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Abstract—The aim of this work is to propose a distributed
algorithm, encoded by the local computations model, for comput-
ing maximal cliques in dynamic networks. This model provides
an abstraction which simplifies the design and the proof of
distributed algorithms. To guarantee the correctness of our
algorithm, we use the Event-B formal method, which supports
a refinement based incremental development using the RODIN
platform.
Keywords—Distributed algorithm, Local computations, Dynamic
networks, Maximal cliques , Event-B method.

I. INTRODUCTION

A. Motivation

Computing maximal cliques is a challenging problem in
computer science which has found applications in several fields
such as robotics, bioinformatics, etc. Many efforts have been
dedicated to solve the problem of detecting maximal cliques.
Most of the proposed approaches have used centralized algo-
rithms and only few of them [6] [2] are based on distributed
algorithms [7]. In the context of dynamic networks, the nodes
are dynamically connected in an arbitrary manner without any
established infrastructure or centralized administration. So, the
topology of the network may change rapidly and unpredictably.
Considering the complexity of distributed algorithms and the
highly dynamic behavior, it is interesting to ensure the correct-
ness of these algorithms to give us confidence that distributed
systems perform as designed and do not behave harmfully.

According to our study, we notice that the majority of the
existing works [2] [8] [6] for detecting maximal cliques rely
on simulation to evaluate the performance of these solutions.
Some works [2] [6] have proved the correctness of their
algorithms based on formal proofs. Nevertheless, the proofs
which have been presented are done manually. Also, these
proofs are long and tedious specially in the case of complex
algorithms and a minor error can have serious consequences
on the system operation. To the best of our knowledge, only
the solution of Xu et al. [8] dealt with dynamic networks.
However, it has an exponential complexity.

B. Contribution

We propose in this paper a distributed algorithm for
computing maximal cliques in dynamic networks inspired by
the work of Luo et al. [6] which has a linear complexity. Our
algorithm is based on the local computations model [5] that
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provides an abstraction for the design of distributed algorithms.
To model dynamic networks, we use the evolving graph model
[3] which consists in recording the evolution of the network
topology as a discrete sequence of static graphs. Each static
graph represents a snapshot of the dynamic network at a
given date. In order to prove the correctness of the proposed
algorithm, we use a formal method which offers a real help for
expressing correctness with respect to safety properties in the
design of distributed algorithms. The correct-by-construction
approach [4] offers a simple way to specify and prove
algorithms. It consists in developing distributed algorithms
following a top/down approach controlled by the refinement
of models. This process allows to simplify the proofs
and validate the integration of requirements. The Event-B
modeling language [1] can support this methodological
proposal by suggesting proof based-guidelines.

C. Organization of the paper

The remainder of this paper is structured as follows:
Section II introduces our proposed algorithm. In Section III,
we specify this algorithm with the Event-B method. Finally, the
last section concludes and provides insights for future work.

II. ALGORITHM FOR COMPUTING MAXIMAL CLIQUES IN
DYNAMIC NETWORKS : CMCDN

A network can be modeled as a simple and undirected
graph g=(V,E) where V is the set of nodes and E is the set
of edges. In this work, we suppose that every node in the
graph knows its neighbours. A “clique” is a fully connected
(or complete) subgraph of the graph g and a “maximal clique”
is a clique that is not a subset of any other clique in the same
graph. The proposed algorithm may be encoded by the graph
relabeling system R = (L, I ′, P ). For a given node x, L =
{State, Clique,N,Event}, I ′ = {Init,∅, N(x), False},
and P = {R1, R2, R3, R4, R5, R6}. State and Clique are two
functions. The node x has the following four labels:
• State(x) ∈{Init, C, I, W, A} is the state of the node x. It can
take one of these labels: i) Init : the node x is in the initial
state, ii) C : we call the node which detects a maximal clique
“the center” of this clique, iii) I : the node x belongs to a
maximal clique and it is different to the center of this clique,
iv) W : the node x is in the waiting state. It has not been
assigned to a maximal clique yet, v) A : the node x does not
belong to any maximal clique. It is called “isolated node”.
• N(x) : It stores the node x and all its neighbours. The set
N(x) will be updated when an incident edge is removed.



