
Schedulability Analysis of Real-time Tasks with
Precedence Constraints

Rongfei Xu, Li Zhang
School of Computer Science and Engineering

Beihang University
Beijing, China

Ning Ge
School of Software
Beihang University

Beijing, China
gening@buaa.edu.cn

Xavier Blanc
LaBRI, UMR5800

University of Bordeaux, Bordeaux INP, CNRS
Talence, France

Abstract—The timing requirements of real-time systems can
be guaranteed by the well-designed scheduling. The analysis of
such scheduling inputs an abstract task model of the system and
outputs a diagnostic regarding the practicability of the timing
requirements. Task models have evolved from periodic models to
more sophisticated graph-based ones, among which the digraph
real-time (DRT) task model is the most applicable because of its
good expressiveness and analysis efficiency. However, the DRT
model can’t support the precedence constraints within or between
tasks. In this paper, we propose a new task model, called the
DRTPC model, that extends the DRT model to support the
precedence constraint. Further, based on our model, we present
a uniprocessor schedulability analysis algorithm for the static
priority scheduling, and introduce an optimization technique
to improve the analysis efficiency. Our experiments show that,
despite the high computational complexity of the problem, our
approach scales very well for large sets of tasks with precedence
constraints.

Index Terms—real-time system, schedulability analysis, task
model, precedence constraint, static priority scheduling

I. INTRODUCTION

The timing requirements of real-time systems can be guar-
anteed by the well-designed scheduling. The analysis of such
scheduling is to assess the schedulability regarding the prac-
ticability of the timing requirements [1], i.e. the system’s
tasks can complete by the deadline. In the design of real-time
systems, an abstract task model is usually used as an input
for the schedulability analysis, and specifies the tasks’ timing
constraints (duration, start constraint, etc.) [2]. The precedence
constraints within or between tasks, which commonly exist in
real-time systems [3], [4], directly affect the schedulability and
need to be concerned in the task model.

Let us take a simple example of a robot controller system
to explain the precedence constraint. This system consists of
three periodic tasks: the navigation task is to go to the des-
tination by continuous movements and to avoid the obstacles
when finding them, the detect task is to detect the location of
the obstacles, and the balance task is to keep the balance of the
robot. The navigation task needs the obstacle’s location to do
the job of finding the obstacle (FO). The location is collected
by the job of receiving the location of an obstacle (RL) in the

This paper is supported by the National Natural Science Foundations of
China (No. 61672078 and No. 61732019)

DOI:10.18293/SEKE2018-116

detect task. The job of computing the adjustment for a balance
(CA) in the balance task needs the data from the inclinometer,
which is collected by the job of reading the inclinometer (RI)
in the same task. Finally, the adjustment is used by the job of
controlling balance (CB) to balance the robot. There are then
three precedence constraints: RL precedes FO, RI precedes
CA, and CA precedes CB.

Since the well-known Liu and Layland task model [5]
appeared, a large number of task models, ranging from the
relatively simple periodic and sporadic ones to the more
complex graph-based ones, have been proposed [2]. There is
a contradicting goal of expressiveness and analysis efficiency
for these task models. For example, the Petri net [6] and the
timed automata [7] are powerful to allow accurate model-
ing and easy to support the precedence constraint, but their
analyses are based on the model checking, which can result
in the exponential computational complexity. On the other
hand, some works have specified the precedence constraint by
extending the tractable task models, such as the recurring real-
time task model [8], the sporadic task model [9], the dynamic
offsets task model [10], [11], etc. Although these extended
task models have a relatively good analysis efficiency, they are
limited to the specific tasks and not for general-purpose ones.
Therefore, the existing task models supporting the precedence
constraint are inadequate. Due to good expressiveness and
analysis efficiency, the currently proposed digraph real-time
(DRT) task model [12] is promising according to a thorough
survey [2]. Specifically, the DRT model can specify both the
sporadic and periodic tasks, and is tractable (i.e. in pseudo-
polynomial time) to be analyzed for large sets of tasks.
However, the DRT model is based on the assumption that the
tasks are independent of each other, so it is not yet to support
the precedence constraint.

