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Abstract— Designing software architecture is a knowledge-
intensive task that typically involves textual and diagrammatic 
notation. Using these kinds of notation is often inconsistent, 
misleading, and ambiguous. Ontology representation is, therefore, 
a suitable approach, as it can semantically define architectural 
design model that can be automatically verified through reasoning. 
However, a large-scale software system is usually complex and 
applies more than one architectural styles with various behavioral 
patterns. Therefore, the scalability of automated verification for a 
complex software architecture design is a challenge. We propose 
an approach that helps to formally define complex architectural 
design model and automate different verifications such as 
consistency checking, architectural styles recognition, and 
behavioral sequence inference. Ontology Web Language (OWL) is 
used to semantically define basic architectural elements and 
architectural styles, while a set of rules defined in Semantic Web 
Rule Language (SWRL) helps to capture behavioral pattern 
according to style.  We evaluated the scalability of our approach. 
The result shows that different levels of complexity in architectural 
design model has a minor impact on the verification performance. 

I.  INTRODUCTION  
Software architecture is typically a conceptual design that 

decomposes a software system into a set of logical components. 
At the early phase of software development process, software 
architecture is designed to meet specific functional 
requirements, non-functional requirements and business goals. 
Software architecture, therefore, encapsulates set of early 
design decisions tradeoffs and constraints, which provide a 
guideline to implement software system throughout the 
development lifecycle. Unfortunately, software architecture is 
often abstract and informally presented by the combination of 
textual and graphical notation that are often misleading, 
ambiguous and inconsistent.  Although, several standardized 
architecture description languages (ADL) have been proposed, 
such as ISO/IEC/42010 [1] and UML [2], they have little or no 
formal semantic support. Without semantic constraints, the 
verification of architecture design is, therefore, a daunting task. 
Moreover, the large-scale software system is usually a complex 
entity that applies predefined architectural styles, each style 
characterizes specific type of component and their behavior. 
Even though, a few ADLs, such as ACME [3], support 
abstraction of architecture into reusable styles but they have no 
semantic that enforces style constraints. ADLs has little 
popularity among practitioners because they are lack of tools to 
support, and yet require high learning curve [4].  The inadequate 

mechanism of producing accurate software architecture model 
catalyzes applying formal methods into this area. 
 Formal methods have played an important role in software 
engineering research for some time. A number of researchers 
have applied ontology technique to software development 
lifecycle [5], in order to resolve ambiguous, prevent errors and 
minimize cost in different phases, from requirement gathering 
[6] to software maintenance [7]. For software architecture, in 
particular, architectural design model is formally specified, in 
pursuance of automated verification [8]. However, the 
performance of automated verification in large-scale software 
is still an open issue for existing approach such as Alloy [9]. 
Although, Wong et al [10] proposed a solution that allows 
model to be decomposed, in order to parallelize verification 
process. However, dependencies between components still 
require verification process to be executed in sequential 
manner. The ontology has been proposed to apply in designing 
software architecture because of its strength in effective large-
scale reasoning that can automate consistency checking and 
hierarchy inference in the design model [11, 12, 13]. Pahl et al. 
[14] integrated ontology into ACME, in order to verify 
consistency of an architecture and its behaviors, but process 
modeling notation is still a limitation. In pursuance of 
consistency checking automation, style recognition, and 
communication inference, Sun et al. [15] proposed to use 
Ontology Web Language (OWL) [16] to formally specify 
different entities and relationships in architectural design. The 
communication flow can be captured by rules based on 
Semantic Web Rule Language (SWRL) [17]. However, the 
performance of automated verification was not evaluated, and 
the range of provided architectural styles is limited. 