• Clique(x) : The node x belongs to the maximal clique
“Clique(x)”. Initially, each node x of the graph has
Clique(x) = ∅.
• Event(x) ∈ {False, Alert} : It determines whether the node
x belongs to an edge that has undergone a topological change
or not. Initially, all nodes are in the state “False”. If an
edge u 7→ x of a maximal clique has disappeared, then
Event(u) and Event(x) take the state “Alert” to transmit
a reconstruction order of the concerned clique.

I’ is the set of initial labels and (R1, R2, R3, R4, R5
and R6) are the relabeling rules. For each node x ∈ V ,
we define S(x) =

⋂
k∈N(x)

N(k) the set of nodes that stores

the intersection of all N(k) (k ∈ N(x)). We note R(x) all
the nodes of S(x) which have not been assigned to maximal
cliques yet. Therefore, these nodes are labeled “Init” or “W”.

To handle the disappearance of an edge during the con-
struction of maximal cliques in a graph, we distinguish two
cases :
Case 1 : Deleting an edge of the graph (an edge that does not
belong to any maximal clique) has no effect on the maximal
cliques already detected. This case requires applying the rule
R4 (see Section II-D).
Case 2 : Deleting an edge belonging to a maximal clique can
cause the destruction of this clique or the possibility of creating
a new maximal clique.

A. The first rule: R1

The first rule aims to construct a maximal clique in the
graph. Let x be a node in the initial state and R(x) including
at least three nodes. As a result, the nodes of R(x) form a
maximal clique having x as center. Formally, the rule R1 is
written as follows:
Precondition :

• State(x) = Init

• card(R(x)) > 3

Relabeling :

• State(x) := C and Clique(x) := R(x)

• ∀a·a ∈ R(x) \ {x} =⇒ State(a) := I and
Clique(a) := R(x)

B. The second rule: R2

The goal of the rule R2 is to attribute to a node that
is unable to form a maximal clique the waiting state. This
rule requires the presence of a node x in the initial state and
R(x) containing less than three nodes. Formally, the rule R2
is written as follows:
Precondition :

• State(x) = Init

• card(R(x)) < 3

• ∃k ·k ∈ N(x) \ {x} et State(k) = Init

Relabeling :

• State(x) := W

C. The third rule: R3

The purpose of the rule R3 is to identify an isolated node
which does not belong to any maximal clique. Let x be a node
in the initial or the waiting state and all the neighbouring nodes
of x are not in the initial state. By applying R3, the label of
the node x becomes “A” and Clique(x) contains only the
node x. Formally, the rule R3 is written as follows:
Precondition :

• State(x) ∈ {Init,W}

• ∀a·a 7→ x ∈ g =⇒ State(a) 6= Init

Relabeling :

• State(x) := A and Clique(x) := {x}

D. The fourth rule: R4

The purpose of this rule is to express the modification made
when deleting an edge of the graph. It requires the presence of
an edge (u 7→ v) that does not belong to any detected clique.
The application of the rule R4 causes the deletion of the edge
u 7→ v from the graph as well as the updating of the sets N(u)
and N(v). Formally, the rule R4 is written as follows:
Precondition :

• u 7→ v ∈ g

• ¬ ((Clique(u) = Clique(v)) and (u ∈ Clique(u) and
v ∈ Clique(u)) )

• Event(v) = False and Event(u) = False

Relabeling :

• g := g \ {u 7→ v}

• N(u) := N(u) \ {v} and N(v) := N(v) \ {u}

E. The fifth rule: R5

The role of this rule is to reflect the preliminary influence
of the deletion of an edge belonging to a maximal clique.
Let u and v be two nodes of the same maximal clique.
While applying the rule R5, the edge u 7→ v disappears and
Event(u) and Event(v) take the state “Alert”. In addition,
the sets N(u) and N(v) are updated. Formally, this rule is
written as follows:
Precondition :

• u 7→ v ∈ g

• Clique(v) = Clique(u)

• State(v) ∈ {C, I} and State(u) ∈ {C, I}

• Event(v) = False and Event(u) = False

Relabeling :

