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Abstract—Search-Based software engineering (SBSE) deals
with metaheuristic search-based optimization techniques to pro-
vide solutions for complex problems. A popular problem in
literature is the team formation problem (TFP), which consists
of finding the best allocation of human resources to a software
development project. This problem is recognized as NP-hard and
it is more complex in companies that carry out multiple projects.
This paper presents an effective and automated approach to
allocate multiple developers into multiple teams to maximize the
technical compatibility between them. The approach consists of
an SBSE method that uses Genetic Algorithm to simultaneously
build multiple teams, using data from tag-based profiles. We
conducted an empirical evaluation using data from eight real-
world software projects of a Brazilian company. The results
indicate that tag-based profiles is a promising information source
to represent technical knowledge, since the suggested teams
were considered to have the proper skills to the attend the
technical demand of the projects. The approach was able to
reach high levels of satisfaction, delivering teams in an effective
and automated way. Although, further investigation needs to be
conducted to reach stronger conclusions.

I. INTRODUCTION

Search-Based Software Engineering (SBSE) is a field that
deals with metaheuristic search-based optimization techniques
to provide automated and semi-automated solutions for com-
plex problems in Software Engineering (SE) [6], [5], [7].
According to Harman et. al. [7], typical SE problems that
involve testing, design, requirements engineering, manage-
ment, and refactoring can be well adapted for SBSE and have
been successfully formulated as search-based optimization
problems. For instance, the team formation problem (TFP),
which consists of finding the best allocation of resources
(developers) to a software development project. This problem
has gain special attention over the last years and became a
well-researched topic in the literature [1], [4], [11], [2].

The TFP is recognized as NP-hard [13] and it is more
complex in companies that carry out multiple projects. It is

necessary to optimize the allocation of multiple developers
with different sets of skills to multiple projects with different
sets of requirements. The goal is to optimize each projects’
chances of success considering the limited resources available
and attempt to have all projects succeeding. The previously de-
scribed scenario represents a multiple team formation problem
(MTFP) [4].

Finding optimal teams brings special concern with agile
methods, such as Scrum [10], a team-centered framework
designed to deliver products with the highest possible value. In
Scrum, the developer team is a self-organized and multidisci-
plinary group which means that, among others, the team must
have the all the required technical knowledge to deliver the
product. A nine-month field study of professional developers
in a Scrum team [8] found that highly specialized skills and a
corresponding division of work are the most important barrier
for achieving effective teamwork. Therefore, it is necessary to
make the most of the available resources, i.e., choosing right
teams to the right projects.

In this paper, we present a SBSE approach to form multiple
teams for Scrum projects. The approach is divided into two
parts. First, we learn the technical knowledge of the developers
through information extracted from the projects in which they
have worked. For this purpose, we instrument the Scrum
process by creating tag-based profiles for developers and
projects. Therefore, we complement the Scrum framework
with activities to assign tags to artifacts, i.e., the Product
Backlog (PB), User Stories (US) and Technical Tasks. Second,
we build a data structure to run a Genetic Algorithm to allocate
developers to projects, forming teams with maximum technical
compatibility, considering the projects demands and the de-
veloper’s skills. We chose Genetic Algorithm, because it one
of the most suitable methods for combinatorial optimization
problems [3].

To evaluate our solution, we used real-world data from
eight Scrum software projects and we collected data from



16 developers and 4 projects managers. The results indicates
that the tag-based profiles are a useful information source
to support the multiple team formation with a high level of
satisfaction.

This paper is organized as follows. Section II presents
related work on SBSE applied to MTFP. Section III presents
our solution to mitigate the multiple team formation problem.
Section IV presents the design and discusses the results of the
empirical evaluation. Section V presents the validity threats;
and Section VI presents the final remarks, limitations and
future work.

II. RELATED WORK

As mentioned before, a particular case in the TFP is the
MTFP, which consists of simultaneously allocating multiple
developers to multiple projects to maximize attributes from
both developers and projects.

Palacios et. Al. [1] presented a recommender system de-
signed to assist project managers in configuring multiple teams
for work packages defined by Scrum Projects. The system is
based on fuzzy logic, rough set theory and semantic tech-
nologies. In this work each project manager is responsible for
building both project and developers profiles using competence
baseline documents.

Strnad and Guid [11] proposed a decision support system
based on Fuzzy Logic and Genetic Algorithm. The system uses
fuzzification to automatically obtain fuzzy skill assessments
from numerical data of an employee database. Genetic Algo-
rithms are used to optimize the teams formations according to
the projects requirements, which are obtained by a standard
document specification inside company.

Silva and Costa [2] presented a framework based on dy-
namic programming to allocate human resources in multiple
information system projects. The main goal is to determine
the fit between the complete set of skills available from a
candidate member of a project team and the skills required
for that project to minimize the time required to complete a
project demand.

Gutierrez [4] proposes an optimization model using a
quadratic objective function, linear constraints and integer
variables. The optimization model is solved by three algo-
rithms: a Constraint Programming approach provided by a
commercial solver, a Local Search heuristic and a Variable
Neighborhood Search metaheuristic. Sociometric techniques
are used to estimate performance characteristics such as pro-
ductivity, training ability, leadership, efficiency, among others.

Ren el. al. [9] proposed a search-based software project
method to build teams based on Cooperative Co-evolution.
The teams are formed aiming to reduce the required time to
complete the projects work packages.

