
A Knowledge Engineering Approach to UML
Modeling

Bingyang Wei
Department of Computer Science

Texas Christian University
Fort Worth, Texas 76129

b.wei@tcu.edu

Jing Sun
Department of Computer Science

The University of Auckland
Auckland 1142, New Zealand

j.sun@cs.auckland.ac.nz

Yi Wang
Department of Electrical

and Computer Engineering
Manhattan College
Bronx, NY, 10471

yi.wang@manhattan.edu

Abstract—Multiple-viewed requirements modeling allows re-
quirement engineers to acquire the requirements of a system
from different perspectives. Requirements are then specified in
various UML models. Maintaining the requirements knowledge
encoded in UML notations is tedious and error-prone, since most
UML CASE tools provide poor support for reasoning and query.
Ontology is a formal notation for describing concepts and their
relations in a domain. Since requirement is a kind of knowledge,
we propose to use knowledge engineering approach for managing
the consistency and completeness of UML models. In this paper,
an ontology for UML diagrams is coded in a semantic web
language, OWL (Web Ontology Language). The transformation
of UML Class Diagram, Sequence Diagram and State Diagram to
OWL knowledge base is presented. In the end, a semantic query
language, SPARQL, is used to query the knowledge base. We
demonstrate the feasibility of this approach through an example
software system.

I. INTRODUCTION

Requirements engineers usually views the system under de-
velopment from different perspectives. The structure, behavior
and interaction aspects of the system are among the most
commonly considered perspectives. UML (Unified Modeling
Language) makes this multiple-viewed modeling possible by
providing different types of models, e.g., class, state machine
and interaction models. As a result, each UML model holds
partial requirements from a particular view in the form of
UML diagrams, and all the models together constitute the
overall description of the system. Since software requirement
about a domain is indeed a kind of knowledge, the Require-
ments Engineering process is in fact a kind of Knowledge
Engineering process. An important concern of requirements
engineers during multiple-viewed modeling is the management
of requirements knowledge: consistency among different mod-
els, model query, acquisition of enough useful requirements
to make a model more complete. However, it is difficult for a
requirements engineer to know whether a model is consistent
or complete and what requirements are missing in the current
model [4][5].

The application of ontology in Requirements Engineering
to support elicitation, analysis, specification, validation and
management of requirements is one of the solutions to im-
prove the quality of requirements [2]. To be more specific,

knowledge representations based on formal logic is considered
as an effective way to represent and manage requirements
knowledge [3] [7] [10]. In this paper, we are combining the
popularity of the semi-formal UML notations and the Descrip-
tion Logic based OWL (Web Ontology Language), so that
UML diagrams’ semantics can be represented in OWL. Our
main objective is to add a semantic layer on top of different
types of UML diagrams. Different UML diagrams, although
contain different kinds of requirements, can be queried and
reasoned together for different purposes.

The remainder of the paper is organized as follows. In
Section II, UML metaclasses are organized in a taxonomy
and encoded in OWL. Section III to V present the way
we transform an example system’s UML models to OWL
individuals and relations based on the UML Ontology. With
the UML diagrams represented in OWL, query and analysis
are conducted in Section VI. Section VII discusses the related
work and current limitations, and Section VIII concludes the
paper.

II. THE UML ONTOLOGY

The Object Management Group published the latest UML
Specification, OMG® Unified Modeling Language® version
2.5.1 [6] in December, 2017. We extracted the taxonomy
of UML model elements according to Chapter 7 Common
Structure, Chapter 8 Values, Chapter 9 Classification, Chap-
ter 10 Simple Classifiers, Chapter 11 Structured Classifiers,
Chapter 13 Common Behavior, Chapter 14 StateMachines,
Chapter 15 Activities, Chapter 16 Actions and Chapter 17
Interactions. 127 metaclasses and their inheritance relation-
ships are organized in the class hierarchy in Protégé [8].
The complete ontology in RDF/XML syntax is available at
github.com/Washingtonwei/uml-ontology.

