
Svega: Answering Natural Language Questions over
Knowledge Base with Semantic Matching

Gaofeng Li, Pingpeng Yuan, and Hai Jin
Services Computing Technology and System Lab. / Cluster and Grid Computing Lab. / Big Data Technology and System Lab.

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
Email: {gaofengli, ppyuan, hjin}@hust.edu.cn

Abstract—Nowadays, more and more large scale knowledge
bases are available for public access. Although these knowledge
bases have their inherent access interfaces, such as SPARQL,
they are generally unfriendly to end users. An intuitive way to
bridge the gap between users and knowledge bases is to enable
users to ask questions with natural language interface and return
desired answers directly. Here the challenge is how to discover
the query intention of users. Another challenge is how to obtain
accurate answers from knowledge bases. In this paper, we model
the query intention with a graph based on an entity-driven
method. Consequently, the core problem of natural language
question answering can be treated as subgraph matching over
knowledge bases. For a query graph, there is a huge number of
candidate mappings in a knowledge base, including ambiguities.
Thus, a semantic vector is proposed to address disambiguation
by evaluating the semantic similarity between edges in a query
graph and paths in a knowledge base. By this way, our system
can extract accurate answers directly without any offline work.
Extensive experiments over the series of QALD challenges show
the effectiveness of our system Svega in terms of recall and
precision against other state-of-the-art systems.

I. INTRODUCTION

Nowadays, many knowledge bases, such as DBpedia [1],
Yago [2], are available for public access. Distinct from docu-
ment bases of information retrieval systems, knowledge bases
integrate substantial small facts, known as triples (subject-
predicate-object). To access these knowledge bases, SPARQL,
a SQL-like query language, is provided as a standard interface.
However, SPARQL is unfriendly to general users because of its
complex syntax. Although keyword search, commonly applied
in information retrieval, is simple and convenient for end users,
it may not work properly when employing keyword search to
retrieve answers from knowledge bases, because it is difficult
for keywords to express the query intention completely. For
example, the keywords of the question “Who starred in the
films that were directed by Stanley Kubrick?” may be “star”,
“film”, and “Stanley Kubrick”. However, if only taking into
account these keywords, the real query intention, actors of the
films, will be missing. Compared with SPARQL and keyword,
natural language is not only intuitive to end users, but also
able to express users’ query intention accurately. Thus it
is important to bridge the gap between unstructured natural
language and structured knowledge bases.

DOI reference number: 10.18293/SEKE2018-119

One way to bridge the gap is to translate a natural language
question to a structured query and then extract answers from
the mapping results of the query. However, it is difficult to
convert a natural language question to a structured query. One
reason is that most structured queries need to specify the query
statement accurately, while some query statements have ambi-
guities between natural language and knowledge bases. Con-
sidering the above example, the phrase “Stanley Kubrick” may
refer to <Stanley Kburick> or <Stanley Kubrick Archive>
in knowledge bases. The exact meaning of phrases depends
on the context of questions and knowledge bases. In order to
clarify the meaning of phrases and obtain correct mappings
from knowledge bases, some QA (Question Answering) sys-
tems provide candidates for users to interactively choose [3],
which actually is a controlled natural language. The above
example question can be converted into “Who dbp:starring
the dbo:Film that were-dbp:director res:Stanley Kubrick?”
by replacing the phrases with the words of a knowledge
base. This approach facilitates QA systems, but it requires
users to do much. Other QA systems, such as gAnswer [4],
automatically map phrases in the natural language into words
in knowledge bases based on a dictionary, which is generally
built manually or using machine learning approach. However,
it is impossible for the offline-built dictionary to indicate
comprehensive mapping relationships between phrases in the
natural language and knowledge bases.

Here we present an online natural language question an-
swering system Svega. An entity-driven method is proposed
to translate a natural language question into a query graph.
Consequently, the problem of natural language question an-
swering is converted to subgraph matching over knowledge
bases. To address disambiguation, we first search isomorphism
subgraphs of the query graph from a knowledge base based
on vertex mapping. Then a semantic vector is proposed
to filter ambiguities by evaluating semantic similarity. Our
contributions are as follows.

