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Abstract—The variety of interaction paradigms on the Web,
such as clicking, commenting or rating are important sources that
help recommender systems to gather accurate information about
users’ preferences. Ensemble methods can be used to combine all
these pieces of information in a post-processing step to generate
recommendations that are more relevant. In this paper, we
review the application of existing ensemble methods to improve
ranking recommendations in the multimodal interactions context.
We compared four ensemble strategies, ranging from simple
to complex algorithms including Gradient Descent and Genetic
Algorithm to find optimal weights. The evaluation using the
HetRec 2011 MovieLens 2k dataset with three different types
of interactions shows that a considerable 7% improvement in
the Mean Average Precision can be achieved using ensembles
when compared to the most performant single interaction.

Index Terms—recommender system, multimodal, user interac-
tion

I. INTRODUCTION

According to [1], from 2005 to 2020, the information in the
digital universe will grow by a factor of 300, from 130 ex-
abytes to 40,000 exabytes, or 40 trillion gigabytes (more than
5,200 gigabytes for every man, woman, and child in 2020). It is
simply not possible to grasp even a small percentage of it in a
single lifetime, there is too much information to process and to
choose. The expression Information Overload was introduced
to describe the sensation of fatigue and distress that follows the
cognitive surplus required to handle the volume of information
we have to deal with everyday [2].

Recommender Systems (RS) have emerged in response to
the information overload problem in order to support users
during content consumption decisions. They learn the users’
interests using their past interactions (ratings, votes, ranked
lists, mouse clicks, page views, product purchases, etc.) and
suggest products that are likely to be appreciable. In order
to obtain users’ interests, three different forms can be used:
explicit feedback; implicit feedback and hybrid approaches.
Implicit feedback is the kind of information collected indi-
rectly, such as mouse movements or clicks. In explicit feed-
back, the preferences are intentionally provided by the user,
such as a “like” option or a rating. This type of information is
considered more reliable, since the user is the one who exposes
his interests, rather than being inferred. The problem is that
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it requires an additional effort from the user to intentionally
provide the feedback, who is not always willing to cooperate
with the system [3]. Finally, the hybrid approach consists of
applying the implicit and explicit feedback together to obtain
more information about his preferences [4].

Despite the variety of ways to collect users’ preferences,
actual recommender algorithms are modeled based on a single
or a few types of interactions [5]. However, the accuracy can
be improved if the system utilizes all available information.
An approach for generically handling multimodal interactions
is with ensemble methods. An ensemble method combines
the predictions of different algorithms, or the same algorithm
with different parameters to obtain a final prediction. Ensemble
methods were the top performing solution in the Netflix Prize
contest [6].

The most simple ensemble method is to compute the final
prediction as the mean over all the predictions [3]. Better
results can be obtained if the final prediction is given by a
linear combination of the ensemble predictions. In this case,
the combination weights have to be determined by some
optimization procedure such as regularized linear and logistic
regressions. However, not all available ensemble methods are
practical for large-scale recommender systems because the
massive amount of data demands vast amount of time and
memory consumption.

In this paper, we analyze four ensemble strategies ranging
from simple rank list merging to advanced strategies using
Gradient Descent and Genetic Algorithm to find optimal
weights to unify different types of feedback. We provide
an experimental evaluation of those strategies with the Het-
Rec2011 MovieLens 2k [7] dataset, simulating and inferring
three classical users’ interactions: tagging, rating and browsing
history.

This paper is structured as follows: Section II depicts
the related work; Section III details the evaluated ensemble
framework and strategies; Section IV presents the evaluation
and validation of the approach with HetRec dataset with
800,000 ratings, along with an analysis of the performance
of the four strategies; and finally Section V discusses the final
remarks and future works.



II. RELATED WORK

Recommender systems can be extended in several ways
aiming at improving the understanding of users and items,
incorporating new types of interaction in the recommendation
process and making the combination of them. One of these
improvements is the support for multi-criteria interactions, so
as to provide greater flexibility and less obtrusive types of
recommendations [8]. In this context, with more studies in
the area of recommender systems, various algorithms enabled
the usage of more than one type of user interaction.

