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Abstract—Ubiquitous systems consider the use of electronic
components for enhancing daily objects with some kind of com-
putational intelligence for aiding users in their tasks pervasively.
Ambient Intelligence (AmI) is a branch of ubiquitous computing
that provides an environment full of interconnected devices
and it can provide data communication, inference mechanism
based on context information and collaboration among system’s
devices. Similarly, the Internet of Things (IoT) provides uniquely
identified devices or things in a network for helping users
in their activities. Multi-Agent Systems (MAS) are intelligent
systems where agents are responsible for reasoning, competing
and using resources to achieve desirable goals pro-actively and
autonomously. Agents have been employed in some approaches
and works during the last years, but none of them considered
embedded MAS responsible for smart devices in an AmI system
running over an IoT network. Besides, it is also interesting that
agents of the embedded MAS can interact, sharing information
with agents situated in another embedded MAS using the IoT
network to learn from user’s experiences. This paper proposes an
architecture for the development of AmI systems using embedded
MAS for interfacing with sensors and actuators in a heterogenous
network using an IoT middleware.

I. INTRODUCTION

Ubiquitous Computing or pervasive computing is the ca-
pability of embedding intelligence in everyday objects in a
way that the person who interacts with this object reduces the
level of interaction with the device or even does not notice
it [1]. The tendency of Ubiquitous Systems, supported by the
advances in communication and network interconnection, is
to allow everyday objects to interact with humans pervasively
and to communicate with each other [2]. There are several
fields and applications that will be impacted by the use of the
Internet of Things (IoT), such as Ambient Intelligence (AmI).

Some questions about the development of AmI solutions
refer to technologies that are necessary in the process of
communication between devices, node synchronization, col-
lecting and storing context data and inferences for decision
making. In general, the objects that participate in this system
are usually sensors or embedded devices, which have several
limitations regarding hardware resources and the communi-
cation capability [3]. In an AmI system where the number
of devices can grow exponentially, the concern with scala-
bility becomes latent. To address these limitations, there is
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ContextNet middleware [4], which treats the communication
and connectivity of Mobile Nodes (MN) in a scalable way
using data distribution protocols based on the DDS standard
of OMG [5].

Intelligent agents are entities that can be constructed in both
hardware and software and they are able of performing ac-
tions in certain environments autonomously and pro-actively.
A Multi-Agent System (MAS) is composed of intelligent
agents capable of communicating and collaborating — or
even competing — for using resources in an environment
to achieve conflicting or common goals [6]. The use of the
MAS approach applied in AmI is justified by the autonomous
characteristics of agents and their application in complex
systems, both found in AmI [7]. However, some traditional
smart objects are mainly data gathers and senders, and the
data is stored and processed in servers, compromising the
autonomy of these objects and because of the high dependency
on centralized technologies to provide communication and
reasoning in such kind of system [8]. The idea of decentralized
MAS responsible for cognitive intelligence in distributed com-
puting is being discussed instead of using centralized MAS for
creating real autonomous smart objects [9].

This paper proposes an architecture for developing intel-
ligent systems integrating devices using embedded MAS as
smart objects for IoT to be used in the AmI domain. In
this architecture, it is possible to develop embedded MAS
for controlling devices composed of sensors and actuators.
Besides, some characteristics of these nodes are: the ability
to communicate with other devices apart of the technology
employed in them; truly autonomous; and resilient from the
IoT network. For this, our smart objects use Jason frame-
work [10] adopting a specific kind of agent able of commu-
nicating with others devices using internally the ContextNet.
A case study will be presented in a laboratory with several
devices employing MAS, Java and Android applications. The
contributions of this work are: an architecture for developing
solutions for IoT and AmI using different devices supported by
intelligent agents; and an extension of a well-known Agent-
Oriented Programming Language (AOPL) for programming
intelligent devices.

This work is structured as follows: in section 2 is presented
some necessary concepts for the understanding of the proposal
of this paper; section 3 presents the proposed architecture, a



extension of Jason framework integrating the ContextNet; in
section 4 it is presented a case study e some experiments;
in section 5 we discuss some related works and; finally, the
conclusions and references are presented.

II. BACKGROUND

In this section, it is presented the middleware ContextNet
for IoT, which is responsible for communicating and gathering
data from several nodes in a network. Next, some characteris-
tics of the Jason framework [10] is discussed once it is used
to develop agent-oriented nodes in the proposed architecture.