1) An online question answering system Svega is presented.
Svega provides a natural language interface for general
users to retrieve desired answers from knowledge bases
directly, without any offline work.

2) Query graph is constructed to model the query intention
of a natural language question by adopting an entity-

driven approach. In this approach, entities are identified
firstly and then the query intention is explored by ex-
tracting predicates based on grammatical relationships.

3) A semantic vector is proposed to represent the semantics
of paths (namely edges in query graph and paths in
knowledge base). Thus, the problem of disambiguation
is addressed by evaluating the semantic similarity be-
tween a query graph and mapping subgraphs online.

4) Extensive experiments on the standards of QALD series
competitions are conducted and the experimental results
demonstrate that Svega has a competitive performance
in terms of recall and precision.

II. RELATED WORK

There are many QA systems available. The traditional QA
systems can only return texts related to keywords. Although
some extending QA systems, such as [5], consider semantics
of results, they still can not retrieve answers directly. The
development of knowledge bases, storing fine-grained facts,
makes it possible to directly return desired answers [6], [7],
[8], [9]. Since the inherent interfaces, such as SPARQL, pro-
vided by knowledge bases are too complex for general users,
current QA systems allow users to employ natural language
to access knowledge bases. According to the restriction on
natural language, these systems can be broadly classified into
two categories: controlled natural languages, which restrict the
grammar and vocabulary in order to reduce ambiguity and
complexity, and un-controlled natural language.

Controlled natural language. These systems using this
approach provide some candidate entities and predicates for
users’ choice [3], [7]. Then users choose words from can-
didates to indicate their query intention. For instance, the
example can be transferred to “Who dbp:starring the d-
bo:Film that were-dbp:director res:Stanley Kubrick?”. In the
question, “dbp:starring”, “dbo:Film”, “dbp:director”, and
“res:Stanley Kubrick” are not natural language words, but
entities and predicates from a knowledge graph. Thus, this
way limits the expressiveness and usability of QA systems
[3], but improves the correctness to answer questions.

Un-controlled natural language. Different from the ap-
proaches with controlled natural languages, users can answer
questions using any words in thees systems. Then the QA
systems usually translate natural language questions into struc-
tured queries, such as SPARQL. In this approach, the key
is how to identify entities and map entities into words of
knowledge bases. For example, Xser [8] maps phrases into
words of knowledge bases using an ad-hoc lexicon. CASIA [9]
detects phrases by grammatical token and then uses Markov
Logic Network to resolve ambiguities. gAnswer [4] builds
a paraphrase dictionary offline to achieve the mapping of
predicate. However, the dictionary built offline can not indicate
the exact meaning of each predicate because language is live.
All in all, these systems address disambiguation only by taking
into account the semantic of single words instead of context
of the words.

III. PRELIMINARY AND OVERVIEW OF SVEGA

A. Preliminary

The core issues of answering natural language questions
over knowledge bases is to bridge the gap between structured
knowledge bases and unstructured natural language question.
Regrading this problem, we first model the query intention of
a natural language question with query graph Q.

Definition 1: (Query Graph). A query graph is denoted as
Q = (V, E), where V is a set of vertices, corresponding to
entities or variables. Specially, the query intention or variable
is represented as “?”. The edge between vertex vi, vj can be
denoted as triple T = < vi, r, vj >, where r represents the
relation between vi, vj .

Except variable vertices, there are two kinds of vertices
in query graph. We name a vertex with an entity label as
a Key Vertex (KV). The other vertices are not assigned a
label because they are not indicated in questions, which
are named as Hidden Vertex (HV) since they are implicit.
For example, Fig.1 shows the query graph of the running
question. <Stanley Kubrick, directed, HV> is a triple, in
which <Stanley Kubrick> is a KV. The graph also has a HV,
which is the set of films that were directed by Stanley Kubrick.

