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Abstract

Current component-directed reverse engineering ap-
proaches extract ADL-based components from legacy sys-
tems. ADL-based components need to be configured at
code level for reuse, they cannot provide re-deposition af-
ter composition for future reuse and they cannot provide
[flexible re-usability as one has to bind all the ports in order
to compose them. This paper proposes a solution to these
issues by extracting X-MAN components from legacy sys-
tems. In this paper, we explain our component model and
mapping from object-oriented code to X-MAN clusters us-
ing basic scenarios of our rule base.
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1. Introduction

The term legacy systems usually refers to such software
systems that are outdated, lack proper documentation and
cannot support a new feature without breaking another logic
yet they are vital to an organisation [5]. Unfortunately, most
legacy code was designed with non-modular approach that
cannot exploit the luxury of re-usability. For many compa-
nies, maintenance or comprehension of legacy code is cru-
cial because some of their functions are too valuable to be
discarded and too expensive to reproduce from scratch.

Component based development is a domain that revolves
around the construction of systems from pre-built software
units i.e., re-usability. Components extraction can recon-
struct a legacy system as modular executable architectural
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units that can be reused across many systems. Component-
directed® reverse engineering consists of following steps:
1) Capture the source code in appropriate notation (graph
nodes etc.). 2) Define a rule base to map the extracted no-
tation to abstraction model. 3) Formation of clusters i.e.,
code re-structuring 4) Mapping of clusters to a component
model. Output of component-directed reverse engineering
approaches is dependent on the definition of component
each approach uses. Most approaches use loose definition
of component. For them, a component is consisted of meth-
ods that belong together as they offer a specific functionality
of the system. Such components can be giant classes, clus-
ters or re-formation of the source code to get better cohesion
and loose coupling. These approaches neither defines the
extraction of explicit interfaces nor the composition mech-
anism of the extracted components (e.g., [9]). Such compo-
nents are not feasible for reuse as non-explicit architecture
cannot help in achieving a good re-usability.

Few like us, follow the szyperski's definition of compo-
nents. This definition defines component as ”’A unit of com-
position with contractually specified interfaces and explicit
context dependencies only” [15]. These approaches extract
explicit architecture (components with well-defined compo-
sition and interfaces).

Almost all the current reverse engineering approaches
that extract explicit components are based on ADLs>. ADLs
define required and provided services as ports (composi-
tion mechanism of ADLs). Ports use (indirect) method
calls at code level to compose components together. ADL-
based components have three major shortcomings from re-

Reverse Engineering that aims for the extraction of components.
3Components based on architecture description languages.



usability point of view: 1) Inability to select/de-select/alter
ports without changing the code manually at all required
places (for every single composition) to compose the com-
ponents after retrieval. 2) One has to bind all the ports
in order to reuse an ADL component i.e., non-flexible re-
usability. 3) It is impossible to re-deposit* a configured
composition of components for reuse (e.g., composite com-
ponent). Components have to be retrieved and configured
as many times as the same composition is required. To the
best of our knowledge, no such component-directed reverse
engineering approach exists that can: do code-independent
composition, allow to reuse the components without bind-
ing all services (ports) and support the re-deposition of com-
posed components for further reuse or composition.

This paper presents a reverse engineering approach that
can resolve the above stated issues. The mapping from ex-
tracted clusters to meta-model of our component model X-
MAN [10] and working of our tool has already been ex-
plained in [4] (white boxes in Figure 1). In this paper, we
explain how we: 1) Capture the object-oriented source code.
2) Map the captured notation to X-MAN clusters based on
our rule base, by stating basic scenarios (red boxes in Fig-
ure 1). Section II of this paper compares our approach with
other approaches that extract explicit architecture. Section
IIT explains X-MAN component model. Section IV presents
our approach using an example. Section V include conclu-
sion and future work.

2. Related Work

There are quite a few approaches that follow szyperski's
definition of components for reverse engineering.