A. The Middleware ContextNet

The ContexNet is a service for providing context data in
stationary and mobile networks. It counts with a Scalable
Data Distribution Layer (SDDL) layer [4], which is used for
tracking applications in vehicles, industrial automation and
data spreading. This service deals with major questions in
data communication such as fault tolerance, network load
balancing, support for node disconnection, and security. It
also provides creation resources and dynamic management
for groups. The ContexNet middleware works in a publish/-
subscriber model. The data transferring occurs by using two
protocols: the MR-UDP [11] and the OMG DDS [5]. The MR-
UDP treats messages between a client and a gateway; the DDS
is responsible for distributing data in the core of the network.
By using ContextNet, it is possible to enable the growing of
a network, ensuring the scalability of the content distribution
between millions of devices.

B. Framework Jason

The Jason is a framework for developing MAS using a
cognitive model named Belief-Desire-Intention (BDI) [12] and
has an interpreter for the BDI based AOPL AgentSpeak in
Java language. The BDI allows agents to reason based on
perceptions captured of the environment, beliefs that represent
the knowledge obtained during their existence and they are
able of communicating with each other in order to exchange
information or achieve mutual or conflicting goals. Besides,
they can have plans composed of actions that are activated
depending on beliefs on their belief bases.

Specifically, a Jason’s standard agent has a reasoning cycle
[10] responsible for the processing of all perceptions and
beliefs to generate events which activate plans and actions.
It is important to understand the reasoning cycle of a standard
agent because several extensions (including a proposal in this
paper) modify some characteristics of this reasoning cycle to
enhance specific kind of agents with new customized abilities.
First, the agent captures the perceptions from a simulated
environment where agents can interact with virtual objects
that may have information represented as perceptions. The
agent verifies its mailbox at the beginning of each cycle for
existing messages to be read. It is important to remark that the
original distribution of Jason does not have any access to real
environments. Afterwards, a function updates the Belief Base
using the captured perceptions from the environment. For each

modification in the Belief Base it is generated an event that an
agent has to deal with to achieve its goals. Then, an event is
selected from a list of generated events and when it is selected,
it retrieves all the relevant plans of the agent’s plan library.
After that, a verification is performed to identify which plans
can be executed based on its current beliefs and perceptions
and a function selects only one plan to be executed. Finally,
an action of the selected plan is executed one at a time.

There is an extension of Jason’s agents capable of con-
trolling devices such as sensors and actuators connected to
microcontrollers named ARGO [13]. This customized archi-
tecture is able of capturing perceptions and send them to agents
without any interference of the programmer and agents are
able of executing actions using actuators without worrying
about what kind of hardware is being employed. The hardware
and software layers are uncoupled. The reasoning cycle of an
ARGO agent uses the Javino [14] for capturing perceptions.
The Javino provides a serial communication between micro-
controllers and Jason using a basic protocol to guarantee the
correct information exchange between the transmitter and the
receiver.

An ARGO agent has the abilities, at runtime, of: select-
ing the microcontroller which it desires to control; deciding
whether or not to block the perceptions coming from sensors
releasing processing time for other tasks, for example; filtering
undesirable perceptions; and limiting the time interval of
perceiving the environment. However, ARGO agents only
communicate with agents hosted in its MAS. This implies that
if a MAS is embedded into a device, the communication will
be limited to this device. Therefore, in this paper we propose
a new kind of agent that is able of communicating with other
agents (and devices) using Jason and ContextNet to be used in
an architecture for programming pervasive solutions in AmI.

III. THE OVERALL ARCHITECTURE FOR AMI SYSTEMS
USING MAS

In this section, it is presented our architecture for developing
AmI systems using real autonomous and embedded MAS as
devices. The architecture considers an open and dynamic en-
vironment where devices using the agent approach and others
devices can enter or leave anytime. This approach leads us to a
decentralized and a collective reasoning since every embedded
MAS is considered an autonomous and independent thing
capable of communicating and negotiating — or even acting
as a group pursuing common goals — with others devices. By
independent, it means that a smart object embedded with MAS
are able to keep running and reasoning even if communication
and interaction technologies stop. In fact, we consider this
embedded smart object a MAS as a Thing.

Basically, the AmI system uses the ContextNet as IoT
middleware where every device should connect as a Mobile
Node (MN) to be part of the system and to communicate with
others devices. Some of these devices can be MN with sensors
and actuators, Android devices or electronic smart objects (tv,
refrigerator, etc.). In this approach, we assert that MN can
employ embedded MAS for managing sensors and actuators



in the AmI systems. This MN is composed by a cognitive layer
using Jason framework with agents responsible for interfacing
with hardware using ARGO; and agents responsible for com-
munication in the network using an instance of ContextNet
nodes. The hardware layer is composed by: the platform for
embedding the MAS, which could be any tiny computer such
as Raspberry Pi; sensors and actuators; and microcontrollers.
Figure 1 depicts an overview of the proposed architecture.