In this paper, we extend the DRT model by specifying the
precedence constraint to get a new task model called DRTPC
(Digraph Real-Time task model with Precedence Constraint).
Further, we present a uniprocessor schedulability analysis al-
gorithm for the static priority scheduling in the DRTPC model.
This technique is capable of analyzing the schedulability by
considering the interferences caused by both the priority-
based preemption and the precedence constraint. In addition,
we introduce an optimization technique for the schedulability



analysis to improve its efficiency. Our experiments show that,
the proposed approach scales very well for large sets of tasks
with precedence constraints.

In the remainder of this paper, we first discuss the related
works in Sect. II. Then, we describe the DRTPC model in
Sect. III and present the schedulability analysis algorithm for
DRTPC in Sect. IV. Finally, the efficiency and scalability of
our approach are evaluated in Sect. V, and Sect. VI gives some
concluding remarks and perspectives.

II. RELATED WORKS

In the past decades, the abstract task models that specify
the tasks’ timing constraints have been studied intensively in
the real-time scheduling [1], such as the multiframe (MF)
task model [13], generalized multiframe (GMF) task model
[14], recurring real-time (RRT) task model [15], etc. The DRT
model [12] considered in this paper is a generalization of
the above models. Specifically, the DRT model can specify
the branching and loop structures in real-time systems, which
makes it capable of modeling both the sporadic and periodic
tasks. Besides, some efficient methods of schedulability anal-
ysis have been proposed for the DRT model [16]. However,
the DRT model can only support the independent tasks.

Currently, some works have been done to concern the de-
pendence between tasks in the DRT model, such dependencies
include three classes: inter-release time constraint [17], shared
resource [18], [19] and synchronization [20], [21]. Specifically,
the works [17] and [20] extended the edge in the DRT model
to specify the global inter-release separation constraint and
the synchronous execution respectively. The works [18], [19]
and [21] extended the vertex in the DRT model to specify
the maximal duration of resource access, the semaphore that
guards the shared resource, and the synchronization operation
respectively. However, it lacks an approach to concern the
dependence caused by the precedence constraint, which is
considered in this paper for the DRT model.

In the context of formal modeling and analysis, the prece-
dence constraint is supported by two classes of works. The
first class is based on the more expressive task models. For
example, the work [7] specified the timed automata to deal
with the precedence and resource constraints between the real-
time tasks; the work [6] identified the precedence constraint
properties of Petri net and tested whether it was feasible to
execute a workflow with the specified temporal constraints.
Due to the analysis complexity of automata or Petri net, the
above-mentioned works suffer from the state space-explosion
problem. The second class extends a simple task model to
support the precedence constraint. For example, the work [9]
considered the real-time system with the implicit precedence
constraints between the intra-task jobs based on the sporadic
task model; the work [8] represented the recurrent precedence-
constrained tasks to be executed on multiprocessor platforms,
where each recurrent task was modeled by a directed acyclic
graph (DAG); the works [10], [11] addressed the schedulability
analysis of the tasks with precedence relations in the distribut-
ed real-time systems based on the model of tasks with dynamic

offsets, which was specific for the distributed systems; the
work [22] proposed an approach to scheduling the tasks with
pipeline precedence constraints in the distributed real-time
systems, which were described by the directed acyclic graph
(DAG). Due to limited expressiveness of the task models to be
extended, the above works can’t support the general purpose
tasks. Therefore, it is necessary to extend the DRT model to
support the precedence constraint.

III. TASK MODEL

In this section, we first introduce the DRT model, then
define our DRTPC model to support the precedence constraint
based on the DRT model, and explain its semantics.

A. DRT Model
A real-time system is usually designed as a set of tasks,

each of which consists of a sequence of functional blocks
(called jobs here) [23]. A task model characterizes a task by
the execution sequences and the timing constraints of its jobs.
According to the definition of DRT model in [12], each task is
characterized by a directed graph G(T). The vertices of G(T)
represent the jobs in the task. Each vertex is labeled by an
ordered pair of (WCET, RD), which represents the worst-case
execution time (WCET) demand and the relative deadline of
the corresponding job respectively. The directed edges of G(T)
represent the orders (from start to end) in which the jobs are
released. Each edge is labeled by the inter-release interval time
between two jobs. In such graph G(T), a vertice may have
multiple edges or a loop edge, which makes the DRT model
can specify the branching and loop structures.