These studies resulted in works such as Johansson [9],
responsible for developing the MADFILM, a movie recom-
mendation system that addresses the integration of prediction
and organization of content, through explicit and implicit
user’s feedback. The work proposed by [10] developed a
recommendation system for online video based on explicit
and implicit feedback, plus feedback from relevant information
provided by the user. The used video was composed of
multimedia content and related information (such as query,
title, tags, etc.). The project aimed to combine these types of
interactions with the information provided by users in order
to generate a more precise rank of relevant items. In order to
automatically adjust the system, it was implemented a set of
adjustment heuristics given new user interactions.

The SVD++ algorithm proposed by [11] uses explicit and
implicit information from users to improve the prediction of
ratings. As explicit information, the algorithm uses the ratings
assigned by users to items, and as implicit information, it
simulates the rental history by considering which items users
rated, regardless of how they rated these items. However, it
use a stochastic gradient descent to train the model, which
requires the observed ratings from users. Thus, it is impossible
to infer preferences for those users who provided only implicit
feedback.

Ensemble is a machine learning approach that uses a com-
bination of similar models in order to improve the results
obtained by a single model, and can be used to combine
multiple interactions. In fact, several recent studies, such as
[12], demonstrate the effectiveness of an ensemble of several
individual and simpler techniques, and show that ensemble-
based methods outperform any single, more complex algo-
rithm. Most of the related works in the literature point out
that ensemble learning has been used in recommender system
as a way to combine the prediction of multiple algorithms
(heterogeneous ensemble) to create a more accurate rank [12],
in a technique known as blending. Furthermore, they have been
used with a single collaborative filtering algorithm (single-
model or homogeneous ensemble), with methods such as
Bagging and Boosting [3].

Cabral et al. [13] proposed three ensemble strategies that
combine predictions from a recommender trained with distinct
item metadata into a unified rank of recommended items. In
comparison, da Costa at al. [14], proposed a similar ensemble
strategy based on machine learning in order to combine differ-
ent types of interactions generated by multiple recommenders.

Those strategies differ from the aforementioned works because
they adopt a post-processing step to analyze the rankings
created separately by different algorithms. The advantage of
this approach is that it does not require the algorithm to be
modified, or to be trained multiple times with the same dataset,
and therefore, it is easier to extend the models to other types of
interactions and recommenders. We implemented all strategies
in a public available repository and evaluated three types of
interactions (Ratings, Tags and Visualized Items) using the
HetRec dataset [7].

III. ENSEMBLE MODELS

In this section, we describe four ensemble strategies used in
this work to combine multimodal interactions: Most Pleasure,
the simplest ensemble strategy, combines predictions based on
score; Best of All strategy, determines a preferred metadata
for a user and uses it to create the ensemble; Weighting
strategy, uses multiple metadata and weighs them with a
Genetic Algorithm, optimizing for maximum Mean Average
Precision (MAP); BPR Learning Strategy [15], which uses
the Learn BPR to learn the optimal weights, optimizing for
the Area under the ROC curve (AUC) .

A. Most Pleasure Strategy

8.0 - Queen
7.0 - The Beatles
9.0 - The Beatles
4.0 - Nirvana Most 5.0 Queen
Pleasure P °°"
9.0 - The Beatles Ensemble 6.0 - Nirvana

6.0 - Nirvana

5.0 - Queen

Fig. 1. Most Pleasure Strategy.

The Most Pleasure strategy is a classical aggregation
method, often used for combining individual ratings for group
rating [16]. It takes the maximum of individual ratings for a
specific item and creates a unified rank. Figure 1 illustrates
the Most Pleasure strategy, in which the output comprehends
a ranked list of artists with highest ratings from two distinct
input sets. It only needs the generated prediction set as an
input, composed of the predictions from the recommender
algorithm trained with one of the item’s metadata. For each
user, a new prediction is created, selecting the highest score
of an item among all the individually-trained algorithms.

The idea behind this strategy is that differently trained algo-
rithms have a distinct knowledge about the user’s preferences,
and the predicted score can be considered an indicator of the
algorithm’s confidence. Consequently, the created ensemble is
a list of items in which the distinct algorithms have more
confidence to recommend.

https://github.com/wendelad/RecSys



B. Best of All Strategy

Differently from Most Pleasure, Best of All strategy assumes
that different types of metadata can affect users differently. It
considers the recommendation algorithm that provides the best
results for a specific user (as illustrated by Figure 2).