Now, answering natural language question is actually to find
matches of a query graph over knowledge bases. When map-
ping a query graph to a knowledge base, ambiguities will be
introduced. For a candidate mapping of an entity in Q, if there
is no isomorphism subgraph containing it, it must be an am-
biguity. For example, the vertex <Stanley Kubrick Archive>
in Fig.1 is a ambiguity. Based on this idea, we address
disambiguation with subgraph matching, which considers the
schema of knowledge bases.

Definition 2: (Match). A subgraph S in a knowledge base
is a match of query graph Q if and only if the following
conditions hold:

1) ∀v ∈ V of Q, ∃u ∈ S where the vertex u is a mapping
of the vertex v;

2) ∀e : (vi, vj) ∈ E of Q, ∃(ui, uj) ∈ S, associated with
e, and where the two vertices ui and uj are mappings
of vi and vj respectively.

The mappings of vertex “?” in Q will be answers of the
query. In Fig.1, vertex <Walter Cartier> and <Stadmueller>
are the matches of vertex “?”. Thus, they are two answers of
the running question.

B. Overview of Svega

Our approach mainly consists two parts: Entity-driven
Query Graph Construction and Disambiguation with Query
Graph Mapping. Fig.1 shows the framework of our system.

Entity-driven Query Graph Construction. In order to
model the query intention of a natural language question with
Q, we extract triples (see Definition 1) from natural language
question firstly, because triple has a simpler structure. Based
on this idea, we propose an entity-driven approach to extract
triples and construct Q by joining the same vertex of triples.
The details will be described in Sect. IV.

Who starred in the films that were directed by Stanley Kubrick?

Stanley_Kubrick

Stanley_Kubrick_

Archive

Film

Movie

Stanley

Kubrick

films

<Stanley Kubrick, directed, HV>

< HV, type, films >

< HV, starrted, ?>

?

films

Stanley Kubrick

type

directed

starred

HV

Stanley Kubrick

type

Film

type

director

Day of the Fight Flying Padre

director

Movie

Walter Cartier Fred Stadmueller

starringstarring

Stanley Kubrick Archive

type

Film

Archives

Archives

In London

Query Graph

Entity Recognition and Mapping ×

Triples

2

1

Knowledge Graph

3

Fig. 1: System Overview

Disambiguation with Query Graph Mapping. Naturally,
a query graph matching mainly includes vertices and edges
mapping, which will introduce ambiguities. To address disam-
biguation, we first search isomorphism subgraphs of Q based
on vertices mapping. Then a semantic vector is proposed to
prune ambiguities by evaluating the semantic similarity. The
details will be described in Sect. V.

IV. ENTITY-DRIVEN QUERY GRAPH CONSTRUCTION

In a query graph, any edge with two endpoints can be
represented as a triple. Thus, we first extract triples from a
natural language question. Each triple is composed by two
entities (vertices in a graph) and the relation between them
(edge between two vertices). We then construct the query
graph of the questions from the triples. To extract triples,
the system needs to identify entities and relationship between
entities indicated in natural language questions. The words
to show relationship are various in natural language while
the form of entity is relatively simple. They can be verb and
adjective phrases etc. Here, we first identify entities and then
propose an entity-driven approach to extract relational phrases
based on the grammatical relationships between words.

A. Entity Identification

Here, we employ DBpedia Spotlight [10] and Stanford
Parser [11] to analyze a sentence and generate a dependency
tree to indicate grammatical relationships between words. The
output is generally a dependency tree. For example, Fig.2 is the
tree of the example question. There are many auxiliary words
(“in”, “that” etc) in a dependency tree while a query graph
only contains key entities and relationships between them. So
a dependency tree is still far from a query graph. In order to
construct Q, we need to know both the key entities and theirs
semantics. For instance, the category words (e.g. “film” in the
running example) generally indicate ‘is-a’ relationship. In the
case, we will add some extra nodes and edges to show this.
As shown in Fig.2, we will add a node and an edge labeled
“type” which represents the fact that “film” is a “type”.