The main challenge is how we can semantically define 
complex architectural design based on multiple styles, and 
evaluate how the proposed method impacts to the automated 
verification performance. We propose an approach as shown in 
Figure 1. The ontology library includes basic architectural 
element, architectural styles, and behavioral rules. OWL is used 
to define basic architectural elements, such as component and 
connector. These basic architectural elements can be extended 
to define various architectural styles, and a design instance that 
represents the architectural design model of a specific software 
system. As the ontology for architecture design is inevitable 
complex, we use description logic (DL) based languages, in 
order to take advantage of existing DL reasoning engine that is 



effective in performing large-scale automated reasoning. The 
consistency in architectural styles and design instance can be 
automatically checked by the reasoning engine, based on the 
ontology’s constraints defined in basic architectural elements. 
In order to recognize architectural styles applied in the design, 
reasoning engine classifies architectural elements into different 
ontological classes specific to architectural style. After styles 
are recognized, reasoning engine processes behavioral rules to 
capture architectural configuration and generate behavioral 
sequences, which manifest interactions between components. 
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Figure 1 Overview of architectural design approach 

The rest of the paper is organized as follows. We present 
ontology-based architectural styles in Section 2. Section 3 
illustrates how a software architecture can be modeled and 
verified against architectural styles. This paper concludes in 
Section 4 with future research direction. 

II. ONTOLOGY MODELING FOR ARCHITECTURE STYLES 
The ontology library is based on Component & Connector 

(C&C) [18] view, which aims to exhibit how the system works 
at runtime. Software architects use C&C view for reasoning 
about key system quality attributes such as performance, 
security, and reliability [19]. In C&C, a component represents 
a processing unit within the software system, while connectors 
define interaction mechanism between components. The 
component has a set of ports that serves communication to 
another component, whereas connector has a number of roles, 
each has specified set of actions it specifically performs. A 
component can be associated with a connector by attaching its 
port to a connector’s role. Based on C&C view’s concept, our 
ontology library has consisted of ontological classes 
representing fundamental architecture elements, namely 
Component, Connector, Port, Role, and Action. 
hasAttachement is defined as an object property to associate 
component’s port with connector’s role. Action is assigned to 
Role via hasAction property with minimum cardinality 
restriction, in order to make sure that a role has at least one 
assigned action. Below are ontology classes expressed in 
description logic syntax. 

ArchElement  ⊑	Component ⊔	Connector⊔	Interface ⊔	Action 
Interface ⊑	Port ⊔ Role 
Component ⊓	Connector	⊓	Interface	⊓	Action	≡ ⏊	
Port	⊓	Role ≡ ⏊ 
Component ≡ ArchElement  ⊓ ∃ hasPort Port 
Connector≡ ArchElement  ⊓ ∃ hasRole Role 
Port ≡ Interface ⊓ ∃ hasAttachment Role 
Role ≡ Interface ⊓ ≥1 hasAction Action   

C&C can be characterized by various architectural styles. Each 
style specifies a particular set of component, connector, and 

behavioral pattern. The following are some architectural styles 
included in our ontology library. 

A. Client-Server Style 
The client and server are two key component types in this 

style. Cns:Client and Cns:Server are defined as classes, 
extended from Component.  Request and Response are port type 
attached to client and server respectively. The port attachment 
is defined by hasPort property with existential restriction, as a 
component can be classified as several component types. 

CnS:Client ≡ Component ⊓ ∃ hasPort Request 
CnS:Server ≡ Component ⊓∃ hasPort Response 
Request ≡Port ⊓	∃ hasAttachment Consumer 
Response ≡Port ⊓	∃ hasAttachment Provider 

A corresponding connectivity is defined as a connector class to 
incorporate two roles, Consumer, and Provider. Consumer 
requests services on the server, while Provider performs actions 
to process the request and return the result back to Consumer. 
SendRequest, ReceiveResult, ServerInvoked and ReturnResult 
are defined as subclasses of Action, in order to represent 
different activities and events in client-server style.    