Interaction 1
: User 1 - Interaction 2

User 2 - Interaction 1

,| Best of All R

Interaction 2

Ensemble User 3 - Interaction 1

User 4 - Interaction 3

Fig. 2. Best of All Strategy.

The Best of All Strategy requires as input: i) the recommen-
dation algorithm, ii) a training dataset, iii) a probe dataset,
and iv) the set of item’s metadata. Unlike the Most Pleasure
strategy, this one requires a probe run to determine which is
the best performing algorithm. Therefore, the dataset is divided
in training and probe. The recommender algorithm is firstly
trained using each of item metadata individually. Then, for
each user, a probe run is made to determine the metadata
with the highest performance (in terms of MAP). Finally, the
recommender algorithms are retrained using all data (including
the probe set), and the final ensemble is the result of the
combination of predictions using, for each user, the prediction
from the algorithm with the highest performance in the probe
test.

The idea behind this strategy is that a single metadatum
can greatly influence the user’s preferences, and this should
be used for future predictions. For instance, if a User A
enjoys music from a particular genre such as “pop”, and
other User B enjoys music of some specific performer such
as “Metallica”, the ensemble will contain predictions from
the recommendation algorithm trained with both: the genre
metadatum for User A, i.e. “pop”, and a performer metadata
for user B, i.e. “Metallica”.

C. GA Weighting Strategy

One drawback of the Best of All strategy is that it considers
that only one type of metadata influences the user preference.
The GA Weighting strategy assumes that the interests of a user
may be influenced by more than one metadatum, and with
different levels. It considers all available metadata, assigning
different weights for each prediction as shown in Figure 3.

Interaction 1

User 1 - (Interaction 1 * 0.1) + (Interaction2* 0.7) + ( Interaction 3* 0.2)
Weighing N User 2 - (Interaction1 * 0.1) + (Interaction 2* 0.1) + (Interaction 3 * 0.8)
Interaction
2 Ensemble

User 3 - (Interaction 1 * 0.5) + (Interaction 2* 0.3) + (Interaction3* 0.2).

User 4 - (Interaction 1 * 0.8) + ( Interaction2* 0.1) + (Interaction3 * 0.1)

Fig. 3. Weighting Strategy.

Similarly to the previous strategy, it requires as an input
the i) recommendation algorithm, ii) a training and probe

dataset, and iii) the set of item metadata. After training the
algorithm using each of item metadata individually, a probe
run is needed; however, the objective is to determine the
optimal weights for each user. This is an optimization problem
that was solved using Genetic Algorithm (GA).

The probe part consists of running the GA to find out the
optimal weights. It was implemented using the GA Framework
proposed by Newcombe [17], where the weights are the
chromosomes, and the fitness function is the MAP score
against the probe dataset. Other GA characteristics includes
the use of 5% of Elitism, Double Point crossing-over, and
Binary Mutations. Finally, the algorithms are retrained using
all data (including the probe set), and the final ensemble uses,
as the item score, the sum of individual predictions multiplied
by the weights found in the probe phase and divided by the
total number of metadata.

The idea behind it is that the different types of interactions
influence differently the user preference. Still in the context of
music, let us consider that a User A enjoys songs of a specific
set of genres regardless of the performer and a User B that
does not care about music genre or country of production. For
the User A, the ensemble should give a higher weight for the
music genre, and a lower weight for the production country. In
contrast, to the User B, the ensemble should equally distribute
the weights between those metadata.

D. BPR Learning Strategy

In order to combine the output generated by each recom-
mendation technique trained with a different kind of interac-
tion, this ensemble strategy is based on a machine learning
algorithm [14].