JAVACompExt [3] is a heuristic based approach that ex-
tracts Abstract Data Type (ADT) components. The ap-
proach by Antoun et al. [1] re-engineers Java code into
ArchJava components. Chouambe et al. [7] produces com-
posite components from Java source code. Pattern-based
Reverse Engineering of Design Components [12] extracts
design components based on the structural descriptions of
design patterns. A Reverse Engineering Approach to Sub-
system Structure Identification [14] re-structures the sys-
tem into a hierarchy of subsystems along with their high-
level abstract representation as components. Washizaki [16]
detects reusable part of object-oriented classes and trans-
forms classes into JavaBeans components. Archimetrix [8]
reconstructs the architecture in form of components from
the source code after removing design deficiencies. Qual-
ity centric approach [11] focuses on quality of explicit in-
terfaces by following a semantic-correctness model. Al-
shara et al. [2] extracts OSGi or SOFA components from
object-oriented code. Components extraction in memory-
constrained environments [16] identifies reusable part of an

4The term re-deposit-ability means ability to re-deposit the composed
components after retrieval for future reuse.

Capturing the Code Base

Source Nodes Nodes Oij;pOpirri‘:n:;zn(]:ode
i ™| Structurin >
Code Extraction 9 To Clusters

Component Retrieval Component Validation Mapping From
& Re-composition & Deposit < Clusters
X-MAN Meta Model
Figure 1: RX-MAN
e i izati Component
Approach |Re-Composition i e%s{;tsti)try C}’,{‘ggﬁ’;gﬂgﬁﬁﬂ{?” Automated Mgde|
JAVACompExt X X X v UML
Antoun et al. X X v X ArchJava
Design
Compor(ﬁ;ents X X v v UML
Subsystem
Structure X X v v ADL
Identification
Choumbe et al| X v X v EJB
Washizaki X v 4 v JavaBeans
Archimetrix X X v X ADL
Alshara et al. X v v X SOFA
Quality
Centric X X v v ADL
Memor
Constrained.. X v 4 v JavaBeans
RX-MAN 4 v/ v/ 4 X-MAN

Table 1: Approaches based on Explicit Components

object oriented code and refactors the relative or surrounded
code to reuse the identified part.

Few major shortcomings with these approaches are lack
of automation, inability to retrieve from repository and in-
ability to achieve code-independent composition of the ex-
tracted components. These approaches however, extract
explicitly defined components with required and provided
services. In Table 1, attribute Repository Deposit means
whether an approach is based on a component model that
supports repository or not. JAVACompext, Antoun's ap-
proach and Design Components are based on component
models that do not support repository whereas, Subsystem
Structure Identification, Archimetrix and Quality centric
approach do not define or discuss the deposition of com-
ponents via a repository. Lack of repository decreases re-
usability as components cannot be configured and preserved
for retrieval. The attribute Automated shows whether an ap-
proach is automated or needs manual assistance. Compo-
nent Model shows the component model that is followed for
extraction of components. Componentization independency
shows whether an approach is only applicable on source
systems that are designed as separate packages.

Out of all the explicit approaches, our approach (that
we call RX-MAN) is the only one that: supports com-
ponent repository as part of its implementation, does not
need code-level configurations for reuse, is automated, does
not restrict to bind all the ports of a component being
reused and supports composition of the re-deposited com-
ponents. A well-known framework partially relevant to
our approach is MoDisco [6]. MoDisco uses Architecture-
driven modernization (ADM) to construct the Knowledge
Discovery Meta-model (KDM). The core difference is that
our approach aims for a specific meta-model (X-MAN) as
a transformation model whereas, MoDisco aims for a cus-



tomised meta-models based on legacy technology and re-
quirements”.

3. X-MAN Component Model

Unlike ADL-based components, X-MAN component
model is based on encapsulation i.e., an X-MAN compo-
nent only has provided methods and no required ones. An
atomic X-MAN component consists of a computation unit
that has the implementation of methods and exposed func-
tionality of specific methods (the methods that can be se-
lected for composition). Methods are exposed as interfaces
which are implemented in the computation unit. Any ex-
posed method can be selected before instantiating a compo-
nent and method's inputs and outputs can be used with the
exposed methods of other X-MAN components. Computa-
tion only takes place in a computation unit, which is why
this component model is encapsulated [13].