Example 1: For the example of the robot controller, it
consists of three tasks. For the navigation task, it includes
three jobs (go to the destination GD, find an obstacle FO and
avoid the obstacle AO) and four release orders (from FO to AO,
from AO to GD, from GD to FO and to itself). For the detect
task, it includes two jobs (send a detection SD and receive the
location of the obstacle RL) and two release orders (from SD
to RL, and from RL to SD). For the balance task, it includes
three jobs (read the inclinometer RI, compute the adjustment
CA, and control the balance CB) and three release orders (from
RI to CA, from CA to CB, and from CB to RI). If we don’t
consider the precedence constraints, the DRT model of this
example is characterized as shown in Fig. 1. For example,
the job AO in the navigation task is set as having a WCET
demand of 1 time unit and a relative deadline of 3 time units.
The job AO is set as being released at 35 time units later than
the release time of FO.

SD RL
20

<1,5> <2,8>

AOFO
35

<2,5> <1,3>

detect

navigation

10

5

<1,2>

5

10

GD

RI CB

CA

10

2010

<1,2> <1,5>

<2,5>

balance

Fig. 1. DRT model of the robot controller.



B. DRTPC Model

The DRTPC model is defined based on the DRT model to
support the precedence constraint, which constrains that the
execution of a job shouldn’t start until all of its precedent
jobs (if exist) are finished. In the DRTPC model, each task
is expressed by a directed graph G’(T), which describes the
timing constraints of each job and the precedence constraints
between jobs in this task. Each vertex of G’(T) is labeled by
a triple (PJ, WCET, RD), which represents a set of precedent
jobs, the worst-case execution time, and the relative deadline
of the corresponding job respectively. The directed edge of
G’(T) has the same meaning as the DRT model, i.e. the inter-
release interval time between jobs. It should be noted that the
precedent job of a job may be in the same task model or in
a different task model, which is called intra-task or inter-task
precedence constraint respectively.

Example 2: The DRTPC model of the robot controller
considering the precedence constraints is shown in Fig. 2.

SD RL
20

<Ø,1,5> <Ø,2,8>

AOFO
35

<[RL],2,5> <Ø,1,3>

detect

navigation

10

5

<Ø,1,2>

5

10

GD

RI CB

CA

10

2010

<Ø,1,2> <[CA],1,5>

<[RI],2,5>

balance

Fig. 2. DRTPC model of the robot controller.

The semantics of the DRTPC model is defined based
on the execution paths generated by the task model. Such
execution path is specified by a job sequence, where each job
is considered from two parts: timing constraint and precedence
constraint. Formally, we use a 3-tuple (RT, DT, AD) to denote
a job that is released at the time RT, with the duration DT and
the absolute deadline AD.

A job sequence is said to be valid, if and only if an arbitrary
job in the sequence satisfies the following two conditions:

Condition 1: For the timing constraint, it should satisfy the
three sub-conditions [12]: The duration is equal to the WCET
of the job; the absolute deadline is equal to the release time
plus the relative deadline of the job; the time between the
release time of the job and that of an other job is greater than
the inter-release interval time between them.

Condition 2: For the precedence constraint, it should satisfy
the two sub-conditions: For the intra-task precedence con-
straint, all of the precedent jobs (if exist) of the job should
be included in the same job sequence; For the inter-task
precedence constraint, all of the precedent jobs (if exist) of
the job should be included in the job sequences of other tasks,
which contain these precedent jobs.

Example 3: We take the task model in Fig. 2 as an example
to illustrate the valid job sequences within one period. For the
balance task, the job sequence of (RI, CA, CB) with the timing
constraints of (0, 1, 2), (10, 2, 15), and (30, 1, 35) respectively
is valid, because the precedent job of CA (i.e. RI) is included

in this job sequence. For the detect task, a valid job sequence
is (SD, RL) with the timing constraints of (0, 1, 5) and (20,
2, 28) respectively. For the navigation task, the job sequence
of (FO, AO) with the timing constraints of (0, 2, 5) and (35,
1, 38) respectively is valid, because the precedent job of FO
(i.e. RL) is included in the job sequence of the detect task.