CnSConnector≡ Connector ⊓ ∃ hasRole Consumer  
                              ⊓  ∃ hasRole Provider   

CnS:Consumer≡Role ⊓ ∃ hasAction SendRequest  
                              ⊓∃ hasAction ReceiveResult 
CnS:Provider≡Role⊓∃ hasAction ServerInvoked  
                             ⊓∃ hasAction ReturnResult 
SendRequest ⊑Action  
ReceiveResult ⊑Action 

ServerInvoked ⊑Action  
ReturnResult ⊑Action 

The behavioral rules are defined to associate relevant actions as 
a sequence according to the style’s behavioral pattern. In order 
to generate a behavioral sequence, the hasNextAction property 
is used to define what action comes next in the sequence. Below 
is a rule defined in SWRL, it captures behavioral pattern as 
follows. At first, when the client sends a request, the server will 
be invoked. This rule hence implies ServerInvoked as the next 
action to SendRequest.  After the server finishes processing and 
returns the result, the client will receive the result. This rule, 
therefore, implies ReceiveResult as the next action of 
ServerReturn.    

CnSConnector(?cns) ⊓ hasRole(?cns, ?cr) ⊓	CnS:Server(?server)	⊓ 
isPortOf(?p, ?server), SendRequest(?sreq)	⊓ hasAction(?cr, ?sreq)	⊓ 
Provider(?pr), isAttachmentOf(?pr, ?p)	⊓, Consumer(?cr)	⊓ 
ReceiveResult(?rres)	⊓ hasRole(?cns, ?pr) ⊓ hasAction(?pr, ?invs)	⊓ 
ServerInvoked(?invs), ServerReturn(?sret), hasAction(?pr, ?sret)	⊓ 
hasAction(?cr, ?rres)	 
→ hasNextAction(?sreq, ?invs)	⊓ hasNextAction(?sret, ?rres) 

Below is another rule that captures an occurrence when the 
server is invoked to process the request. After that, the result 
will be returned to the client. This rule hence implies 
ServerReturn as the next action of ServerInvoked 

Response(?p)	⊓ isPortOf(?p, ?server)	⊓ hasAction(?p, ?iser)	⊓
	Provider(?pr) ⊓ isAttachmentOf(?pr, ?p) ⊓ CnSConnector(?cns) ⊓ 
CnS:Server(?s)	⊓ Consumer(?cr) ⊓ hasRole(?cns, ?pr) ⊓ 
Request(?r)	⊓ hasAction(?p, ?sret)	⊓ ServerInvoked(?iser)	⊓ 



ServerReturn(?sret), isAttachmentOf(?cr, ?r)	⊓ hasRole(?cns, ?cr)  
→ hasNextAction(?iser, ?sret) 

B. N-Tier Style 
A number of clients and servers can form a multi-level 

hierarchy, a tier has consisted of clients that invoke servers on 
the upper tier. Each tier runs on the separate physical 
environment so it can be maintained independently of other 
tiers, however, interaction between tiers rely on each other. For 
example, the business application typically has 3 tiers namely 
client, business logic, and data management. A request to 
service on business logic consequently triggers a request to data 
management tier. To semantically define this, connector’s 
reliance is defined by hasLink property, so a class for tier can 
be formally expressed as follows: 

NTier:Tier≡ Component ⊓ ∃ hasPort  
                        (Port ⊓ ∃ hasAttachment  
                        (Role ⊓ ∃ isRoleOf  
                       (Connector⊓ ∃ hasLink Connector )))    

Below is a rule defined to capture behavioral pattern between 
tiers. When a server on a tier is requested and invoked, it may 
make a request to the upper tier. When the result is received, it 
is forwarded to the lower tier. The actions between tiers are 
related by hasDivertNextAction property. 

CnSConnector(?cns) ⊓ hasRole(?cns, ?pr)	⊓ hasRole(?cns, ?cr)	⊓ 
Provider(?pr)	⊓ Consumer(?cr)	⊓ hasAction(?pr, ?invs1)	⊓ 
hasAction(?pr, ?sret1) ⊓ ServerInvoked(?invs1) ⊓ 
ServerReturn(?sret1)	⊓ hasLink(?cns, ?cns2)	⊓ 
CnSConnector(?cns2) ⊓ hasRole(?cns2, ?pr2) ⊓ hasRole(?cns2, 
?cr2)	⊓ Provider(?pr2) ⊓ Consumer(?cr2) ⊓ hasAction(?cr2, ?rret2) 
⊓ hasAction(?cr2, ?sreq2)	⊓	ReceiveResult(?rret2) ⊓ 
SendRequest(?sreq2)  
→	 hasDivertNextAction(?invs1, ?sreq2)	⊓             
    hasDivertNextAction(?rret2, ?sret1) 