Firstly, it extracts information about users’ interactions from
the database, such as sets of tags, ratings and browsing history.
With these interactions available, it runs the recommendation
algorithms, which receive as input the users’ interactions. In
this step, each algorithm runs with a particular set of feedback,
resulting in a feedback-specific personalized ranking (individ-
ual ranking) for each user. Thus, a feedback-specific ranking
contains the items and their associated scores, which represent
how much a user likes an item described by the considered
set of attributes. The final step consists of combining all
considered rankings into a final list of recommendations. To
do that, it assigns weights according to the relevance of each
type/set of attributes. This combination is ]i‘)erformed according

to a linear function, represented by 7/
Afinal o a b n 1
P = Bary; + BoTes + oo+ Bn Ty ()
b . . .
where 1y, T, ..., Th;; indicate the scores computed previously

by each individual recommendation algorithm for a (u, 1) pair,
and B, By, --., B are the weights of each individual score for
the final prediction, learned using Learn BPR algorithm [18].
This is possible because of the natural strategy of BPR, which
in a each interaction, select randomly a couple of items ¢ and
7 for a user u, a known item ¢ and one unknown item j.
Finally, the algorithm predicts scores for items not seen
by each user and sorted these scores in descending order



resulting in the final ranking, which will be recommended
in a top N ranking list. The underlying characteristic of
this algorithm is the ability to learn the users’ preferences
to employ this information to match the recommendations
generated individually for each type of interaction.

IV. EVALUATION

The evaluation consists in comparing the four ensemble
strategies as presented in Section 3, using a standard dataset
available in the literature. Three different interactions, his-
tory(watched movies), tags and ratings were trained indi-
vidually and combined using the ensemble techniques. The
combined results and individual interactions were evaluated
to check the contribution of each aspect to the final recom-
mendation improvement.

A. Dataset

In order to evaluate the performance of the ensemble
strategies, we used the HetRec MovielLens 2k dataset [7].
MovieLens 2k consists of 800,000 ratings, 10,000 interactions
tags applied to 2,113 users and 10,197 movies. As explicit
information, we used the ratings that users assigned to items,
and as implicit interaction, we considered: i) whether a user
tagged an item or not; and ii) the history of visited items,
which is simulated by boolean values (visited or not) generated
by the ratings and tagging activities.

In this paper, we adopted a classical methodology used by
the research community with regard to recommender systems
evaluation [8]. We divide the full dataset into two sets, 80%
for training and 20% for testing. The training set is used to
run the isolated algorithms and predict weights for each pair of
algorithms (simulate the real-time interaction from the user);
and test set is used with the All but One protocol to evaluate
the approaches.

B. Experimental Setup and Evaluation Metrics

In this evaluation we use the All But One [19] protocol
for the construction of the ground truth and the 10-fold-cross-
validation. We randomly divided the dataset into 10 disjoint
subsets of equal size and for each sample we use n — 1 of
data for training and the rest for testing. The training set %,
was used to train the proposed ensemble and test system T,
randomly split an item for each user to create the truth set
H. The remaining items form the set of observable O is used
to test the unimodal algorithms. We also evaluated using the
standard protocol, where all items are considered. To assess the
outcomes of the systems we use evaluation metrics Precision
and Mean Average Precision (MAP) [20]. Then, we compute
Precision and Mean Average Precision as follows:

Precision calculates the percentage of recommended items
that are relevant. This metric is calculated by comparing, for
each user in the test set 7, the set of recommendations R that
the system makes, given the set of observables O, against the
set H:

| Te]

\R; N H;|
|T|Z IR)| @

Mean Average Precision computes the precision consider-
ing the respective position in the ordered list of recommended
items. With this metric, we obtain a single value accuracy
score for a set of test users 15:

Precision(T,

I Te|

1|ZA'U6P R;, Hj) (3)

MAP(T., -7

where the average precision (AveP) is given by

||
AveP(R;, H;) = |H 2 Z [Prec(R;,r)xd(R;(r), Hj)] (4)

where Prec(Rj;,r) is the precision for all recommended items
up to ranking 7 and 6(R;(r), H;) = 1, iff the predicted item at
ranking 7 is a relevant item (R;(r) € H;) or zero otherwise.

The GA Weighting Strategy, which utilizes a Genetic Algo-
rithm (GA), uses a population of size 40 with 90 generations,
a crossover probability of 80% and a mutation probability of
8%. This is a small number of generations, and usually a
much higher number of generations is used for convergence;
however, due to the size of our dataset, we traded precision
for speed.