In the next section, we will take an example of the three
valid job sequences to introduce the schedulability analysis for
the DRTPC model.

IV. SCHEDULABILITY ANALYSIS

In this section, we present the schedulability analysis for
the static priority scheduling in the DRTPC model. For such
scheduling, each task in the real-time system is assigned a
unique priority. The jobs have the same priority as their task.
For each job in the execution paths of the task, the job
can be executed only if no job with a higher priority exists
in the system. When all jobs in the execution paths meet
their deadline after the scheduling, this task is considered as
schedulable.

As the DRTPC model (DRTPC in short) is based on the
DRT model (DRT in short), we first introduce the schedulabil-
ity analysis for the static priority scheduling in the DRT, which
only concerns the interference on the scheduling caused by the
priority-based preemption. Then, we propose our schedulabil-
ity analysis algorithm for the DRTPC, which extra concerns
the interference caused by the precedence constraint.

A. Schedulability Analysis for DRT

The schedulability analysis for the DRT is based on evaluat-
ing the request function [16], which represents the maximum
accumulated workload of all jobs that the job sequence may
generate during a time interval. The request function is defined
as follows.

Definition 1 (Request Function [16]). For the job sequence
σ = (v0, v1, ..., vn) of an arbitrary execution path π in the task
model, its request function before time t is defined as

rfπ(t) = max(dt(π
′
)|π

′
is prefix of π and g(π

′
) < t) (1)

where dt(π) =
∑n
i=0 dt(vi), g(π) =

∑n
i=1 g(vi−1, vi) , dt(vi)

is the duration of job vi, and g(vi−1,vi) is the inter-release
interval time between job vi−1 and job vi.

The schedulability of a job with respect to a set of interfer-
ing tasks is specified based on the request function. To analyze
the schedulability, we first define ΠT as the set of all execution
paths for an arbitrary task T in the task model. Then, for a set
of tasks Γ = (T1, T2, . . ., Tn), let Π(Γ) = ΠT1 × ΠT2 × .
. . × ΠTn be the set of all path combinations, namely Π(Γ)
= { (π1, ..., πn) | π1 ∈ ΠT1, . . ., πn ∈ ΠTn }. Finally, the
schedulability is judged based on the following theorem.

Theorem 1 ( [16] ): A job with duration dt and absolute
deadline ad is schedulable under a set of interfering tasks Γ
if and only if

∀(π1, ..., πn) ∈ Π(Γ) : ∃t < ad : dt +
∑
Ti∈Γ

rfπi
(t) ≤ t (2)



This theorem shows that, a necessary and sufficient condi-
tion for the schedulability of a job is that during its release
time and (absolute) deadline, there exists a time instant t at
which this job and all of the interfering jobs released before t
are finished. For the static priority scheduling in the DRT, the
interfering jobs are the jobs with a higher priority.

B. Schedulability Analysis for DRTPC

As the DRTPC extends the DRT to support the prece-
dence constraint, the interference caused by such precedence
constraint needs to be extra considered in the schedulability
analysis for the DRTPC. We first take an example of the
execution of the robot controller to present the interferences
in the DRTPC.

Example 4: We give a scenario that the tasks in the
robot controller have a priority relationship as P(balance) >
P(detect) > P(navigation). The sample execution of the tasks
with the execution paths in Example 3 is shown in Fig.3.

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

balance

0 5 10 15 20 25 30 35 40
t

detect

navigation

blocked
preempted

preempted

RI CA CB

SD RL

FO AO
preempted

blocked
preempted

t

t

Fig. 3. A sample execution of the execution paths in Example 3

It can be found from the example that there are two
interferences during the scheduling in the DRTPC: preemption
interference caused by the jobs with a higher priority and block
interference caused by the precedent jobs. The schedulability
analysis for the DRT only considers the interference workload
caused by the preemption. Here, we additionally study the
workload resulting from the precedence constraint.

During the scheduling, if the precedent jobs of a job
haven’t been all finished, then this job will be blocked. The
block relationship between a job j and its precedent job k is
summarized as the following three cases:
• The finish time of job k is before the release time of job j.