• g := g \ {u 7→ v}

• N(u) := N(u) \ {v} and N(v) := N(v) \ {u}

• Event(v) := Alert and Event(u) := Alert



F. The sixth rule: R6

The rule R6 is used to reset the nodes states of a maximal
clique. It requires the presence of a node (noted u) belonging
to the maximal clique {u, a, ..., v} and having “Event(u) =
Alert”.
• If there is a neighbour node of u (noted h) having the state
A, then it resets the initial state. In fact, it can be a member
of a maximal clique after resetting the states of nodes of the
clique {u, a, ..., v}.
• If a node (noted b) which belongs to another maximal clique
is the neighbour of the node u and can form a maximal clique
(after destroying the clique {u, a, ..., v}) with the node u and
other neighbours, then the node b takes the state Alert. Indeed,
it must reset the states of the clique nodes by applying again
the rule R6, to form a larger maximal clique. Formally, the
rule R6 is written as follows:
Precondition :

• Clique(u) = {u, a, ..., v} and card(Clique(u)) ≥ 3

• Event(u) = Alert and (∀k ·u 7→ k ∈ g and k ∈
Clique(u) =⇒ Event(k) = False)

Relabeling :

• ∀k ·k ∈ Clique(u) =⇒ State(k) := Init

• ∀k ·k ∈ Clique(u) =⇒ Clique(k) := ∅

• ∀k ·k ∈ Clique(u) =⇒ Event(k) := False

• ∃h·
(

u 7→ h ∈ g ∧ State(h) = A
∧Clique(h) = {h}

)
=⇒

State(h) := Init ∧ Clique(h) := ∅

• ∃b·

(
u 7→ b ∈ g ∧ card(Clique(b)) > 3
∧Clique(b) 6= Clique(u)
∧(∀r·r ∈ Clique(b) =⇒ u 7→ r ∈ g)

)
=⇒

Event(b) := Alert

The propose rules of the algorithm CMCDN are applied
asynchronously and non-deterministically until no rule is appli-
cable. This means that many different runs are possible. In the
final configuration, every node (x) has State(x) ∈ {C, I,A},
Clique(x) 6= ∅ and Event(x) = False:

• If x is an isolated node, it will have State(x) = A
and Clique(x) = {x}.

• If x belongs to a maximal clique, it will have
State(x) ∈ {C, I} and card(Clique(x)) ≥ 3.

III. FORMAL SPECIFICATION OF THE ALGORITHM
CMCDN USING THE EVENT-B METHOD

We introduce in this section our Event-B formal model
of the algorithm CMCDN. It is based on four abstraction
levels as shown in Fig. 1. The first machine M0 abstractly
specifies the goal of the proposed algorithm which aims to
compute maximal cliques problem in dynamic networks. It
utilizes properties defined in the context “Graph”. The second
machine M1 refines M0. It contains some events which specify
how nodes are making a choice to detect maximal cliques.
Moreover, it globally specifies the consequences of deleting an
edge. The machine M2 refines M1. It provides more details to
detect the set of nodes of each maximal clique and maintain

the set of the detected cliques when deleting an edge. Finally,
the machine M3 refines M2 and sees the context “Labels”.
It includes a set of events corresponding to the six relabeling
rules.
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Fig. 1: The refinement strategy of the algorithm CMCDN

A. Formal specification of the contexts

1) The context “Graph” : This context specifies static
properties of the network. Formally, a graph is modeled by
a set of nodes called V . In our work, we suppose that a
dynamic graph is composed of stable nodes. So, we define V
in the context as an abstract set. We specify that the number
of nodes in the network is finite (axm1 : finite(V )). Also,
we introduce a constant, called “tn”, that represents the final
system date (axm2 : tn ∈ N1).

2) The context “Labels” : This context extends the context
“Graph” by adding the labels of nodes to our model. Indeed,
we introduce two sets called “labels” and “event labels”.
“labels” contains the labels : Init, C, I, W and A (axm1 and
axm2). The label allows nodes to perform an elementary step
of computation according to some relabeling rules.
axm1 : partition(labels, {Init}, {C}, {I}, {W}, {A})
“event labels” includes the labels Alert and False.
axm2 : partition(event labels, Alert, False)

B. Formal specification of the machines

1) The first level : The first machine M0 specifies the goal
of the distributed algorithm, without describing the process of
computing the solution (see Listing 1).

