEEE/ACM 1st International Workshop on
Establishing the Community-Wide Infrastructure for Architecture-
Based Software Engineering (ECASE), 2017.

[14] C. Pahl, S. Giesecke and W. Hasselbring, "Ontology-based modelling
of architectural styles," Information and Software Technology, vol. 51,
no. 12, pp. 1739-1749, 2009.

[15] J. Sun, H. H. Wang and T. Hu, "Design Software Architecture Models
using Ontology," in International Conference on Software Engineering
and Knowledge Engineering (SEKE), 2011.

[16] I. Horrocks, P. F.Patel-Schneider and F. Harmelen, "From SHIQ and
RDF to OWL: the making of a Web Ontology Language," Web
Semantics: Science, Services and Agents on the World Wide Web, vol.
1, no. 1, pp. 7-26, 2003.

[17] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean, "SWRL: A Semantic Web Rule Language," 2004. [Online].
Available: https://www.w3.org/Submission/SWRL/.

[18] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord and J. Stafford, Documenting Software Architectures:
Views and Beyond (2nd Edition), Pearson Education, 2011.

[19] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice
(2nd Edition), Addison-Wesley, 2003.

0

100

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Ti
m

e(
m

s)

Ontology A Ontology B
Ontology C Ontology D

Test No.