C. Publish-Subscribe Style 
This style has components interacting to each other through 

events. Pns:Publisher is a subclass of Component for publisher, 
a component type that announces events to subscribed 
component, while Pns:Subscriber is a subclass for subscriber, 
a component type that listens to the events. Announce and 
Register are ports for publisher and subscriber respectively. The 
defined classes for component types and its ports type can be 
formally expressed as follows: 

PnS:Pulisher≡ Component ⊓ ∃ hasPort Announce 
PnS:Subscriber≡ Component ⊓ ∃ hasPort Register  
Announce≡ Port ⊓ ∃ hasAttachment Publisher  
Register≡ Port ⊓ ∃ hasAttachment Subscriber 

Publisher and Subscriber are defined as role class in this style. 
The connector is an event bus that coordinates these two roles.  

PnSConnector≡ Connector ⊓ ∃ hasRole Publisher  
                              ⊓ ∃ hasRole Subscriber   
Publisher ≡ Role ⊓ ∃ hasAction SubscribeToEvent  
                              ⊓∃ hasAction EventAnnouced  
                              ⊓∃ hasAction DeliverEvent 
Subscriber ≡ Role ⊓ ∃ hasAction ReceiveEvent  
                             ⊓∃ hasAction RequestSubscription  

RequestSubscription ⊑	Action 
SubscribeToEvent ⊑	Action 
 

EventAnnounced ⊑	Action 
DeliverEvent⊑	Action 
ReceiveEvent ⊑	Action 

The behavioral rule for publish-subscribe style is shown below.  
This rule captures two occurrences in this style: 1) Subscription: 
If a subscription is requested by a component, the publisher will 
acknowledge and subscribe requesting component to an event. 
Therefore, this rule implies SubscribeToEvent to be the next 
action of RequestSubscription. 2) Event Publishing: When a 
publisher announces an event, the event will be delivered to all 
subscriber. This rule below infers the sequence of actions as 
EventAnnounced, DeliverEvent and ReceiveEvent respectively. 
This sequence is sorted through last two hasNextAction 
property assertions in the rule’s implication. 

PnSConnector(?cns)	⊓ Publisher(?p) ⊓ Subscriber(?s)	⊓ 
hasAction(?p, ?feven)	⊓ hasAction(?p, ?seven)	⊓ hasAction(?p, 
?neven)	⊓ FireEvent(?feven)	⊓ NewEventOccur(?neven)	⊓ 
SubscribeToEvent(?seven)	⊓ hasAction(?s, ?reqs)	⊓ hasAction(?s, 
?reven)	⊓ RequestSubscription(?reqs)	⊓ ReceiveEvent(?reven)  
→	hasNextAction(?reqs, ?seven)	⊓  
   hasNextAction(?neven, ?feven)	⊓  hasNextAction(?feven, ?reven) 

D. Repository Style 
The repository style organizes how data is accessed and 

stored in software system through centralized repositories. Data 
repository and data accessor are two major component types in 
this style. Data repository (RP:DataRepository) persists data, 
manages concurrent access, and supports access control. Data 
accessor (RP:DataAccessor) reads and writes data at one or more 
repositories.  

RP:DataRepository≡ Component ⊓ ∃ hasPort  
                                     (Port ∃ hasAttachment  Store) 
RP:DataAccessor≡ Component ⊓ ∃ hasPort  
                                    (Port ∀ hasAttachment  (Reader ∪Writer)) 

We create two connector classes corresponding to writing and 
reading function in this style. Both connectors associate Store 
role to address where the data persists. Writer role identifies the 
component that requests to write data on the repository, whereas 
Reader role identifies the component that requests to read data 
on the repository. 