Listing 1: Machine M0 invariants
inv1 : g ∈ 0 .. t→ P(V × V )
inv2 : ∀ti·ti ∈ dom(g)⇒ g(ti) = (g(ti))−1

inv3 : ∀ti·ti ∈ dom(g)⇒ (V C id) ∩ (g(ti)) = ∅
inv4 : t ∈ N ∧ t ≤ tn
inv5 : change ∈ {0, 1}
inv6 : t ≥ 1 ∧ change = 0⇒ g(t) = g(t− 1)
inv7 : cliques = {V 1, g1·V 1 ⊆ V ∧ finite(V 1) ∧ card(V 1) ≥ 3∧
g1 ⊆ g(t) ∧ g1 = (V 1× V 1) \ (V C id) ∧ g1 = g1−1|V 1}
inv8 : combination ⊆ P(cliques)
inv9 : combination = {X, x1, x2·X ⊆ cliques ∧ x1 ∈ X ∧ x2 ∈ X∧
x1 6= x2 ∧ x1 ∩ x2 = ∅ ∧ (∀Y, a·Y ∈ X ∧ a ∈ cliques⇒ Y ∩ a = ∅)|X}
inv10 : solution ∈ 0 .. t→ P(P(V ))
inv11 : final ∈ {0, 1}

A network can be modeled as a simple and undirected graph
g. It is defined as a function to be the graph at the current date
t (inv1 and inv4). An undirected graph means that there is
no distinction between two nodes associated with each edge
(inv2). A graph is simple if it has zero or one edge between
any two nodes and no edge starts and ends at the same node
(inv3). Moreover, we introduce a variable called “change”
(inv5). If one topological event has been produced, “change”
is equal to “1”, otherwise “change” is equal to “0”. In the
invariant inv6, we indicate that if the date t is strictly greater
than “0” and change is equal to “0”, the graph does not
undergo any topological event. We define “cliques” as the
set of all possible cliques in the graph g (inv7). Any pair
of nodes can never form a clique, then all cliques contain



at least three nodes. We add inv8 and inv9 to specify all
possible combinations of maximal and disjoint cliques in the
graph g called “combination”. Also, we introduce the variable
“solution” which contains the result of the algorithm at the
date t (inv10). The variable “final” allows to check if the
Oneshot event (will be explained later) has been triggered.
The machine M0 includes three events :
• Event “Oneshot” (see Listing 2) : It specifies the result of
the algorithm in one step. The analogy of someone closing
and opening their eyes. In a given graph, there are many
combinations of maximal cliques. The event Oneshot assigns
in a non-deterministic way an element from “combination” to
the variable “solution” at the date t.

Listing 2: Event Oneshot, in M0
EVENT Oneshot
ANY c
WHERE
grd1 : solution(t) = ∅
grd2 : c ∈ combination
grd3 : final = 0 ∧ t 6= tn

THEN
act1 : solution(t) := c
act2 : final := 1

END

• Event “Remove Edge” (see Listing 3) : An edge has
been removed at the date t if it is present at the date “t”
(grd1) and “t” is different from the final date “tn” (grd2).
Then, we update the graph g(t) and the sets “cliques” and
“combination”. Also, the variable “change” takes the value
“1” (act2).