III. UML CLASS DIAGRAM IN OWL

In order to demonstrate the idea of transforming UML
models to OWL notations, we choose an example software
system, the University Information System (UnivSys). In this
example, UML models for a university seminar enrollment
service system are created: Seminars can be created, sched-
uled, opened, enrolled, and closed; students can enroll in orDOI reference number: 10.18293/SEKE2018-114

https://github.com/Washingtonwei/uml-ontology


drop a seminar if a certain requirement is met. All three UML
diagrams come from Ambler’s book [1] with modifications.

1

1instructs

0..*4..*
enrolled in

Student

-name
-studentNumber
-GPA

enrollASeminar

Professor

-name
-emailAddress

Seminar

-name
-capacity
-fees

addStudent

e1 e2

e3

e4

Fig. 1. Class diagram of UnivSys.

A UML model consists of a number of model elements,
each of which may be used to make statements about different
kinds of individual things within the system being modeled
[6]. In Protégé, individuals are created and linked together
to represent the semantics of a UML model. Since all the
metaclasses of model elements belonging to UML class model
are considered in the UML Ontology defined in the previous
section, the UnivSys class diagram in Figure 1 can be easily
represented as OWL individuals of various UML metaclass
types. Those OWL individuals are then connected through
predefined relations to form the meaning of the class diagram.
Table I and II list the OWL individuals and object properties
(relations between two OWL classes) extracted from the
UnivSys class diagram. Here is a brief summary: each Class
individual owns Property individuals as attributes and
Operation individuals as operations. An Association
individual owns two Property individuals as member ends.
Each of them has a Type individual.

TABLE I
INDIVIDUALS CREATED FOR UML CLASS DIAGRAM

Individual(s) UML Metaclass
StudentClass, SeminarClass, ProfessorClass Class
studentName, studentNumber, GPA, seminarName,
capacity, fees, professorName, emailAddress, asso-
ciationEnd1, ..., associationEnd4

Property

enrolledInAssociation, instructsAssociation Association
enrollASeminarOperation, addStudent Operation

TABLE II
RELATIONS FOR UML CLASS DIAGRAM

Relation Domains Ranges
ownedAttribute Class Property
ownedOperation Class Operation

memberEnd Association Property
type TypedElement Type

IV. UML SEQUENCE DIAGRAM IN OWL

In this section, we focus on transforming UML Sequence
Diagram (Figure 2) to OWL.

OWL individuals identified in the UnivSys sequence dia-
gram, their corresponding UML metaclasses, and predefined
relations are listed in Table III and Table IV, respectively. Each
Lifeline individual represents a ConnectableElement

studentFees:StudentFees

schedule: StudentSchedule

theStudent:Studentseminar: SeminarenrollInSeminar:EnrollInSeminar

schedule

calculateFees(seminar, theStudent)

determineFit(seminar)

getSchedule()

qualifications()

isEligibleToEnroll(theStudent)
o1 o2

o3 o4

o5o6o7o8

o9 o10

o11o12

o13 o14

o15o16

o17 o18

o19o20

Fig. 2. A snippet of sequence diagram of UnivSys.

TABLE III
INDIVIDUALS CREATED FOR UML SEQUENCE DIAGRAM

Individual(s) UML Metaclass
enrollInSeminarLifeline,
seminarLifeline, theStu-
dentLifeline, scheduleLifeline,
studentFeesLifeline

Lifeline

connectableElement1, con-
nectableElement2, connectableEle-
ment3, connectableElement4,
connectableElement5

ConnectableElement

EnrollInSeminar, Seminar,
Student, StudentSchedule,
StudentFees

Type

o1, o2, o3, o4, ..., o19, o20 Message-
OccurrenceSpecification

isEligibleToEnrollMessage, qual-
ificationsMessage, qualification-
sReply, isEligibleToEnrollReply,
getScheduleMessage, getSched-
uleReply,determineFitMessage,
determineFitReply, calculate-
FeesMessage, calculateFeesReply