In this work we used Precision@QN and MAPQN, where
N took values of 1,3,5 and 10 in the rankings returned by
the system. For each configuration and measure, the 10-fold
values are summarized by using mean and standard deviation.
In order to compare the results in statistical form, we apply
the two-sided paired t-test with a 95% confidence level [21].

C. Methodology

For implicit data interactions (history and tags), we used the
BPR-MF implementation available in the MyMediaL.ite library
[22]. Tt is an implementation of the Bayesian Personalized
Ranking (BPR) [23], a generic framework for optimizing
different kinds of models based on training data containing
only implicit feedback information. For explicit interactions
(ratings), we used SVD++ [4], also from MyMediaLite li-
brary. All four ensemble strategies were implemented using
MyMediaLite library and are publicly available.

All the runtime evaluations were executed in the same
machine, a Core i17-2670QM with 8GB of RAM, with the
.NET 4.5 framework with all avaliable patches applied. The
result is the average of 10 runs.

D. Results

Table 1 and Table 2 show the results of this evaluation for
single interactions and ensembles. We compared our results
to tags, the best performing interaction. As seen, the BPR
Learning strategy achieved statistically better results than the

https://github.com/wendelad/RecSys
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TABLE III

T-TEST COMPARING MAP@5 USING BPR LEARNING WITH TAGS.

BPR Learning | Tags
Mean 0.005115 0.004569
Variance 3.16E-07 1.07E-07
Observations 10 10
df 14
t Stat -2.65099
P(T<=t) one-tail | 0.009496
t Critical one-tail 1.76131
P(T<=t) two-tail | 0.018992
t Critical two-tail 2.144787

PREC@1

Historic

= GA

PREC@3

Tags

PREC@5

Ratings

PREC@10

BestOfAll

MOStPleasure e BPR Learning s LibFM

Fig. 4. Precision@1, 3, 5, 10 using All But One Protocol.

baseline, as proven by the t-student analysis (with p < 0.05) in
Table 3. Figure 4 illustrates the algorithms’ precision@1, 3,5
and 10 using the All But One Protocol.

TABLE I
ALGORITHMS’ PERFORMANCE IN PRECISION@1, 3, 5 AND 10.

The GA Weighting and Best of All strategies obtained a good
performance, close to the best performing interaction, except
in MAP with the standard protocol, where it archived a better
result. The Best of All strategy is simple to implement and
does not require weight optimization, an expensive step in the
process required for BPR Learning and GA Weighting. Alter-
natively, GA Weighting does requires a weight optimization
step, but as it uses a Genetic Algorithm, one can manually set
the parameters and tradeoff speed or performance.

TABLE IV

COMPARISON OF ENSEMBLE ALGORITMS RUNTIME IN MINUTES AND
IMPROVMENT (IN MAP) OVER THE BEST PERFORMING INTERACTION

(TAGS).
Ensemble Probe Run | Time(min) | Improvement
MostPleasure No i 0.1 -94%
BestOfAll Yes i 0.1 4.7%
GA Yes 43.2 5.6%
BPR Learning | Yes 52.1 7.2%

Table IV lists the

ensemble strategies runtime and the need

Prec@1 Prec@3 Prec@5 Prec@10
History 0.000047 | 0.000047 | 0.000037 | 0.000033
Tags 0.002082 | 0.002035 | 0.001874 | 0.001628
Ratings 0.000094 | 0.000047 | 0.000037 | 0.000018
BestOfAll 0.001988 | 0.001988 | 0.001845 | 0.001614
GA 0.001988 | 0.001971 | 0.001845 | 0.001614
MostPleasure 0.000047 | 0.000047 | 0.000037 | 0.000033
BPR Learning 0.002366 | 0.002366 | 0.002271 | 0.001845
Ensemble improvement | 12.0 % 12.1 % 21.1 % 133 %

TABLE 11

ALGORITHMS’ PERFORMANCE IN MAP@ 1,10 AND MAP UNDER
STANDARD PROTOCOL.