Listing 3: Event Remove Edge, in M0
EVENT Remove Edge
ANY x, y
WHERE
grd1 : x 7→ y ∈ g(t)
grd2 : final = 0 ∧ t 6= tn

THEN
act1 : g(t) := g(t) \ {x 7→ y, y 7→ x}
act2 : change := 1
act3 : cliques, combination : |cliques′ = {V 1, g1·V 1 ⊆ V ∧
finite(V 1) ∧ card(V 1) ≥ 3 ∧ g1 ⊆ (g(t) \ {x 7→ y, y 7→ x})∧
g1 = (V 1× V 1) \ (V C id) ∧ g1 = g1−1|V 1}
∧combination′ = {X, x1, x2·X ⊆ cliques′ ∧ x1 ∈ X∧
x2 ∈ X ∧ x1 6= x2 ∧ x1 ∩ x2 = ∅∧
(∀Y, a·Y ∈ X ∧ a ∈ cliques′⇒ Y ∩ a = ∅)|X}

END

• Event “Increment Time” (see Listing 4) : This event can
be activated if the current date t is strictly lower than the final
system date tn (grd1), the result of the algorithm is verified
(grd3) and at least one topological event is performed in the
network (grd2). In the action component of this event, we
increment the time to t +1 (act1) and we set the graph at
the date t+1 to the graph g(t) (act2). In addition, we reset the
variables change, final and solution. Therefore, we have no
topological change at the date t+1.

Listing 4: Event Increment T ime, in M0
EVENT Increment T ime
WHERE
grd1 : t < tn
grd2 : change = 1
grd3 : final = 1

THEN
act1 : t := t + 1
act2 : g(t + 1) := g(t)
act3 : solution(t + 1) := ∅
act4 : change := 0
act5 : final := 0

END

2) The second level : In the machine M1, we start by
introducing details to calculate globally the maximal cliques.
To do so, we add some variables to the invariant component
as shown in Listing 5:
◦ “cliques in” contains the nodes which belong to the de-
tected cliques (inv1).
◦ “cliques out” defines the set of nodes which do not belong
to these cliques (inv2).
◦ “cliques new” is the set of nodes of the detected maximal
and disjoint cliques (inv5 and inv6).
◦ “adjacents” gives the set of adjacent nodes to each node at
the current date t (inv9 and inv10).
◦ “nodes alert” contains the nodes of the clique edge that
has undergone a topological event (inv11).
Initially, cliques out contains all the graph nodes “V”,
whereas cliques in and cliques new are empty.

Listing 5: Machine M1 invariants
inv1 : cliques in ⊆ V
inv2 : cliques out ⊆ V
inv3 : cliques in ∩ cliques out = ∅
inv4 : cliques in ∪ cliques out = V
inv5 : cliques new ⊆ P(cliques in)
inv6 : ∀a, b·a ∈ cliques new ∧ b ∈ cliques new ∧ a 6= b⇒ a ∩ b = ∅
inv7 : ∀x·x ∈ cliques new ∧ finite(x)⇒ card(x) ≥ 3
inv8 : ∀x·x ∈ cliques new⇒ x ∈ cliques
inv9 : adjacents ∈ V × (0 .. t)→ P(V )
inv10 : ∀ti, x·ti ∈ (0 .. t) ∧ x ∈ V ⇒ adjacents(x 7→ ti) =
{y·x 7→ y ∈ g(ti) ∨ y 7→ x ∈ g(ti)|y}
inv11 : nodes alert ⊆ V
inv12 : ∀x·x ∈ cliques out⇒ x /∈ nodes alert

The definition of these variables requires the addition of new
properties:
(inv3) The nodes of cliques in are different from those of
cliques out.
(inv4) The total of these nodes is equal to the set of nodes V.
(inv7) All the detected cliques contain at least three nodes.
(inv8) The set of the detected cliques is a subset of “cliques”.
(inv11) The nodes of cliques out can not belong to the set
nodes alert.
At this level, we refine the events defined in M0 and we add
some new events:
• Event “Clique+” : This event aims to compute maximal
cliques in the graph g (see Listing 6). It can be activated if we
have a ball “B” including at least three nodes (grd3 and grd6).
We note “x” the center of the ball B (grd2 and grd3). All the
nodes of B are connected (grd4) and belong to cliques out
(grd1). Using the grd5, we express that the ball B can not be
extended by one or more adjacent nodes. At every computation
step, the nodes of the detected ball are eventually added to the
set cliques in (act2) and removed from cliques out (act1).
Moreover, we add the set of ball nodes to cliques new (act3).