Some questions may contain hidden information. The exam-
ple question “films that were directed by Stanley Kubrick” has

a hidden entity “that” which represents all the films directed
by Stanley Kubrick. Here, we denote it by a HV. HVs can
be identified based on the structural feature of vertices in
a query graph. If a vertex is adjacent to only one vertex,
it is a KV, otherwise it is a HV. So identifying HVs needs
more information. In the running example, “film” and “Stanley
Kubrick” can be recognized in this stage, and HVs will be
inferred in the following stage.

by

nmod:in

starred

who

nsubj

films

thein
thatdirected

nmod:by

were

auxpass

Stanley_Kubrick

case acl ref det

case

T1 = <Stanley_Kubrick, directed, HV>

T2 = <HV, type, films>

T3 = <HV, starred, who>

?

films

Stanley Kubrick

type

directed

starred
HV

(a) Dependency Tree (b)Triples (c)Query Graph

Fig. 2: Examples of Dependency Tree, Triple, and Query
Graph

B. Recognizing Relation

Relation phrases generally co-occur with the corresponding
entities. So they can be recognized from the words that have
grammatical relationships with the obtained entities. Although
a dependency tree [12] can reveal grammatical relationships
between words in a sentence, the words connecting entities is
not only the words that represent relations, but also auxiliary
words. Here a relation priority is proposed to denote the possi-
bility of a word to represent relation. The priority is computed
based on the possibility of the grammatical relationships which
are listed as follow in a non-ascending order 1: nsubj, subj,
obj, dobj, nsubjpass, pobj, nmod:*, amod, prep, acl, auxpass,
case, ref, det.

In Fig.2, the word “were”, connecting to the word “di-
rected”, will be pruned, because the edge label “auxpass”,

1These grammatical relationships are defined in [12]. For example, “nsubj”
refers to a noun phrase which is the syntactic of a clause.

Algorithm 1: Extracting Ts from a dependency tree
Input: Dependency tree, recognized entities set RES
Output: Ts
Define a variable var;
for each unvisited element in RES do

The element, e, is the member of a T and set var = e;
Carry out traversal in the dependency tree from var;
Select the edge with a highest-priority relationship;
if the V is a class word then

Insert a HV to current T;
Build a new T, composed by V, type and a HV;
Continue;

else
Insert V and HV to the current T;
Build a new T and insert a HV to the new T;
Set var = V;
Continue;

end
end

representing passive auxiliary, has a low priority. Simultane-
ously, HVs can be inferred according to the proposed structural
feature of vertices.

Here, Algorithm 1 is used to extract triples. It starts from
the entities recognized but not category words. For instance,
the entity “Stanley Kubrick” will be an element of T1. Then,
because the priority of “nmod:by” is higher than “case”,
“directed” is selected as a relation. Then, the class word
“films” will be traveled and it will introduce the relation
“type”. So here a HV is needed because it will connect
two edges with label “directed” and “type” respectively. So
<Stanley Kubrick, directed, HV> and <HV, type, film> are
two triples extracted from the question. Next, “starred” and
“Who” are travelled, and they are composed the T3. Finally,
the obtained three Ts are composed together to build the Q by
joining the same vertex.

V. DISAMBIGUATION WITH QUERY GRAPH MAPPING

Once the query graph is built, we need to find subgraphs
from a knowledge base, which match the semantics of the
query graph. It is a NP hard problem to find the best mapping
[4], and ambiguities will be introduced. Here we first filter
ambiguities based on structural mapping, then a semantic
vector is proposed to achieve semantic mapping.

A. Structural Mapping Based on Vertices

Query graph mapping includes vertices and edges mapping.
Due to this reason, we first extract isomorphism subgraphs
based on vertices mapping. The general way to map vertices,
with entity label, from query graph to knowledge bases is by
computing string similarity or edit distance. By this way, an
entity in the natural language may correspond to several can-
didates in a knowledge base. For instance, the possible map-
pings of the entity “Stanley Kubrick” in the running question
include <Stanley Kubrick>, <Stanley Kubrick Arechive>

...

...

...

...

...

...

...

...