In case of a composite component, encapsulation is pre-
served by composition because a composite component
consists of two or more atomic components composed to-
gether by composition connectors. Composition connectors
in X-MAN are control structures that direct the route of ex-
ecution. Sequencer (SEQ) composition connector provides
sequencing of execution between two or more than two
components and Selector (SEL) provides branching based
on specific conditions®. If two components A and B will be
instantiated with one exposed method each and composed
by a sequencer, then there will be only two methods that
will be involved in this composition. Basic semantics of X-
MAN component model are shown in Figure 2 (lollipop in
the Figure is a notation used to show the presence of ex-
posed methods). One computation unit cannot interact with
other units directly but only via composition connectors.
Control of the components exists outside of computation
units and that is why one does not need code-level config-
urations to reuse the components. Any component can be
reused by composing it with others using appropriate com-
position connector [13] and exposed methods.
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Figure 2: X-MAN Component Model

In ADL-based component models, control cannot be
separated from computation and therefore, one needs code-
level configurations to recompose required and provided

5The implementation of our approach and MoDisco uses many com-
mon frameworks e.g., Ecore, eclipse modelling framework (EMF) etc.

SWith SEQ (sequencing), SEL (branching) and LOOP (looping), X-
MAN is Turing complete.

public class A{

public int provideSpeed(int speed)

{speed=100; this .returnSpeed (speed);}

public int returnSpeed (int topSpeed){ this .saveInLog(topSpeed); return
topSpeed; }

private void saveInLog(int value){ System.out. println ("Value is
saved”);}}

Figure 3: Scenario 1

package com.A.scenario;

import java. util .x;

public interface A {
public int provideSpeed (int speed);
public int returnSpeed (int topSpeed);}

package com.A.scenario;
import java. util .x;
public class AImpl implements A {public AImpl() {}
public int provideSpeed (int speed) {speed = 100; return speed;}
public int returnSpeed (int topSpeed){ this .savelnLog(topSpeed);
return topSpeed;}
private void saveInLog(int value){ System.out. println ("Value is
saved”);}}

Figure 4: Mapped Code from Scenario 1

services. X-MAN component model also supports re-
deposition of components after composition and composed
integrations of components can be retrieved for future reuse.
One does not need to bind all the ports at code level like
ADLSs but only need to select the exposed methods and ap-
propriate composition connector for a composition.

4. Our Approach: RX-MAN

This section uses an example of Brake Control System to
demonstrate the code capturing and mapping of code from
object-oriented classes to X-MAN clusters. Before showing
the mapping in terms of an example, section below demon-
strates few basic scenarios to show the rules of mapping.

4.1. Mapping from Source Code to X-MAN clusters

In RX-MAN, each input is a class, bunch of classes or a
program (object-oriented code base). The input is mapped
using a rule base against defined scenarios and output is one
or more than one X-MAN components. The mapping is
based on interactions and invocations of methods. Below
are few basic scenarios to show the mapping rule base.

1) Single Class with no interaction: A single non-
interactive class is the most trivial scenario in RX-MAN.
In this scenario, all the methods that call each other belong
to the same class. Output of this scenario would be one X-
MAN component with all the methods of the class mapped
to computation unit. Figure 3 is showing a non interac-
tive single Java class. In Figure 3, methods provideSpeed

public class A{
B obj= new B();
public void provideSpeed(int speed){speed=100;
obj . evaluateSpeed (speed); } }
public class B{
public int evaluateSpeed (int topSpeed){int maxSpeed=200; return
maxSpeed—topSpeed; } }

Figure 5: Scenario 2



public class A{
B obj= new B();
public void provideSpeed(int speed){speed=100;
obj . evaluateSpeed (speed); } }
public class B{
public int evaluateSpeed(int topSpeed){int maxSpeed=200; int
recordSpeed=maxSpeed—topSpeed; this.savelnLog(recordSpeed);
return recordSpeed;}
private void saveInLog(int recordValue){system.out. println (" Value
Logged Successfully”); }}

Figure 6: Scenario 3

and returnSpeed are marked as exposed methods. Method
savelnLog is in the computation unit along with other two
methods but it cannot be used as an exposed method be-
cause its modifier is private. The exposed methods of this
component are mapped as an interface and computation unit
has implementation of all the methods. Figure 4 shows the
notation of mapped code of scenario 1 (inside X-MAN com-
ponent). Figure 7(a) shows the notation of X-MAN compo-
nent mapped from this scenario. Red boxes in Figure 7(a)
shows the exposed functionality of this component i.e. ex-
posed methods.