Listing 6: Event Clique+, in M1
EVENT Clique+
ANY B, x
WHERE
grd1 : B ⊆ cliques out
grd2 : x ∈ B
grd3 : B ⊆ (adjacents(x 7→ t) ∪ {x})
grd4 : ∀y, z ·y ∈ B ∧ z ∈ B ∧ y 6= z⇒ y 7→ z ∈ g(t)
grd5 : (∀r·r ∈ cliques out ∧ r ∈ adjacents(x 7→ t)∧
{r} × (B \ {r}) ⊆ g(t)⇒ r ∈ B)
grd6 : card(B) ≥ 3
grd7 : final = 0 ∧ t 6= tn

THEN
act1 : cliques out := cliques out \ B
act2 : cliques in := cliques in ∪ B
act3 : cliques new := cliques new ∪ {{a·a ∈ B|a}}

END



• Event “Clique-” : The purpose of this event is to detect a
node (noted “x”) which can not belong to any maximal clique.
If this node belongs to a connected ball B1, B1 should contain
less than three nodes. Also, all the neighbours of “x”, which
have not been affected to a maximal clique yet, have a ball
including at most two nodes.
•Event “Oneshot” : This event refines the Oneshot presented
in M0 to verify that the final value of cliques new represents
the result of the algorithm (see Listing 7). To do so, we
reinforce the guard component by specifying that all maximal
cliques in the graph g have been detected (grd2). By means
of the theorem Th4, we verify that the set cliques new repre-
sents the detected maximal and disjoint cliques. The abstract
parameter “c”, defined in M0, is replaced with a concrete value
(cliques new) by means of a witness. A witness designates a
simple equality predicate involving the abstract parameters.

Listing 7: Event Oneshot, in M1
EVENT Oneshot
REFINES Oneshot
WHERE
grd1 : solution(t) = ∅
grd2 : ∀y·y ⊆ g(t) ∧ y /∈ cliques new =⇒ y /∈ cliques
grd3 : final = 0 ∧ t 6= tn
Th4 : cliques new ∈ combination
grd4 : ∀x·x ∈ V ⇒ x /∈ nodes alert

WITH c : c = cliques new
THEN
act1 : solution(t) := cliques new

END

At this level, we refine the event Remove Edge in two events:
• Event “Remove Graph Edge” : It specifies the case of
deletion of a graph edge. To do so, we add a condition (grd4)
to indicate that the edge x 7→ y does not belong to a maximal
clique (noted n):
∀n·n ∈ cliques new⇒¬(x ∈ n ∧ y ∈ n)
• Event “Remove Clique Edge” : This event, depicted in
Listing 8, specifies the preliminary influence of the deletion of
an edge belonging to a maximal clique. Formally, we reinforce
the guard component to express that the edge x 7→ y belongs to
a maximal clique noted “k” (grd3). Also, no topological event
affects the clique (grd4). In the clause “THEN”, we introduce
two actions to update the sets of adjacent nodes of x and y
(act4). In addition, we add x and y to the set nodes alert
(act5).

Listing 8: Event Remove Clique Edge, in M1
EVENT Remove Clique Edge
REFINES Remove Edge
ANY x, y, k
WHERE

. . .
grd3 : k ∈ cliques new ∧ x ∈ k ∧ y ∈ k
grd4 : x /∈ nodes alert ∧ y /∈ nodes alert

THEN
. . .
act4 : adjacents := adjacents C− {(x 7→ t) 7→ adjacents(x 7→ t)
\{y}, (y 7→ t) 7→ adjacents(y 7→ t) \ {x}}
act5 : nodes alert := nodes alert ∪ {x, y}

END

To specify the different situations of reinitialization of the
neighbours (of the concerned maximal clique) of a node (noted
u) belonging to the set nodes alert, we distinguish four
cases. Because of space limitation, we only detail the informal
description of these cases:
Case 1: It specifies the simplest case which consists in
resetting the nodes states of u and its neighbours of the
maximal clique. This case is specified by a new event called
Initialize1.