Film Movie

Stanley_Kubrick Stanley_Kubrick_Archive

films

Stanley_Kubrick

Flying_Padre Citizen_Kane

Brian_GageFlying_Padre

Barry_LyndonHawk_Films

Hawk_Films Barry_Lyndon

TelevisionShow Annie Hall

Film_archives Archives_in_London

Fig. 3: Query Graph Mapping Based on Entities

Algorithm 2: Pruning paths based on entities
Input: Knowledge graph KG, query graph Q
Output: mapping results of Q
for each vertex Vi in the Q do

Obtain the mapping candidate set Ci of Vi;
for each element cj in Ci do

Carry out BFS in KG from the vertex cj ;
end

end
for each edge between two vertex Vi and Vj in the Q do

Select two elements from the two candidate sets Ci

and Cj respectively and find paths between them;
end

etc. Moreover, in order to ensure that all answers can be
obtained, synonyms should also be considered, which is an
entity linking problem. In our work, Lookup [13] is adopted
to link an entity to candidate entities in a knowledge graph. Up
to now, all vertices in a query graph will have some candidate
results and the corresponding paths only occur between these
candidate results, so we can prune the paths that have no con-
nection with the entities mapping results. Based on this idea,
we propose the Algorithm 2 to prune paths in the knowledge
graph. Fig.3 shows temporary results of the running example,
and some ambiguities, such as <Stanley Kubrick Archive>,
will be filtered because it is isolation in the mapping results.

B. Semantic Mapping with Path Vector

After obtaining isomorphism subgraphs of a query graph,
there are still ambiguities in candidates, because only the
structure of a query graph is considered, while the semantics
of a query graph is not taken into account. For example,
the vertex <Hawk Films>, included in the mapping results,
is not a correct answer of the running question, and the
predicate, between <Hawk Films> and <Stanley Kubrick>
in the knowledge graph, is irrelevant to the corresponding
relation “directed” in Q. Consequently, the pruning method
should be executed according to the semantic confidence.

?

type born in

Country

(a) Query Graph

Bill

Gates

country birthPlace

Country

Bill

Gates

type

Washington

United

States

(b) Knowledge Graph

Question: Which country did Bill Gates born in?

Fig. 4: Example of Edge and Mapped Path

An edge with a predicate label in a query graph may be
mapped to a path in a knowledge graph, as shown in Fig.4. So,
the key is how to represent the semantics of them and evaluate
the similarity between them. Here, we propose semantic vector
to quantify the semantic information of predicates and paths.

1) Path Vector: Generally, the semantic vector obtained by
Glove [14] can only represent a single word. In knowledge
bases, a path contains several edges, each of which has
its labels. For example, in the path <birthPlace, country>,
“birthPlace” and “country” will have a semantic vector
representation respectively. In addition, semantics of edges in
a knowledge graph between different vertices are irrelevant. So
we propose the method that composing the semantic vectors
together based on the synthesis of vector additions to compute
the path vector α.

2) Predicate Vector: Generally, a predicate is a phrase.
We also need a method to synthesize the predicate vector.
Different from pathes in knowledge graph, the words in a
phrase are relevant. For example, the words “born” and
“in” are composed together to represent the relationship that
someone is born in a place. The contribution of each word
in the predicate is different. The word “in” occurs in many
phrases, while the word “born” only appears in a few phrases.
Thus, the word “born” is more important than ‘in”. However,
we can not ignore “in” because it indicates a born place
instead of time or anything else. Thereby, we use the tf-
idf proposed firstly in information retrieval to measure the
importance of a word to a predicate phrase.