Message

theStudentInstanceValue, seminar-
InstanceValue

InstanceValue

isEligibleToEnrollOperation,
qualificationOperation,
getScheduleOperation,
determineFitOperation,
calculateFeesOperation

Operation

theStudentInstance, seminarIn-
stance

InstanceSpecification

individual whose Type individual is specified by re-
lation type. Each Lifeline individual owns a num-
ber of MessageOccurenceSpecification individuals
through relation events. Those occurrences represent the
send or receive event occurrences, which are then linked to
Message individuals. A Message individual specifies the
content through signature and argument. The signature can be
either Operation or Signal. Both of them may include
ValueSpecification individuals as arguments. In this
particular sequence diagram, each ValueSpecification
individual is related to a InstanceSpecification, for
example, theStudentInstance individual and seminarInstance
individual. Besides the relations between OWL individuals,
two data properties for Message individuals are considered:
messageKind (“complete” , “found”, “lost”, “unknown”) and
messageSort(“asynchCall”, “asynchSignal”, “createMessage”,
“deleteMessage”, “reply”, “synchCall”).



TABLE IV
RELATIONS FOR UML SEQUENCE DIAGRAM

Relation Domains Ranges
events Lifeline Occurrence-

Specification
represents Lifeline ConnectableElement
signature Message NamedElement
argument Message ValueSpecification
sendEvent Message MessageEnd

receiveEvent Message MessageEnd
type TypedElement Type

instance InstanceValue Instance-
Specification

classifier Instance-
Specification

Classifier

V. UML STATE DIAGRAM IN OWL

Figure 3 illustrates the behavior of a seminar during its
lifetime. Based on the UML Specification, the semantics
of the state diagram is represented in Protégé in the form
of individuals (Table V) and their relations (Table VI).
Transaction plays an important role in capturing the
meaning of a state machine diagram. Each Transaction
individual connects to two State individuals by sourceVertex
and targetVertex. A transaction owns a Trigger individual
that is related to an Event individual, a Constraint
individual as guard and a Behavior individual as effect.
Every constraint is related to a ValueSpecification
individual by constrainedElement relation, and has a specifica-
tion that evaluates to a Boolean value. Each State individual
may own behaviors as its entry, exit and doActivity. Besides
the relations between OWL individuals, one data property
for PseudoState instances is considered: pseudostateKind
(“choice”, “deepHistory”, “entryPoint”, “exitPoint”, “fork”,
“initial”, “join”, “junction”, “shallowHistory”, “terminate”);
another data property for Transition instances is consid-
ered: transitionKind(“external”, “internal”, “local”).

when(seatAvailability = available)

student enrolled 
[seatAvailability = available] 

/ addStudent()

cancelled

scheduled

cancelled

student dropped
[seatAvailability = unavailable]

student dropped
[seatAvailability = available]

/ enrollFromWaitingList()

student enrolled 
[seatAvailability = unavailable]

/ addToWaitingList()

closed

cancelled

cancelled

closed
open

Closed to Enrollment

entry / notifyInstructor()

Full

student enrolled / addToWaitingList(); 
considerSplit()

Open For Enrollment

entry / logSize()ScheduledProposed

t0

t1

t2

t3

t4

t5

t6 t7 t8t9

t10 t11

t12

t13

t14

Fig. 3. State diagram of a seminar.

VI. QUERYING UML MODELS USING SPARQL

Section III to V convert University Information System’s
three UML models to OWL individuals. This process results
in 127 distinct OWL individuals. Interested readers can find

TABLE V
INDIVIDUALS CREATED FOR UML STATE DIAGRAM

Individual(s) UML Metaclass
InitialState, ProposedState,
ScheduledState, OpenForEn-
rollmentState, FullState,
ClosedToEnrollmentState,
FinalState

State

transition0, transition1, transition2,
..., transition13, transition14

Transition

completionTrigger, sched-
uledTrigger, openTrigger,
studentEnrolledTrigger,
studentDroppedTrigger,
closedTrigger, cancelledTrigger,
whenSeatAvailableTrigger