DataReadConnector≡ Connector  ⊓ ∃ hasRole Store  
																																												⊓ ∃ hasRole Reader 
DataWriteConnector≡ Connector  ⊓ ∃ hasRole Store  
                                       ⊓ ∃ hasRole Writer 
Store≡ Role ⊓∀ hasAction (ReadData ∪WriteData ) 
Writer≡ Role ⊓∃ hasAction RequestWrite 
Reader≡ Role ⊓∃ hasAction RequestRead 
ReadData⊑Action  
WriteData⊑Action 

RequestRead ⊑Action 
RequestWrite⊑Action 

The behavioral sequence is captured by two rules below. The 
first rule support reading function so it implies RequestRead as 
precedence action to ReadData, likewise, the second rule 
implies RequestWrite as precedence action to WriteData action. 

DataReadConnector(?con) )	⊓ RequestRead(?reqr) )	⊓ 
hasAction(?store, ?read) )	⊓ ReadData(?read) )	⊓ 



hasAction(?reader, ?reqr) )	⊓ hasRole(?con, ?reader) )	⊓ 
hasRole(?con, ?store) )	⊓ Store(?Store) )	⊓ Reader(?reader) 
 → hasNextAction(?reqr, ?read) 
DataWriteConnector(?con)	⊓  Writer(?writer)	⊓  
RequestWrite(?reqw)	⊓  hasAction(?writer, ?reqw)	⊓  hasRole(?con, 
?store)	⊓  Store(?store) ⊓  WriteData(?write), hasRole(?con, 
?writer)	⊓  hasAction(?store, ?write)  
→ hasNextAction(?reqw, ?write) 

III. CASE STUDY & EVALUATION 
The online shopping application system is used as a case 

study to demonstrate our approach. This case study is a sample 
of complex software system that applies multiple architectural 
styles. Figure 2 shows its software architecture design that has 
consisted of four components namely, TransactionLog, 
PaymentGateway, Shopping Mobile App and ShopService.  The 
ports are depicted as small box attached to the components such 
as LoggingRequest, and PayResponse. Shopping mobile app 
has user interfaces that allow the user to purchase the products 
and make a payment through payment gateway. When a 
payment is submitted to the payment gateway, a transaction will 
be recorded by transaction logger. If the user subscribes to price 
alert service, the notification will be sent when price is updated.  
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Figure 2 Software architecture design for shopping application 

We create ontology instance representing an architectural 
design model for our case study. The design elements namely 
actions, roles, port, connectors, and components, are created as 
individuals that are instances of classes defined in the ontology 
library. The object properties are used to relate these individuals 
together, in order to establish a structure in the design model. 
Due to page limit, we can  not show all individuals definition in 
this paper. The compelete definition for this case study can be 
found at https://goo.gl/4ugkLB  

The individuals are created for actions with one or more 
types specified, and they can be formally expressed in OWL 
abstract syntax as follows: 

Individual(ex: ActRequestToPay type(ex: SendRequest)) 
Individual(ex: ActRequestToLog type(ex: SendRequest) 

                            type(ex: RequestWrite)) 
Individual(ex: ActLogTransaction type(ex: ServerInvoked)  

        type(ex: WriteData)) 
 The roles are defined as individuals with hasAction property 
to the action individuals defined previously. Below are some 
individuals defined for roles. 
Individual(ex:PaymentProvider  

value(ex: hasAction  ex:ActProcessPayment) 
value(ex: hasAction  ex:ActReturnPayResult)) 

Individual(ex: PaymentRequester 
value(ex: hasAction  ex: ActRequestToPay) 
value(ex: hasAction  ex: ActReceivePayResult)) 

The following are sample individual defined for port. These 
individuals have one or more relationship to the role individuals 
through hasAttachment property. 