Assume a predicate phrase p is composed of word wi (i =
1, ..., n). The tf-value of wi is defined as follows:

tf(wi, p) = |{wi | wi ∈ p}| (1)

The idf-value of word wi over the phrase dictionary d is
defined as follows:

idf(wi, d) = log
|d|

|{p ∈ d | wi ∈ p}|+ 1
(2)

Thus, the tf-idf value of wi can be computed as following:

tf − idf(wi, p, d) = tf(wi, p) ∗ idf(wi, d) (3)

According to the tf-idf value of each word, we define the
importance weight of word wi in predicate p as following:

ψ(wi, p) = tf − idf(wi, p, d) (4)

Since each wi has a vector v, we can compute the predicate
vector β as follows:

β =
∑

wi∈p
ψ(wi, p) ∗ vi (5)

C. Ranking Subgraph Matches

The subgraph matching mainly includes vertices and edges
mapping. Consequently, semantic confidence of vertices and
edges are composed together to measure the semantic simi-
larity of a subgraph, which also reflect the confidence of the
answer.

Definition 3: (Answer Confidence). Given a query graph
Q of a question and a mapping result M. Let φ(v, u) be
the confidence between vertex v ∈ Q and u ∈ M. And
ϕ(vw, P (x, y)) is the confidence between edge vw of Q and
path P(x, y) of M. Thus, the answer confidence, AC(Q, M), is
defined as follows:

AC(Q,M) =
∑

vi∈Q && ui∈M
φ(vi, ui) +∑

vivj∈Q && P (ui,uj)∈M
ϕ(vivj , P (ui, uj))

(6)

where

ϕ(vivj , P (ui, uj)) = α(P (ui, uj)) · β(vivj) (7)

VI. EVALUATION

In this section, we evaluate our system Svega against
some existing popular natural language question answering
systems using the QALD series benchmarks. Here, we do not
choose squall2sparql [7] as a competitor because the input of
squall2sparql is controlled language question rather than un-
controlled natural language.

A. Data Sets

QALD series competitions are one of important benchmarks
to evaluate natural language question answering system. Here
we choose QALD-3 and QALD-4 as many research did.
According to the requirements of the QALD series compe-
titions, DBpedia series knowledge bases are also used in the
experiments and managed by TripleBit [15].

B. Effectiveness of Question Answering

We report the experimental results in Table I (QALD-
3) and Table II (QALD-4). The experimental results of our
competitors on QALD-3 and QALD-4 are available at the
official website2 of QALD, in which Proceed indicates the
number of questions that can be return non-empty answers by
these systems.

Table I shows that Svega is the best natural language
question answering system on QALD-3, with highest recall,
precision, and F-measure. Our system can answer 44 questions
correctly and 9 questions partially, while CASIA [9] can only
answer 29 questions all right.

In QALD-4, we can see that Svega outperforms all competi-
tors on both recall and precision (Table II). Both the recall and

2https://qald.sebastianwalter.org/

TABLE I: QALD-3 on DBpedia 3.8

Proceed Right Partially Recall Precision F-measure
CASIA 52 29 8 0.36 0.35 0.36

Scalewelis 70 32 1 0.33 0.33 0.33
RTV 55 30 4 0.34 0.32 0.33
Intui2 99 28 4 0.32 0.32 0.32
SWIP 21 15 2 0.16 0.17 0.17
Svega 96 44 9 0.52 0.52 0.52

TABLE II: QALD-4 on DBpedia 3.9

Proceed Right Partially Recall Precision F-measure
Xser 40 34 6 0.71 0.72 0.72

gAnswer 25 16 4 0.37 0.37 0.37
CASIA 26 15 4 0.40 0.32 0.36
Intui3 33 10 4 0.25 0.23 0.24
ISOFT 28 10 3 0.26 0.21 0.23
RO FII 50 6 0 0.12 0.12 0.12
Svega 48 35 6 0.76 0.76 0.76

precision of Svega are 0.76, while the recall and precision of
the best competitors Xser [8] is 0.71 and 0.72 respectively. In
addition, Xser needs to train a KB-independent model offline
before it answers questions, while Svega does not need to train
any model in advance.

C. Effectiveness of Query Graph Building and Mapping

We implement a system by replacing the semantic vector
method of Svega with paraphrase dictionary method used in
gAnswer. We name it as ED+PD.