Trigger

completionEvent, scheduledEvent,
openEvent, studentEnrolledEvent,
studentDroppedEvent,
closedEvent, cancelledEvent,
whenSeatAvailableEvent

CallEvent

seatAvailableConstraint,
seatUnavailableConstraint

Constraint

seatAvailableExpression,
seatUnavailableExpression

OpaqueExpression

addStudent, logSize, addToWait-
ingList, notifyInstructor, enroll-
FromWaitingList, considerSplit

OpaqueBehavior

addStudentOperation, logSizeOp-
eration, addToWaitingListOper-
ation, notifyInstructorOperation,
enrollFromWaitingListOperation,
considerSplitOperation

Operation

seatAvailability Element

TABLE VI
RELATIONS FOR UML STATE DIAGRAM

Relation Domains Ranges
sourceVertex Transition Vertex
targetVertex Transition Vertex

trigger Transition Trigger
guard Transition Constraint
effect Transition Behavior
entry State Behavior
exit State Behavior

doActivity State Behavior
event Trigger Event

changeExpression ChangeEvent ValueSpecification
specification Constraint ValueSpecification

constrainedElement Constraint ValueSpecification
method BehavioralFeature Behavior

those individuals at github.com/Washingtonwei/uml-ontology.
With the three UML diagrams properly represented in OWL,
query can be conducted using SPARQL. SPARQL (SPARQL
Protocol and RDF Query Language) is a semantic query
language. It is an effective way to retrieve and manipulate data
stored in RDF format. The underlying structure of an OWL
knowledge base is a collection of triples, each consisting of a
subject, a predicate and an object. For example, the description
of “a class A owns a property B as an attribute” is stored in
OWL as a triple: A ownedAttribute B. In a SPARQL query,
there are several important parts: a SPARQL variable starts
with a question mark and can match any individual in the
OWL knowledge base. In the WHERE clause, triple patterns

https://github.com/Washingtonwei/uml-ontology


are defined in which any parts can be replaced with a SPARQL
variable. The SELECT result clause returns a table of variables
and values that satisfy the query. Protégé has built-in support
for SPARQL. One sample query is presented here.

• “What are the associated classes of SeminarClass?”

PREFIX
:<http://www.semanticweb.org/uml-ontology#>
SELECT ?associatedClass

WHERE {
?end1 :type :SeminarClass .
?association :memberEnd ?end1 .
?association :memberEnd ?end2 .
?end2 :type ?associatedClass .
FILTER(?associatedClass!=:SeminarClass)

}

Explanation: Select any individual such that it is the type
of an end (:end2), which is a member end (:memberEnd)
of an association (?association), whose the other end
has type SeminarClass (:SeminarClass). The FILTER
makes sure that we are looking for a class other than
SeminarClass.
Answers from Protégé:

– http://www.semanticweb.org/uml-
ontology#StudentClass

– http://www.semanticweb.org/uml-
ontology#ProfessorClass

VII. RELATED WORK AND DISCUSSION

Since UML Class Diagram can also be used to represent on-
tology of a domain, most work related to UML and OWL em-
phasizes the transformation between UML Class Diagram and
OWL ontology [3][14]. Furthermore, OMG’s ODM(Ontology
Definition Metamodel) includes UML profiles for RDF and
OWL, which provide a standard graphical notation for RDF
vocabulary and OWL ontology development using UML tools.
Our work is inspired by the work of Van Der Straeten [9]
and Wei [12][13][11]. Van Der Straeten and colleagues used
Description Logic to check the inconsistency between differ-
ent versions of UML models. Wei and colleagues specified
overlaps of heterogeneous UML models in Conceptual Graphs
and used the overlap for identifying missing requirements.
However, few work aims at providing a comprehensive and
complete UML Ontology that covers all UML Specification
diagrams. Furthermore, our work takes advantage of SPARQL
to query and check consistency of different UML models.