Individual(ex: PayRequest 
value(ex: hasAttahment	ex: PaymentRequester)) 

Individual(ex: PayResponse 
value(ex: hasAttahment	ex: PaymentProvider)) 

A number of individuals are created corresponding to 
communication lines shown in Figure 2. The roles individual 
are assigned to each connector through hasRole property. 

Individual(ex: PaymentService 
value(ex: hasRole ex: PaymentProvider) 
value(ex: hasRole ex: PaymentRequester) 
value(ex: hasLink ex: LoggingService)) 

Individual(ex: LoggingService 
value(ex: hasRole ex: LoggingProvider) 
isolate value(ex: hasRole ex: LoggingRequester)) 

Individual(ex: NotificationService 
value(ex: hasRole ex: NotificationPublisher) 
value(ex: hasRole ex: NotificationSubscriber)) 

Each of the components has the corresponding individual 
created, each component individual is attached with one or 
more port individuals through hasPort properties.  

Individual(ex: PaymentGateway 
value(ex: hasPort ex: PayResponse) 

         value(ex: hasPort ex: LoggingRequest)) 
Individual(ex: ShoppingMobileApp 

value(ex: hasPort ex: PayRequest) 
value(ex: hasPort ex: PriceAlertRequest)) 

Individual(ex: ShopService 
value(ex: hasPort ex: NotificationPublisher)) 

Individual(ex: TransactionLogger 
value(ex: hasPort ex: LoggingProvider)) 

As mention previously, the architectural design is defined 
based on OWL/SWRL, in order to take advantage of 
classification performed by reasoning engine. The classification 
results in automating architectural consitency checking, 
architectural style recognition, and behavioral sequence 
generation. 

A. Architectural Consistency Checking 

The architectural consistency checking relies on the 
ontology classification process that verifies consistency in the 
ontology model and computes hierarchies of defined classes. 
Figure 3 (a) shows inferred hierarchy of the ontology library 
when it is consistent. If the classes are consistent, they will be 
classified into subclasses of basic architectural elements such as 
component, connector, port, and interface. The inconsistency 
may be caused by a number of reasons. For example, 
incompatible classes are associated with domain or range of an 
object property, or a class has two parents that are disjoint 
classes.  Figure 3 (b) shows a scenario when the ontology 
library is inconsistent. In this scenario, a class definition for tier 



(NTier:Tier) contains an axiom ∃	hasLink Component, which 
violates hasLink property’s constraints that requires Connector 
class as a range.  NTier:Tier class is, therefore, inconsistent, and 
it is denoted as a subclass of  owl:Nothing. 

(a) Consistent ontology            (b) Inconsistent ontology         

 

 

 

Figure 3 Inferred Hierarchy 

When a set of individuals are defined for an architectural 
design model, careful reader may notice that action is the only 
design element defined as individual with explicit types. If the 
archtectural design model is consitent, the type of individuals, 
representing  role, port, component and connector, is 
transitively inferred based solely on their relationships. The 
architectural styles can be recognized along with inferred types. 
For example, Cns:Consumer in client-server style is a role that 
has actions namely ReceiveResult and SendRequest. 
PaymentRequester is thus inferred as an instance of 
Cns:Consumer role, because it has relations to two action 
individuals namely  ActReceiveResult and ActRequestToPay, 
which are instances of ReceiveResult and SendRequest 
respectively. According to ports class definition, Request is a 
port with some attachment to consumer role. PayRequest is thus 
inferred as an instance of Request port, because PayRequest is 
attached to PaymentRequester as shown in Figure 4. As defined 
in Cns:Client class, a component is client, if it has some Request 
port. Therefore, ShoppingMobileApp is inferred as an instance 
of Cns:Client due to its relation to PayRequest port, as shown 
in Figure 5. 	