In this case, job j will not be blocked by such a precedent
job.

• The finish time of job k is after the absolute deadline of
job j. In this case, job j will be blocked until its deadline,
which makes the block time infinite.

• The finish time of job k is between the release time and
the absolute deadline of job j. This case includes two
sub-cases:

– If the release time of job k is before that of job j,
then the block time is the time interval between the
release time of job j and the finish time of job k.

– If the release time of job k is after that of job j,
then the block time is the time interval between the
release time and finish time of job k.

Then, the workload of an arbitrary job under a set of
interfering tasks in the DRTPC consists of three parts: duration
of the job, preemption interference, and block interference.
Based on Theorem 1, an arbitrary job with duration dt and
absolute deadline ad is schedulable under a set of interfering
tasks Γ if and only if

∀(π1, ..., πn) ∈ Π(Γ) : ∃t < ad :

dt +
∑
Ti∈Γ

rf Pπi(t) +
∑
Ti∈Γ

rf Bπi(t) ≤ t (3)

Where
∑

Ti∈Γ rf Pπi
(t) and

∑
Ti∈Γ rf Bπi

(t) represent the
accumulated workload caused by the preemption interference
and the block interference respectively. This formula shows
that, a necessary and sufficient condition for the schedulability
of a job in the DRTPC is that during its release time and
(absolute) deadline, there exists a time instant t at which this
job and all of its precedent jobs together with the jobs with a
higher priority released before t are finished.

Finally, we introduce the schedulability analysis procedure
for a task T with an arbitrary execution path JS (i.e. a job
sequence), which is shown in Fig.4.

Fig. 4. Procedure of schedulability analysis.

Procedure 1: First, compute the accumulated workload
caused by the preemption interference

∑
Ti∈Γ rf Pπi

(t) and
the block interference

∑
Ti∈Γ rf Bπi

(t) for every job j in the
job sequence JS of the task T (L. 2, 3). Then, sum the duration
of the job j, the

∑
Ti∈Γ rf Pπi(t), and the

∑
Ti∈Γ rf Bπi(t) to

check whether the condition of the request function in (3) is
satisfied (L. 4). If there exists some time t that makes the
condition satisfied, then the job j is considered as schedulable
(L. 5). Only all of the jobs in JS are schedulable can the
execution path JS be considered as schedulable (L. 10-15).

C. Optimization for Analysis

The schedulability analysis proposed in Sect. IV-B considers
all path combinations of the interfering tasks Γ, which leads
to a high computational complexity. Here, we optimize this



issue by checking each path πi (i.e. job sequence) in the
path combinations ΠΓ before the schedulability analysis, to
distinguish the path combinations that must be tested.

The check follows two principles: if the path πi is checked
to make the task T (to be analyzed) unschedulable, then all
of the path combinations needn’t be analyzed anymore, and
this task is considered as unschedulable directly; if the job
in path πi, which is a precedent job of some job in the job
sequence of task T, is checked to cause no block, then remove
this precedence constraint when analyzing the accumulated
workload caused by the precedence constraints. The check
only involves such jobs in path πi that are the precedent jobs
of some jobs in the job sequence of task T. Here, we assume
an arbitrary job of a job sequence of task T and its precedent
job in path πi as the job j and the job k respectively. Then,
the condition of removing the precedence constraint is that the
priority of k is higher than that of j, and the release time of k
is before that of j; the condition of unschedulable is that the
priority of k is lower than that of j, and the release time of k
is after that of j.

V. EVALUATION

It has been proven that the DRT method can have the
pseudo-polynomial complexity and good expressiveness com-
paring with existing methods. Here, we only need to evaluate
that whether our based-DRT approach also has a tractable
complexity. We first analyze the efficiency and scalability to
evaluate whether it is practical to be used for large sets of
tasks with precedence constraint. Besides, we also investigate
the relationship between the schedulability and the number
of precedence constraints in the task set, which is helpful to
design the precedence constraints in real-time systems.