2) Two Classes with public-public methods interaction:
Next possible scenario is the interaction of two Java classes
in a code base. As our approach is based on interaction and
invocation of methods, modifiers of methods play an im-
portant role in defining a scenario. Figure 5 is showing an
example of two Java classes that interact with each other
via methods with public modifiers. In this scenario, out-
put would be just one X-MAN component. All the callers
would be placed in one computation unit along with the
methods they called. If a method M is in invocation list
of more than one methods, it would be placed in the com-
putation unit only once to avoid redundancy. This scenario
assumes that all the interactions are between public methods
and no method is neither invoking any private method nor
dealing with any private class level variable. Figure 7(b)
is showing the X-MAN component mapped for two Java
classes of scenario 2.

3) Two Classes with private-public OR public-private
methods interaction: This scenario has more possible out-
comes than the previous two. If a private or a public method
in Class A calls a public method in Class B, there are fol-
lowing possible scenarios.

1) Public method in Class B is neither accessing any pri-
vate variable of the class nor it is calling any private method
of B. In this case, such public method will be placed along
with its caller in the same computation unit.
2) If method in Class B uses private variable of Class B or
it calls some other private method of B, it cannot be simply
placed with its caller. In this case:

a) If caller is private, the public method of B will be
placed in both components (computation unit of A and com-
putation unit of B as its dealing with private entities of both

7In case of void methods, output of an exposed method is boolean that
indicates termination of execution of that method

classes).

b) If caller is public, public method of B will only be part
of computation unit of B. Its caller can access it using com-
position connector or by data input/output of an exposed
method.

Figure 6 shows a scenario of public-private case. Method
provideSpeed of Class A has method evaluateSpeed of
Class B in its invocation list. Method evaluateSpeed is ac-
cessing private method savelnLog of Class B. Output of this
scenario would be two X-MAN components. One compo-
nent would have one method i.e. provideSpeed. The other
component would have evaluateSpeed and savelnLog in its
computation unit and evaluateSpeed would be the exposed
method of second component. Figure 7(c) shows two com-
ponents mapped from scenario 3. The purpose of explaining
the above scenarios is to provide comprehension of the ba-
sic mapping mechanism. Clustering of methods based on
their invocations and modifiers provide much better cohe-
sion as only those methods would belong to same compo-
nent that are associated and have loose coupling with rest
of the components. To apply these scenarios on a full code
base, one needs an appropriate notation that can capture the
whole legacy code and preserve the relation and dependen-
cies among all the entities. To capture the code base, our
approach uses a customised parser that is written specifi-
cally for RX-MAN.

4.2. Capturing the Code Base

The customised parser used in this approach is based on
Abstract Syntax Tree (AST) parser. The designed parser is
more powerful than the default AST parser as it also ex-
tracts and maps invocation nodes from each method node in
the code base. If a method A invokes method B, and method
B invokes method C then our parser extracts and connects
all nodes of the method C to method A as both are indirectly
connected by method B. AST parser extracts one big tree of
nodes from a code base in which all the nodes are connected
hierarchically e.g., starting node would be compilation unit
(class level or package level) connected with its sub nodes
i.e., class declarations, class variables etc. Each class dec-
laration node is further connected to its method nodes and
each method node is connected with its sub nodes. This
hierarchy of nodes goes till the last level which is simple
name nodes i.e., name of local variables etc.

It is impossible to trace and cluster the chain of all possi-
ble method interactions and invocations from this one big
complex tree. Therefore, RX-MAN parser indexes each
method of the code base and connect all associated nodes
with every method. Figure 8 is showing the extraction of
nodes using RX-MAN parser. Each method node index has
information about its parent class, parent package and class
variable this method uses. Along with this information,
each method node index is connected with all the method
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package vehicle . control . speedcontrol ;

import vehicle . brakecontrol . BrakeControl;

public class SpeedMonitoring {

BrakeControl obj;

public SpeedMonitoring(){}

public double collisionTimeCalculator (double speed, double distance )
{speedMonitoring Value( distance /speed) ;

return distance /speed; }

public boolean speedMonitoringValue(double collisionEstimate )
{boolean time=false ;

if ( collisionEstimate <15)