 
Figure 4 PayRequest Port 

B. Composite Architectural Style Recognition 
When more than one architectural styles are applied to the 

design model, the classification can also identify a composite 
architectural styled component. The composite architectural 
styled component is a component that is an instance of several 
classes from not only the same style but also different styles. As 
shown in Figure 5, ShoppingMobileApp is not only a client but 
also a tier (NTier:Tier) in the multi-tier style. Because 

ShoppingMobileApp transitively relates to PaymentService 
connector, which has a link to LoggingService connector. 
According to NTier:Tier  class definition, a tier is a component 
that transitively relates to a connector, which has a link to 
another connector. For the same reason, PaymentGateway and 
TransactionLogger are also denoted as instances of NTier:Tier. 
Also, ShoppingMobileApp has a Subscribe port namely 
PriceAlertRequest, it is hence a subscriber in publish-subscribe 
styles too.  

 
Figure 5 ShoppingMobileApp Component 

C. Behavioral Sequence Generation  
After the reasoning engine identifies the type of individuals 

and the architectural styles are recognized, the reasoning engine 
will automatically capture the sequence of behavioral activities 
based on the behavioral rules specific to style.  Figure 6 depicts 
the payment sequence in the online shopping application 
system. The behavioral rules logically imply hasNextAction and 
hasDivertNextAction properties to the action individuals, in 
order to connect series of action individuals as a sequence.  The 
behavioral rule of client-server style implies 
ActProcessPayment as the next action of ActRequestToPay. As 
ActProcessPayment is also involved in N-tier style, it has thus 
value of hasDivertNextAction property as ActRequestToLog, 
implied by the behavioral rule of N-Tier style. According to the 
behavioral pattern of N-Tier style, when a payment is requested 
to PaymentGateway, PaymentGateway will process the request 
and call TransactionLogger in the upper tier to log a transaction. 
The behavioral rule of client-server style also implies 
ActReturnPayResult as the next action of ActProcessPayment, 
in case the payment result is returned without logging 
transaction (for example, when an error occurs during 
processing a payment). Other behavioral sequence, such as 
price alert, can also be generated in the same way using the 
behavioral rule for publish-subscribe style. 
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Figure 6 Part of payment process 



D. Performance Evaluation 
We evaluated performance of reasoning process. This 

evaluation focuses on measuring two parameters that impact the 
performance of automated verification: 1) number of 
architectural style applied to software design, and 2) software 
size that can be reflected by the number of axioms. The more 
axioms the ontology has, the larger scale a software is.  We ran 
regression testing 50 times on four ontologies that have 
different parameter values as follows, A contains 0 styles with 
144 axioms, B contains 2 styles with 216 axioms, C contains 3 
styles with 246 axioms, and D contains 4 styles with 276 
axioms.   

 
Figure 7 Result of performance testing 

This evaluation was carried out using an Intel Core i7-7500U 
CPU @ 2.7GHz with 8.00 GB Ram computer, and we used 
HermiT as the reasoning engine. The time taken to reason 
ontologies are shown as a graph in Figure 7. The horizontal axis 
represents the number of time we run reasoning process. 
According to the test result, average time spending on reasoning 
is between 20-60 milliseconds and shows insignificant variation 
between test ontologies. Therefore, we can conclude that our 
approach supports scalability for complex software 
architectural design, as the number of applied styles and 
software size has minor impact on the reasoning performance.  

IV. CONCLUSION 
An architectural design model for a complex software system 

can be formally specified and verified with our approach. The 
ontology library includes extensible architectural elements that 
are defined semantically by OWL, whereas SWRL rules are 
used to capture dynamic behavior within the design. We 
demonstrate our approach by creating an ontology instance for 
an architectural design model. The reasoning engine performs 
classification that automates verification as follows: 1) 
architectural consistency is checked against constraints in the 
ontology, 2) architectural elements and styles are recognized, 3) 
behavioral sequences are automatically generated according to 
rules specific to architectural style. We found that complexity 
level in architectural design has minor impact on the automated 
verification performance. With automated verification, the user 
can concentrate on determining whether the design meets 
requirements, which are the most significant aspect of the 
software architecture design.  

This paper only takes a small step toward our ultimate goal, 
which we aim to prevent architectural design erosion and lower 

maintenance cost. We plan to achieve this by extending 
proposed approach in this paper and integrate it to the software 
evolution cycle. 
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