A. Experimental Setup

We implement our approach using the Javascript program-
ming language running on a standard desktop computer with
the 3.3GHz CPU and 8 GB RAM. For the random task set
generation, we consider three types of tasks (namely small,
medium, and large tasks) referring to [16], which have the
parameter ranges as shown in Table I. For each task, one of
the three types is randomly selected, then the task parameters
are chosen randomly from the corresponding intervals.

TABLE I
TASK PARAMETER RANGES

Task Type Small Medium Large
Vertices [3,5] [5,9] [7,13]

Branching degree [1,3] [1,4] [1,5]
p [50,100] [100,200] [200,400]
e [1,2] [1,4] [1,8]
d [25,100] [50,200] [100,400]

The workload generated by the tasks (instead of their
numbers) has a direct relationship to the experimental results.
Here we use the utilization to represent such workload, which
is defined as the ratio of the sum of duration over the sum of

inter-release separation time in the tasks [12]. Our experiment
is implemented under a given task set utilization. In order to
generate a task set with a desired utilization, random tasks are
generated and added to the task set until the desired utilization
is achieved. Besides, we use the ratio of precedence (RP) to
represent the ratio of the jobs with the precedence constraint
over the whole jobs in the task set, and use the acceptance
ratio to represent the ratio of the schedulable tasks over the
whole tasks in this experiment.

B. Experimental Results

(1) Efficiency and scalability
First, we explore how much our optimization can help in

the complexity reduction. For four representative ratios of
precedence in the task set, the comparison of the total path
combinations and the combinations that must be tested after
the optimization is depicted in Fig. 5. As seen, the reduction
obtained by the optimization is considerable compared to the
number of total combinations. It is also observed that the
task set with a higher ratio of precedence (RP) has the fewer
total combinations, as well as the tested combinations. This is
because a larger number of precedence constraints in the task
set makes fewer paths (i.e. job sequences) valid (see valid job
sequence in Sect. III-B).

A. Total combinations

B. Tested combinations

Fig. 5. Reduction of the path combinations need to be tested

Then, we evaluate the efficiency and scalability of our
approach through varying the ratio of precedence in the task
set with a step of 0.05. Figure 6 shows the comparison of
average run-time for the two analyses (with and without the
optimization) under the task set utilization of 0.5. As seen,
increasing the ratio of precedence in the task set causes that the
analysis without the optimization becomes very lengthy. This
is because that although the higher ratio of precedence means
the fewer valid path combinations, the path combinations



with more precedence constraints can sharply increase the
computation. In contrast, the analysis with the optimization has
a good efficiency, and scales very well with the increasing ratio
of precedence. This is because that with the ratio of precedence
increasing, more and more tasks can directly be checked as
unschedulable in advance, and do not cost the analysis run-
time anymore.

Ratio of Precedence (Utilization = 0.5) 

A
n

al
y
si

s 
R

u
n

-t
im

e 
(s

ec
o

n
d
s)

0.0 0.2 0.4 0.6 0.8 1.0
0

3

6

9

12

15

with optimization

without optimization

Fig. 6. Average run-time of the proposed methods

(2) Schedulability
Here, we investigate the relationship between the schedu-

lability and the ratio of precedence in the task set. We find
that a high ratio of precedence makes most of the tasks
unschedulable, so we only present the results of four low ratios
of precedence as shown in Fig. 7, i.e. RP = 0.00, 0.05, 0.10
and 0.20. As seen, with the utilization increasing, the task
set under the four ratios of precedence all exhibit a lower
and lower acceptance ratio. This is because that the higher
utilization makes the tasks more difficult to be arranged. It
is also observed that a higher ratio of precedence causes the
decline curve of acceptance ratio steeper. This is because more
precedence constraints in the task set lead to more blocks,
which makes more tasks unschedulable.

Fig. 7. Schedulability under different ratios of precedence

VI. CONCLUSION AND PERSPECTIVES

With real-time systems are becoming more and more com-
plex, the precedence constraints between or within their tasks
directly impact the schedulability. In this paper, we propose
an extension of the DRT task model to specify the prece-
dence constraints, then propose a uniprocessor schedulability
analysis algorithm for the static priority scheduling in our
model. In addition, we introduce an optimization method for
the analysis to improve its efficiency. Our experiments show

that, the proposed approach can scale well for large sets of
tasks with precedence constraint. Except for the precedence
constraint, there are various constraints between the tasks
affecting their schedulability, next we will extend our approach
to more constraints. Besides, we will also extend our approach
to support the multiprocessor in the future.