In some cases, the use of MAS can bring advantages
compared to MN that only work as data repeaters sending
information from sensors to a server for discovering context
about a situation and from MN which need stimulus from other
devices to act upon the environment. Agents are pro-active,
autonomous and are capable of reasoning about information
from the environment that they are situated. These characteris-
tics allow an improved information or even a previous context
discovery before sending it to a server , releasing its processing
power, for example. Besides, agents can make decisions and
act autonomously without depending of a third part processing
(if they have sufficient processing power).

Another important characteristic is that a MAS can be
programmed individually as a MN that is able to interact with
other devices (including another MAS) using a special kind
of agent named Communicator, which has an instance of
ContextNet. There is another type of agent responsible for
controlling sensors and actuators that can be used along with
the Communicator one. Therefore, it can exist four types of
agents in a project:

• Standard: the standard agent is able to communicate
with others agents of its MAS but it is not possible to
communicate with agents from a different MAS and it
is not able of controlling any kind of hardware. It is the
basic unit of a MAS.

• Argo: it is a customized architecture of agents capable
of controlling microcontrollers independently of its type
and the domain applied in the solution. ARGO agents
have all the abilities of a standard agent but are not able
of communication with agents from a different MAS.

• Communicator: this agent is able of communicating
with agents from a different MAS or any device using
ContextNet. It has the same abilities of a standard agent
but but it is not able of controlling hardware devices.

The ContextNet is a scalable architecture, which guarantees
a great number of devices transmitting data at same time. In
this approach, we propose the use of MAS developed using
Jason to exploit some advantages of using a robust middle-
ware for IoT applications and a well-know framework for
agents solutions. Jason already counts with implementations of
Standard and ARGO agents. Then, we propose an extension
of Jason framework creating a customized architecture for
agent Communicator with a ContextNet instance embedded
into its implementation in order to facilitate the use of such
kind of agent. If some device needs to communicate with a
MN with a MAS, it should send messages in KQML format
and translate the received KQML messages. It is important to

remark that Jason uses KQML as communication language.
We also propose a mechanism for processing messages based
on KQML performatives in the following section.

A. Extending Jason using an IoT Middleware

In order to allow the programming of agents that are able
of communicating through IoT, a special kind of agent named
Communicator was proposed. This agent is responsible for
exchanging messages between agents hosted in different MAS
or in any other device. For this, all the devices must be con-
nected to the ContextNet middleware and the Communicator
agent must have a communication mechanism for sending and
receiving messages through the IoT. Thus, the reasoning cycle
of the Communicator agent was extended with the ContextNet
embedded in its architecture (Figure 2).

The first modification happened in the beginning of the
reasoning cycle and it is capable of receiving messages from
others devices using ContextNet and messages coming from
agents of its own MAS using the checkMail method. All
messages received are processed to generate events and update
the agent’s Belief Base. The next modification was inserted at
the end of the reasoning cycle after the sendMsg step. In this
moment, the agent can send a message to agents hosted in its
MAS or to another device in IoT using ContextNet.

A message can be sent to another Communicator agent or
any device able of understanding the message format. Every
agent must have a unique identification number provided by
ContextNet and to send any message, the agent uses an internal
action named sendOut likewise the original internal action
send from Jason. Both of them send a message to an addressee
using a illocutionary force. The major difference between
them is that sendOut sends a message to a mobile device
or a Communicator agent in another MAS. In this paper, the
available illocutionary forces are:

• achieve: sends a goal to be accomplished by the ad-
dressee. The content of the message sent will be inserted
in the base of intentions of this agent.

• unachieve: drops a goal in case it has not been reached
yet. The content of the message will be removed from
the base of intentions of the addressee.

• tell: sends a belief of the sender that the addressee
believes to be true. The content of the message must be
a literal, which represents a belief and will be inserted
into the belief base of the addressee.

• untell: the sender agent informs the addressee agent that
the belief is no longer to be believed. The content of the
message is removed from the belief base of the addressee.