Case 2: If there is a neighbour node of u (noted h) which
can not belong to any maximal clique, we also reset the state
of h. Indeed, the node h can be a member of a maximal clique
after resetting the nodes states of the clique containing u. This
situation is specified using a new event Initialize2.
Case 3: If a neighbour node of u (noted b) which belongs
to another detected clique can form a maximal clique with the
node b and other neighbours of the clique, then we introduce
b to the set nodes alert. We specify this case by means of an
event called Initialize3.
Case 4: The presence of the cases (2) and (3) requires the
application of an event called Initialize4.

3) The third level : The refinement of M1 called M2
introduces more details about the algorithm CMCDN. In
fact, we introduce the variable “Clique” as a function which
assigns to each node the set of nodes of its maximal clique
(inv1 : Clique ∈ V × (0 .. t)→P(V )). Initially, the Clique of
each node is empty. To link the states between the machines
M1 and M2, we define some gluing invariants:
◦ Each node of cliques in belongs to a detected maximal
clique.
(inv2) ∀x, ti·x ∈ cliques in⇒ Clique(x 7→ ti) 6= ∅ ∧ x ∈
Clique(x 7→ ti)
◦ Each node of cliques out has not computed its maximal
clique yet.
(inv3) ∀x, ti·x ∈ cliques out⇒ Clique(x 7→ ti) = ∅
◦ Each node which has not been assigned to a maximal clique
yet belongs to the set out cliques.
(inv4) ∀x, ti·Clique(x 7→ ti) = ∅⇒ x ∈ cliques out
◦ A node “x”, which does not belong to a maximal clique, is
not part of the set nodes alert.
(inv5) ∀x, ti·Clique(x 7→ ti) = ∅ ∨ Clique(x 7→ ti) = {x}
⇒ x /∈ nodes alert

At this refinement level, the events of the previous level still
exist but they become more concrete. We restrict to detail in
what follows some events :
• Event “Remove Graph Edge” : We refine the event
Remove Graph Edge by reinforcing the guard component.
In fact, we replace the guard grd4 using the variable
Clique that the removed edge does not belong to any
maximal clique: grd4 : ¬(Clique(x 7→ t) = Clique(y 7→
t) ∧ card(Clique(x 7→ t)) ≥ 3)
• Event “Clique+”: The goal of this event is to detect
maximal and disjoint cliques and assign to each node its
corresponding clique (see Listing 9).

Listing 9: Event Clique+, in M2
EVENT Clique+
REFINES Clique+
ANY B, x
WHERE
grd1 :Clique(x 7→ t) = ∅ ∧ B ∩ {k·Clique(k 7→ t) 6= ∅|k} = ∅
. . .
grd5 : ∀r·Clique(r 7→ t) = ∅∧
r ∈ adjacents(x 7→ t) ∧ {r} × (B \ {r}) ⊆ g(t)⇒ r ∈ B
grd6 : card(inter({a·a ∈ B|adjacents(a 7→ t) ∪ {a}})\
{k·Clique(k 7→ t) 6= ∅|k}) ≥ 3 ∧ finite(inter({a·a ∈ B|
adjacents(a 7→ t) ∪ {a}}) \ {k·Clique(k 7→ t) 6= ∅|k})
grd7 : final = 0 ∧ t 6= tn

THEN
act1 : Clique := Clique C− {a·a ∈ B|(a 7→ t) 7→ B}

END

In fact, we reinforce the guard component by using the new
variable Clique. The guard (grd1) specifies that the center x



of the ball B and its neighbours from B do not belong to any
detected clique. The grd5 states that B can not be extended by
other nodes which have not been assigned to maximal cliques
yet. We indicate in the guard grd6 that the intersection of all
the elements of N(a), which do not belong to maximal cliques,
contains at least three nodes. We note “a” as each node of the
ball B. In the action component, we set the maximal clique of
each node of the ball to “B” (act1).
• Event “Oneshot”: This event refines the “Oneshot” pre-
sented in the machine M1. It uses the concrete variable Clique
to check that each node of the graph has computed the maximal
clique to which it belongs. In fact, the result of the algorithm
represents the set containing the maximal clique of each node
x (if Clique(x 7→ t) 6= {x}).