{time=true; obj. collisionParametersActivation (time);}

else {obj. collisionParametersActivation (time);} return time;}}

package vehicle . brakecontrol ;

public class BrakeControl {

public BrakeControl () {}

public boolean collisionParametersActivation (boolean flag){
if (flag==true){BrakeSystemActivation(flag);}

else {TimeTriggerValue(flag);} return flag;}

private void BrakeSystemActivation(boolean value){
System.out. println ("Brakes Applied”);}

public boolean TimeTriggerValue(boolean value){return value;}

Figure 9: Brake Control System

it invokes directly or indirectly. This mapping makes sure
that no indirect invocation goes undetected. In short, start-
ing from each method in a code base, each method node in-
dex is connected with whole chain of invocations it causes
in a code base (Figure 8). Therefore, each cluster of RX-
MAN is consisted of restructured associated nodes based
on rules of method's interactions and invocations.

4.3. Example: Brake Control System

Fig 9 shows a simple example of brake control system
that is reverse engineered using our approach. In the given
example, there are two classes. Class SpeedMonitoring has
methods collisionTimeCalculator (for calculating time till
collision) and speedMonitoringValue (for automatic brake

Speed [i] input Speed Speed [i] input
[©] output [©] output

(a) X-MAN Component mapped (b) X-MAN Component mapped from

[iJevaluateSpeed o]Record

Speed
Component2

Speed[i] provideSpeed [0]Speed ~ Top
Speed

Component1

(c) X-MAN Components mapped from Scenario 3

Figure 10: Deposition of A Composite Component

mode if time till collision is less than 15 seconds). Method
speedMonitoringValue invokes collisionParametersActiva-
tion from Class BrakeControl. Depending on the value of
time, method collisionParametersActivation either invokes
BrakeSystemActivation or TimeTriggerValue.

According to our approach, method speedMonitoringValue
has one method node against its invocation node i.e., colli-
sionParametersActivation and method collisionParameters-
Activation has two method nodes against its invocation node
i.e., BrakeSystemActivation and TimeTriggerValue (hence
two indirect invocation nodes against speedMonitoring-
Value). As the method BrakeSystemActivation is private
(scenario 3) therefore, the approach will map the whole
code to two clusters.

RX-MAN tool maps these clusters to X-MAN meta-
model and extracts two components. First cluster has
methods speedMonitoringValue and collisionTimeCalcula-
tor (both will be mapped as exposed methods of an X-MAN
component). Second cluster has methods collisionPa-
rametersActivation, BrakeSystemActivation and TimeTrig-
gerValue (from this cluster method BrakeSystemActivation
cannot be mapped as an exposed method as it is private.

Fig 10 is showing a possible case of composition of
RX-MAN using a composition connector sequencer (SEQ).
SpeedMonitoring component (extracted from first cluster)
will be triggered first as this route has 0 (lower number
means higher priority) and component BrakeControlActiva-
tion (extracted from second cluster) will be triggered after
that. It is one valid case of composition as the component
BrakeControlActivation will perform its execution after get-
ting collisonValue from component SpeedMonitoring. Fig
10 is also showing that this composite component has been
deposited in the BrakeControlSystem (X-MAN repository
at left) and can be instantiated in future to be reused or re-
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composed further.

The proposed approach has been applied on six legacy
code basis, available for empirical evaluation at GitHub and
Quality Corpus. Figure 113 is showing the summarisation
of results, obtained by our approach.

5. Discussion and Conclusion

This paper presents two important steps of our approach:
code capturing and mapping from object-oriented code to
X-MAN clusters. We also demonstrated an example of
Brake Control System and show a valid case of composi-
tion in our tool.

The biggest threat to validity of RX-MAN is the lack
of consideration to important relations in an object-oriented
language e.g., aggregation, composition and inheritance etc.
These relations, if mapped, can provide much better cohe-
sion and hence better re-usability. Future work includes
expanding this approach beyond interactions of methods
to map control statements in the code (if, switch, loops
etc.) to composition connectors of X-MAN. To the best
of our knowledge, ours is the only approach that can reuse
and compose the extracted components without any code-
level configurations with ability of re-deposition of compo-
nents.
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