In order to integrate ContextNet into Jason architecture,
some modifications were performed. First of all, the Com-
municator class for creating an agent with the ability of com-
municating was added as an agent’s customized architecture.
This class has an attribute commBridge, which is responsible
for sending and receiving messages from ContextNet. This
class also has a function for adding the received message
from ContextNet to the agent’s mail box. The commBridge
implements a process for mounting and verifying a message to



Fig. 1. An overview of the proposed architecture.

guarantee no losses of data in the communication. A message
is composed of the following fields: a pre-amble to identify
the origin of the message with a length of 4 bytes; fields to
identify the sender and the receiver of the message with 32
bytes each; the identification of the illocutionary force with
32 bytes; and the message content with 256 bytes.

When the sender starts sending the message, the size of
all fields are calculated to identify the beginning and the
end of each field. After that, the pre-amble is added at the
beginning of the message to verify the origin of the message.
The message is mounted adding all the fields in a single string
message that is sent by ContextNet. When the receiver receives
the message, the pre-amble is verified to guarantee the origin
of the message. Then, all the fields’ size is verified to guarantee
no losses in the communication process. If everything is ok,
the message is mounted and processed as a Jason’s message.
Otherwise, the message is discarded.

The native TransitionSystem class of Jason was modified
in the reasoning cycle function for allow to check if exist
messages to be read coming from ContextNet. The existing
messages are added to the mail box of the agent to be pro-
cessed as beliefs or intentions depending on the illocutionary
force related to the message as explained before. After that,
the agent can send a message using an internal action named
sendOut, which uses the commBridge to send a message using
the ContextNet. Another internal action named setMyCommId
is responsible for setting the identification string used by
ContextNet to identify uniquely a device in the IoT. It is
important to remark that all modifications proposed do not
interfere in the original Jason distribution nor in ARGO.

IV. CASE STUDY

In this section, we present an initial study case based on
the proposed architecture using the Jason and the ContextNet
middleware in order to control some functionalities in a labo-
ratory. The following scenario explicit the general behavior of
our approach: Kate is the head of the laboratory and she wants
to get information in her smartphone about some features such
as the temperature, luminosity and the status of the lights (on

or off). She also wants to know if there are students using the
laboratory while she is away receiving an updated list every
time she requests. Only students which have an authorization
can enter in the laboratory. So, the student’s will request
access to the laboratory and use its smartphone. Besides, every
student when entering the laboratory should connect to the
network to inform of his or her presence.

The laboratory is equipped with some devices managed
by MAS and MN using Java language and Android. The
temperature and luminosity sensors (LM35 and LDR respec-
tively) are controlled by a MAS using a Galileo Intel Gen
2. For controlling status and activation of lights, a MAS
running in Raspberry Pi Zero and an Arduino UNO assembled
with an ATMEGA328 microcontroller were employed. The
electrical installation of the laboratory was modified to accept
commands coming from the microcontroller. The door is
controlled by a MAS embedded into a Raspberry Pi and is
responsible for registering the students entrance and to verify
if they have the permissions to enter the laboratory accessing
a remote database. The Android applications were developed
implementing Android MN from ContextNet.

Every device has only one MAS embedded in a tiny
computer such as Raspberry and Galileo since they have
enough processing power to host embedded MAS. ARGO
agents are responsible for controlling actuators and sensors
that are connected to one or more microcontrollers. In our case,
we assembled an Arduino UNO board, an ATMEGA micro-
controller, and the Galileo GEN’s GPIO. The ARGO agents
send serial messages to the microcontroller to some action to
be performed in the laboratory. On the other hand, every MAS
can employ Communicator agents. It is important to remark
that every MAS should have only one Communicator agent,
because it will be responsible for the identification in the IoT
network of the device; to communicate with other agents; and
to send and receive data from ContextNet gateway.

The MAS responsible for controlling the temperature and
luminosity sensors are composed of one ARGO agent and
one Communicator agent. The former one is responsible



Fig. 2. The Reasoning Cycle of a Communicator agent.

for capturing the perceptions from sensors and to transmit
them to the later one, which manages the received requisitions
from other smart devices and respond to them with the most
current perceptions using ContextNet. The MAS responsible
for controlling the door is composed of three agents: ARGO,
Communicator, and Standard. The ARGO agent is able
of opening the door if it is closed and for retrieving the
status of the door (opened or closed) when requested. The
Communicator receives the requisitions from other devices
and it sends to the Standard agent the requisitions that
need to be verified if the user has access permission using
a customized internal action for accessing the database. If the
user has the access permission, the agent sends a message to
the ARGO agent for opening the door.