REFERENCES

[1] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok, “Real time
scheduling theory: A historical perspective,” Real-time systems, vol. 28,
no. 2-3, pp. 101–155, 2004.

[2] M. Stigge and W. Yi, “Graph-based models for real-time workload: a
survey,” Real-time systems, vol. 51, no. 5, pp. 602–636, 2015.

[3] J. Schlatow and R. Ernst, “Response-time analysis for task chains with
complex precedence and blocking relations,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 5s, p. 172, 2017.

[4] D. Prot and O. Bellenguez-Morineau, “How the structure of precedence
constraints may change the complexity class of scheduling problems,”
arXiv preprint arXiv:1510.04833, 2015.

[5] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[6] N. R. Adam, V. Atluri, and W.-K. Huang, “Modeling and analysis of
workflows using petri nets,” Journal of Intelligent Information Systems,
vol. 10, no. 2, pp. 131–158, 1998.

[7] E. Fersman and W. Yi, “A generic approach to schedulability analysis
of real-time tasks.” Nordic Journal of Computing, vol. 11, no. 2, pp.
129–147, 2004.

[8] S. Baruah, V. Bonifaci, A. Marchettispaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in IEEE Real-Time Systems Symposium, 2012, pp. 63–72.

[9] T. P. Baker and S. K. Baruah, “An analysis of global edf schedula-
bility for arbitrary-deadline sporadic task systems,” Real-Time Systems,
vol. 43, no. 1, pp. 3–24, 2009.

[10] M. G. Harbour, “Exploiting precedence relations in the schedulability
analysis of distributed real-time systems,” in Real-Time Systems Sympo-
sium, 1999. Proceedings. the IEEE, 1999, pp. 328–339.

[11] R. Pellizzoni and G. Lipari, “Improved schedulability analysis of real-
time transactions with earliest deadline scheduling,” in Real Time and
Embedded Technology and Applications Symposium, 2005. RTAS, 2005,
pp. 66–75.

[12] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time
task model,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2011 17th IEEE. IEEE, 2011, pp. 71–80.

[13] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” in
Proc. Real-Time Systems Symposium, Dec, 1996, pp. 22–29.

[14] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, vol. 17, no. 1, pp. 5–22, 1999.

[15] S. K. Baruah, “Dynamic- and static-priority scheduling of recurring real-
time tasks,” Real-Time Systems, vol. 24, no. 1, pp. 93–128, 2003.

[16] M. Stigge and W. Yi, “Combinatorial abstraction refinement for feasi-
bility analysis,” Real-Time Systems, vol. 51, no. 6, pp. 1–36, 2013.

[17] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “On the tractability of
digraph-based task models,” in Real-Time Systems (ECRTS), 2011 23rd
Euromicro Conference on. IEEE, 2011, pp. 162–171.

[18] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Resource sharing protocols
for real-time task graph systems,” in Real-Time Systems (ECRTS), 2011
23rd Euromicro Conference on. IEEE, 2011, pp. 272–281.

[19] Y. Zhuo, “Static priority schedulability analysis of graph-based real-time
task models with resource sharing,” 2014.

[20] M. Mohaqeqi, J. Abdullah, N. Guan, and W. Yi, “Schedulability analysis
of synchronous digraph real-time tasks,” in Real-Time Systems (ECRTS),
2016 28th Euromicro Conference on. IEEE, 2016, pp. 176–186.

[21] N. Guan, Y. Tang, J. Abdullah, M. Stigge, and W. Yi, “Scalable timing
analysis with refinement.” in TACAS, 2015, pp. 3–18.

[22] P. Jayachandran and T. Abdelzaher, “Transforming distributed acyclic
systems into equivalent uniprocessors under preemptive and non-
preemptive scheduling,” in Euromicro Conference on Real-Time Systems,
2007, pp. 233–242.

[23] C. M. Krishna, Real-Time Systems. Wiley Online Library, 1999.