MAP@5 MAP@10 | MAP(Std)
History 0.000104 0.000120 0.000226
Tags 0.004569 0.005456 0.004729
Ratings 0.000119 0.000119 0.000047
BestOfAll 0.004458 0.005345 0.004956
GA 0.004441 0.005334 0.004999
MostPleasure 0.000104 0.000120 0.000239
BPR Learning 0.005229 0.006044 0.005075
Ensemble improvement | 144 % % | 10.7 % 7.2 %

The results from Table 1 and Table 2 indicate that in some
cases, ensembles got significantly higher scores than single
interactions. The improvement level was between 7.2% and
21.1% compared to the best performing interaction. These
improvements were significant as increasing the MAP and
precision is a challenge, and every increment in MAP is
hard to achieve. Surprisingly, the tags interaction achieved
higher scores compared to other single interactions. This is
an interesting result, because fags contain a more diverse set
of information, which probably simulate an ensemble. The
BPR Learning strategy was optimal for all given scenarios
since it uses all interactions to make predictions, and it assigns
different weights to the most relevant metadata according to
the taste of each individual user. On the other hand, the
MostPleasure strategy achieved the lowest performance among
the ensemble strategies.

for a probe run. Most Pleasure has the advantage of not
requiring a probe run, but in our evaluation achieved the worst
result of all compared strategies with a 94 % lower perfor-
mance. BPR Learning and GA Weighting achieved 5.6 % and
7.2 % MAP improvement respectively with a slight runtime
advantage for GA Weighting. Best of All achieved a good
performance improvement compared to the best performing
single interaction with the advantage of being fast to compute.

The overall absolute scores obtained and described in this
paper are small because of the Sparsity and evaluation protocol
used in the experiments. The All But One protocol hides
one item from each user in the test set and considers it as
the ground truth. As we are recommending top N items, the
precision and MAP will decrease because the system considers
there are N relevant items, although the protocol has set
only the hidden item as relevant. The high sparsity stands
as another challenge, as many movies were not rated, only
tagged. In this case, the rating prediction cannot be made.
Another issue is that the rating rank is build using the rating
predictions in a decreasing order from the SVD++ algorithm
and the dataset can contain items with a low score, lowering
the metrics related to this interaction as the test dataset is
generated randomly. In this way, it is important to rely only
on the differences among the approaches, and we managed
to increase the results of our proposal when compared to the
baselines.

Finally, we conclude that ensemble algorithms significantly
improved the recommender prediction performance, with the



BPR Learning strategy standing out with higher performance
improvement on most of the scenarios followed by GA Weight-
ing strategy with a lower performance but with a slight smaller
runtime and the Best of All strategy, whose the highlight is
being almost instantaneous to compute.

V. CONCLUSION

In this paper we evaluated four ensemble strategies to
unify different types of feedback from users when consuming
content in order to provide better recommendations. The
advantage is that more information about the interests of
the user can be obtained when analyzing multimodal inter-
actions. All strategies evaluated do not require modification
of the recommender algorithm, namely Most Pleasure, Best
of All, Genetic Algorithm Weighting and BPR Learning. The
considered recommender algorithms did not take advantage
of multiple types of interactions and the evaluated ensemble
algorithms were able to enable those recommenders to take
advantage of all interactions. Most Pleasure, the simplest
strategy, consisted of combining the predictions based on
score. Best of All determined a single metadata that was more
preferred for a user, and the Weighting strategy uses multiple
interactions and weights them with a Genetic Algorithm that
optimizes the MAP and finally, BPR Learning uses LearnBPR
to optimize the weights related to AUC. Results from the
experiments show the effectiveness of combining various types
of interactions in a single model for recommendation using
ensemble learning. Our evaluation showed a considerable
MAP improvement between 10.7% and 21.1% when using
the ensemble algorithms, with the BPR Learning producing
the best recommendation for the majority of scenarios. These
encouraging results indicate that ensemble algorithms can be
used to enhance the recommender algorithms with multiple
interactions.

As future work, we plan to implement more complex
ensemble strategies and evaluate the algorithms with a higher
number of metadata in order to verify whether multimodal
information can generate better recommendations. In order to
do so, it will be necessary to find a more extensive dataset
and to evaluate the algorithms runtime performance with this
increased work.
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