One important contribution of this work is the construction
of a comprehensive UML ontology in the RDF/XML syntax
which can be queried and reasoned in Protégé and other
Semantic Web tools like Apache Jena. By organizing the
latest UML Specification metaclasses in OWL, we invite
the community to contribute to its further refinement. For
research purposes, we restrict ourselves to a subset of the
UML metamodel. The current UML ontology includes 127
most commonly used UML metaclasses and 25 metarelations,
which can support defining the semantics of UML Class,
Sequence and State Diagrams in OWL notation. Future work

will include all the metaclasses and metarelations defined in
the UML Specification, so that more UML diagrams can be
converted to OWL for analysis. Another current limitation is
the manual conversion from a given UML diagram to OWL.
Future work will focus on automation of transforming UML
models to OWL and direct invocation of the OWL API from
within a UML CASE tool. Another future work would be
designing a user friendly querying interface based on natural
language query, so that users don’t need to master SPARQL
language.

VIII. CONCLUSION

In this paper, an approach to manage UML model knowl-
edge is proposed and validated through a simple illustrative
example software system. The formalism used is W3C stan-
dardized OWL, which is a Description Logic based formalism.
Three types of UML diagrams have been converted to OWL
knowledge base. Queries and reasoning can be conducted to-
wards the resulting knowledge base. Future work will include
more OWL reasoning in terms of consistency, knowledge
acquisition and inference on the UML knowledge base. The
results can help requirements engineers better understand their
models and provide possible inconsistencies suggestions.

REFERENCES

[1] S. W. Ambler. The object primer: Agile model-driven development with
UML 2.0. Cambridge University Press, 2004.

[2] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito, and
A. Silva. Applications of ontologies in requirements engineering: a sys-
tematic review of the literature. Requirements Engineering, 21(4):405–
437, 2016.

[3] D. Djurić, D. Gašević, and V. Devedžić. Ontology modeling and mda.
Journal of Object technology, 4(1):109–128.

[4] D. Firesmith. Are your requirements complete? Journal of Object
Technology, 4(1):27–44, 2005.

[5] F. J. Lucas, F. Molina, and A. Toval. A systematic review of uml
model consistency management. Information and Software Technology,
51(12):1631–1645, 2009.

[6] O. M. G. (OMG). Unified modeling language, version 2.5.1. OMG
Document Number formal/17-12-05 (https://www.omg.org/spec/UML/2.
5.1), 2017.

[7] L.-j. SHAN and H. ZHU. A formal descriptive semantics of uml.
Computer Engineering & Science, 3:026, 2010.

[8] S. U. Stanford Center for Biomedical Informatics Research (BMIR).
Protégé, a free, open-source ontology editor and framework for building
intelligent systems. https://protege.stanford.edu/, 2018.

[9] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using
description logic to maintain consistency between uml models. In
«UML» 2003-The Unified Modeling Language. Modeling Languages
and Applications, pages 326–340. Springer, 2003.

[10] B. Wei. A comparison of two frameworks for multiple-viewed software
requirements acquisition. PhD thesis, Ph. D. thesis, University of
Alabama in Huntsville, 2015.

[11] B. Wei and H. S. Delugach. A framework for requirements knowledge
acquisition using uml and conceptual graphs. In Software Engineering
Research, Management and Applications, pages 49–63. Springer, 2016.

[12] B. Wei and H. S. Delugach. Transforming uml models to and from
conceptual graphs to identify missing requirements. In International
Conference on Conceptual Structures, pages 72–79. Springer, 2016.

[13] B. Wei, H. S. Delugach, E. Colmenares, and C. Stringfellow. A con-
ceptual graphs framework for teaching uml model-based requirements
acquisition. In 2016 IEEE 29th International Conference on Software
Engineering Education and Training (CSEET), pages 71–75. IEEE,
2016.

[14] J. Zedlitz, J. Jörke, and N. Luttenberger. From uml to owl 2. In
Knowledge Technology, pages 154–163. Springer, 2012.

https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://protege.stanford.edu/

	Introduction
	The UML Ontology
	UML Class Diagram in OWL
	UML Sequence Diagram in OWL
	UML State Diagram in OWL
	Querying UML Models Using SPARQL
	Related Work and Discussion
	Conclusion
	References