The experimental results show that ED+PD is not better
than Svega in all aspects (Table III, IV). It confirms that
the similarity evaluating method of semantic vector is very
effective, because the difference between ED+PD and Svega
is only the similarity evaluating method. The results also
show ED+PD outperforms gAnswer. It indicates that the
entity-driven method of our system has more advantages on
building query graph, because ED+PD and gAnswer use same
dictionary, but different approach to build query graph.

TABLE III: Results on QALD-3

Proceed Right Partially Recall Precision F-measure
Svega 96 44 9 0.52 0.52 0.52

ED+PD 96 36 9 0.43 0.43 0.43
gAnswer 76 32 11 0.40 0.40 0.40

TABLE IV: Results on QALD-4

Proceed Right Partially Recall Precision F-measure
Svega 48 35 6 0.76 0.76 0.76

ED+PD 48 22 4 0.55 0.55 0.55
gAnswer 25 16 4 0.37 0.37 0.37

VII. CONCLUSIONS

In this paper, we present Svega - an online natural language
question answering system over knowledge bases. Moreover,
the query intention of a natural language question is modeled
by a query graph based on an entity-driven method. As a
result, the problem of natural language question answering

over knowledge graph is converted to subgraph mapping. At
last but not least, predicate vector and path vector are proposed
to measure the semantic confidence between predicates and
paths. Consequently, our approach is effective in the terms of
recall and precision.

ACKNOWLEDGMENT

The research is supported by The National Key Ba-
sic Research Program (No. 2018YFB1004000002), NSFC
(No. 61672255), Science and Technology Planning Project
of Guangdong Province, China (No.2016B030306003 and
2016B030305002), and the Fundamental Research Funds for
the Central Universities, HUST.

REFERENCES

[1] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“Dbpedia - a large-scale, multilingual knowledge base extracted from
wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proc. of WWW’07. ACM, 2007, pp. 697–706.

[3] G. M. Mazzeo and C. Zaniolo, “Answering controlled natural language
questions on RDF knowledge bases,” in Proc. of EDBT’16, 2016, pp.
608–611.

[4] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao, “Natural
language question answering over RDF: a graph data driven approach,”
in Proc. of SIGMOD’14. ACM, 2014, pp. 313–324.

[5] H. Bast and B. Buchhold, “An index for efficient semantic full-text
search,” in Proc. of CIKM’13. ACM, 2013, pp. 369–378.

[6] L. Shao, Y. Duan, X. Sun, H. Gao, D. Zhu, and W. Miao, “Answering
who/when, what, how, why through constructing data graph, information
graph, knowledge graph and wisdom graph,” in Proc. of SEKE’17. KSI,
2017, pp. 1–6.

[7] S. Ferré, “squall2sparql: a translator from controlled english to full
sparql 1.1,” in Proc. of Working Notes for CLEF’13. Springer, 2013.

[8] K. Xu, Y. Feng, S. Huang, and D. Zhao, “Question answering via phrasal
semantic parsing,” in Proc. of CLEF’15. Springer, 2015, pp. 414–426.

[9] S. He, Y. Zhang, K. Liu, and J. Zhao, “Casia@v2: A mln-based question
answering system over linked data,” in Proc. of CLEF’14. Springer,
2014, pp. 1249–1259.

[10] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, “Improving
efficiency and accuracy in multilingual entity extraction,” in Proc. of
I-Semantics’13. ACM, 2013, pp. 121–124.

[11] S. Schuster and C. D. Manning, “Enhanced english universal dependen-
cies: An improved representation for natural language understanding
tasks,” in Proc. of LREC’16, pp. 2371–2378.

[12] M. C. D. Marnee and C. D. Manning, “Stanford typed dependencies
manual,” Stanford University, Tech. Rep., 2008.

[13] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, R. Cyganiak, and S. Hell-
mann, “Dbpedia - a crystallization point for the web of data,” J. Web
Sem., vol. 7, no. 3, pp. 154–165, 2009.

[14] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proc. of EMNLP’14. ACL, 2014, pp.
1532–1543.

[15] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu, “Triplebit: a fast
and compact system for large scale RDF data,” PVLDB, vol. 6, no. 7,
pp. 517–528, 2013.