4) The fourth level : Once the machine of the third level
has been specified and proven, it can be refined for describing
the local label modification and encoding the relabeling rules
proposed in Section II. In order to reach this goal, we introduce
a new variable “State” (inv1 : State ∈ V × (0 .. t)→ labels)
which assigns to each node a label from the set “labels”
that encodes the state of a process. Initially, all the nodes are
labeled “Init”. The addition of the variable “State” involves
adding new properties which link the abstract state variables
to the concrete ones. We have formalized these properties in
the form of Event-B invariants:
◦ A node x, which has Clique(x 7→ ti) not empty, belongs
to a maximal clique or it is an isolated node at the date ti.
(inv2) ∀x, ti·Clique(x 7→ ti) 6= ∅⇒
x ∈ State−1[{C, I,A}]
◦ A node which has not been assigned to a maximal clique
yet is in the initial or the waiting state.
(inv3) ∀x, ti·Clique(x 7→ ti) = ∅⇒
x ∈ State−1[{Init,W}]
◦ If a node is labeled C, its maximal clique contains itself
and a set of its neighbours.
(inv4) ∀x, ti·State(x 7→ ti) = C ⇒ Clique(x 7→ ti) ⊆
{x} ∪ adjacents(x 7→ ti) ∧ x ∈ Clique(x 7→ ti)
◦ Each maximal clique contains one center node labeled C
and the other nodes are labeled I .
(inv5) ∀x, y, ti·y ∈ Clique(x 7→ ti) \ {x} ∧ State(x 7→ ti) =
C⇒State(y 7→ ti) = I ∧Clique(y 7→ ti) = Clique(x 7→ ti)
◦ If a node y is labeled I, it has a neighbouring node which
belongs to the same maximal clique and it is the center of
this clique.
(inv6) ∀y, ti·State(y 7→ ti) = I ⇒ (∃x·x ∈
adjacents(y 7→ ti) ∧ State(x 7→ ti) = C∧
Clique(y 7→ ti) = Clique(x 7→ ti))
◦ An isolated node does not belong to any maximal clique,
then its maximal clique is the identity.
(inv7) ∀x, ti·State(x 7→ ti) = A⇒ Clique(x 7→ ti) = {x}
◦ Each node x labeled C or I belongs to a maximal clique,
then the set of elements of its clique is not empty.
(inv8) ∀x, ti·State(x 7→ ti) ∈ {C, I}⇒ Clique(x 7→ ti) 6= ∅
◦ Each node in the initial or the waiting state has not been
assigned to a maximal clique yet.
(inv9) ∀x, ti·State(x 7→ ti) ∈ {W, Init}⇒
Clique(x 7→ ti) = ∅

At this level, we refine the event “Oneshot” and we
specify the six relabeling rules of our algorithm:
◦ The event “Rule1” refines the event “Clique + ” defined

in M2 to specify the rule R1.
◦ We introduce a new event called “Rule2” to specify the
rule R2.
◦ The event “Rule3” specifies the rule R3 and refines the
event Clique− of the machine M2.
◦ The event “Rule4” refines the event Remove Graph Edge
to express the modification made when deleting an edge of
the graph.
◦ The event “Rule5” refines the event Remove Clique Edge
to specify the preliminary influence of the removal of an edge
belonging to a maximal clique.
◦ The events (Rule6,Rule6′,Rule6′′,Rule6′′′) refine
respectively the events (Initialize1,..., Initialize4) to
express the different cases of the rule R6.
◦ The event “Oneshot” verifies that, at the end of the
algorithm execution, no node is in the initial (labeled “Init”)
or the waiting state (labeled “W”).

C. Proof statistics

To prove the correctness of our formal model, a number
of proof obligations (POs) generated by the Rodin platform
should be discharged. The algorithm development results in
405 POs, in which 226 (56%) POs are proved automatically
and 179 (44%) are proved interactively using the RODIN
prover. An Event-B model is correct when all POs have been
discharged. Formal definitions of all POs are given in [1].

IV. CONCLUSION

We have presented in this paper a new distributed algorithm
for enumerating maximal cliques in dynamic networks. Our
algorithm combines local computations model and refinement
to prove its correctness. The proposed algorithm is based on
six relabeling rules which allow to detect maximal cliques and
react correctly in case of edge deletion.
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