The MAS that controls the activation of lights and other
electrical stuff has an ARGO and a Communicator agent.
The former one interfaces with the hardware that controls the
electrical installation, and it is capable of retrieving percep-
tions about the status of the lights or it receives commands for
activating resources (light, air-conditioning, etc.). The Com-
municator just manages requests coming from other devices
like the previous examples. The Android application for the
head of the laboratory employs functionalities for listing every
access registered in the laboratory; status of electrical stuff and
door; commands for activation and deactivation; and some
administrator function such as registering a new user and
setting new permissions. The user’s Android application com-
municates with the MAS of the luminosity and temperature
sensors in order to get these information and to define the

preference for the temperature (warm, hot or cold); and it asks
for accessing the laboratory. In fact, every Android application
uses an instance of ContextNet for MN.

V. RELATED WORK

It is possible to find several works that try to integrate
MAS in AmI systems. However, these solutions only pro-
vide communication with agents originally from its MAS,
avoiding communication with other agents or embedded MAS
that can enter in the AmI system eventually The Agent of
Things (AoT) [15] is a definition for devices or things that
are managed by a single agent in dynamic environments.
The authors suggest that in such kind of environments, the
communication between devices are highly programmable
and depends on a previous interaction configuration. It is
proposed a conceptual framework which consider a direct
physical interaction between devices using the hardware layer
and using a software layer where every agent represents a
device. However, the framework is conceptual and agents are
centralized in a software layer. In our approach, we consider
a MAS as a thing and a real laboratory implementation as
proof-of-concept.

In [16], it is discussed the use of MAS in IoT rising
questions about communication and the use of protocols where
the main objective is to implement functionalities for access
control in a agent-based IoT. The architecture uses a central
server for controlling and coordinating agents and it is also
presented a hybrid system containing intelligent agents and
IoT devices in traffic scenario. There is one embedded agent



for each device and the authors do not explicit how agents
are organized. The Agent-based Cooperating SO (ACOSO)
is used as IoT middleware for providing an IoT network
where agents are devices and the whole group of agents
is a MAS [17]. The ACOSO supports the development of
MAS in the level of things. So, every smart object can be
abstracted to a cooperating agent using Jade as AOPL. The
agents are able of managing sensors and actuators; reasoning
and decision making using local and distributed databases; and
a communication system for the interaction between smart
objects. However, the environment is closed and it is not
possible of new devices to enter in the system and there is
only one agent per device.

A decentralized approach with a framework and an archi-
tecture for engineering IoT applications based on autonomous
smart objects is proposed in [8]. The authors defend that tradi-
tional smart objects are data gathers and senders and the data
is stored and processed in central servers. The proposed smart
objects are capable of running even if remote technologies
(i.e. gateways) are not available. There is one agent for smart
object and it is programmed using XML technologies (it does
not use AOPL) in a web platform named Eve agent.

VI. CONCLUSION

This work presented an architecture for the development
of AmI systems employing the agent approach and supported
by an IoT middleware named ContexNet. In this architecture,
it is possible to assemble devices, which have embedded
MAS responsible for controlling sensors and actuators and
for communicating with other devices. Every device is an
independent solution and it is free to enter and leave in the
architecture. The proposed approach uses Jason framework
for the development of the MAS. Besides, we enhanced a
real laboratory with such technologies to use it as a proof-of-
concept application. This architecture aims to provide a kind
of framework for the development of AmI systems.

By using the proposed architecture, it is possible to create
an AmI system, which allows communication among several
devices at real time, where all devices connected can change
information, offering flexibility in the choice of which technol-
ogy employed in the solution. From MN — which do not use
agents — the data information is transmitted to the ContextNet
gateway in raw format. So, the discovery of context situations
coming from these nodes only will happen exclusively in the
server. In some cases, it could be necessary that the context
and the reasoning for specific situations happen directly in
the devices. In cases where the device is embedded with
a MAS, a previous reasoning can be performed using the
raw information captured as perceptions from ARGO agents
reducing the processing in the server and avoiding bottlenecks.

This work also presented an extension of Jason to allow
embedded MAS in mobile devices to communicate with other
agents hosted and embedded in different devices. It provides
a specific and new kind of agent that has the ability to
communicate with other agents using ContextNet. In this type
of agents, the middleware is part of the reasoning cycle of

the agent, which uses internal actions for sending messages to
agents with the same ability and hosted in a different MAS.
For future works, the architecture will be employed in other
laboratories containing different devices and technologies. We
also aim to improve and formalize the ability of infer rules in
the ContextNet middleware. Besides, we also aim to create a
testbed for automation of experiments and resource sharing,
in order to assist in the validation of new proposals involving
IoT technologies and MAS.
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