The main difference between the cited works and ours, is
the way the profiles of developers and projects are built. Most
of the approaches depend on the knowledge and feeling of
the project managers to build the profiles. For this reason,
the results are subjective. In our approach, the profiles are
derived from the technologies assigned to the Scrum artifacts

during the Scrum Instrumentation, minimizing the subjectiv-
ity. Another difference is that the profile information grows
dynamically, because the instrumentation is refined throughout
the project.

III. PROPOSED APPROACH

The proposed solution is divided into two parts: Scrum
Instrumentation and Solution Operationalization, which are
detailed as follows.

A. Scrum Instrumentation

Scrum is a framework for developing, delivering, and sus-
taining complex products [12]. It was designed to be comple-
mented with technical and managerial processes as needed.
We complement Scrum by applying tags to the artifacts to
register the technical skills necessary to develop the features
associated with them. These skills corresponds to program-
ming languages, frameworks, platforms, APIs, architectures,
databases, or any technology or technical knowledge necessary
to develop a feature.

To lead the tag labeling process, a new role is proposed:
(Scrum) Tagger. The Tagger is responsible for all the tag
labeling process. To assure a standardized tags assignment,
it is recommended that the company establish a small team
of Scrum Taggers who should define specific rules to avoid
that the same technical skill is reperesented using different
tags in different projects. The Scrum Instrumentation occurs
throughout the project and includes the following labeling
processes:

1) Product Backlog Labeling: the Tagger starts to work
during the initial PB definition (Figure 1[1]). The PB is an
ordered list of the product requirements. The Product Owner
(PO) is the responsible for building the PB. Therefore, the
Tagger conducts informal conversations with the PO to elicit
all or at least most of the technologies necessary to develop the
PB. Then, these technologies are converted into tags, forming
the Backlog Tag set.

2) User Story Labeling: the labeling process occurs during
Sprint Planning meetings (Figure 1[2]), which is an event
where some requirements are selected from the PB to be
developed during the given Sprint, defining the Sprint Backlog.
This requirements are usually represented by User Stories.
The Tagger, together with the Development Team, labels all
the USs of the Sprint Backlog. For this purpose, the Tagger
consults the team regarding the necessary technical skills to
develop the USs. Then, the Tagger converts the skills into tags,
forming the User Story Tag Set. It is important to note that
this set is a subset of the Backlog Tag, therefore, if a new tag
appears during this step the Backlog Tag set is updated.

3) Task Labeling: to define the Sprint Backlog, the USs
are splited into Technical Tasks. When a task is done, the
responsible selects a subset of tags from the User Story Tag
set. The selected subset, called Task Tag set, represents the
technical skills demanded to develop the feature represented by
the task. This labeling process (Figure 1[3]) occurs throughout
the Sprints. If necessary, the developer can suggest new tags,



which can be reviewed by the Tagger after the end of Sprint
(Figure 1[4]). If new tags are created, the User Story Tag and
the Backlog Tag sets are updated.

B. Solution Operationalization

The second part of the proposed approach consist of creating
the data structure necessary to run a Genetic Algorithm to
allocate multiple developers into multiple projects. First, tag-
based profiles are created for both developers and projects
from the data acquired from the Scrum Instrumentation. Then,
technical compatibilities between developers and projects are
calculated using feature vectors. Lastly, we use weighted
similarity coefficients to create a technical compatibility metric
that is used in the Genetic Algorithm’s fitness function to find
the optimal team formation for each project. These steps are
detailed as follows.

1) Tag-based profile building: The developer profile is
defined from two sources of information: Curriculum and
Development History. First, technical knowledge documented
in the developers’ curriculum is converted into weighted tags.
The weight corresponds to the period of experience with the
given technology. For example, if the developer worked with
the Java programming language for 18 months, his profile
will contain a tag java(18). Second, during the Sprint, the
developers works in tasks in which tags were applied during
the Scrum Instrumentation. Over time, the developer profile
is being formed by the tags that were applied to the tasks
completed by him. These tags also have weight, in this case it
is given by the number of times a tag appeared in a task. For
example, if during the Sprint the developer completed five
tasks with a java tag applied, his profile is filled with the
weighted tag java(5).

The project profile is built from the Product Backlog Tag
set. As the developer profile, it grows throught the execution of
the project, as the project requirements change and the product
backlog items are more detailed.

2) Feature vector: A feature vector is a k dimensional
vector composed by numerical values and represents a set
of the object’s characteristics. The feature vectors are created
from tag-based profiles. They are necessary to calculate the
similarity between profiles.

The project feature vector is called Backlog Vector (VB).
Each tag presented in the project profile corresponds to an
index in the vector. Note that different projects may have
different profiles, consequently, they have different feature
vectors.

For each developer, two feature vectors are created from
his profile. The Curriculum Vector (VC) is built from the
Curriculum Source; the Development Vector (VD), from the
Development History Source. Both vectors use the same
structure as the project feature vector to allow the similarity
calculation.

3) Developer Feature Vector Normalization: Since the
weight of the tags that compose the developer feature vectors
come from two different data sources with different magni-
tudes, it is necessary to harmonize the scales by normalizing

it to values between 0 (zero) and 1 (one). The normalization
uses the Equation 1, where x = (x1, x2, x3, ..., xk) is the key
value in the same position at each developer feature vector
and zi is the ith normalized value. Note that there are two
normalization processes, one for each developer feature vector.

zi =
xi −min(x)

max(x)−min(x)
(1)

4) Similarity calculation: We used Manhattan Similarity
to calculate the similarity between two k-dimensional feature
vectors. The similarities are used to determine the technical
compatibility between the developer and project profiles. Be-
tween each profile, two different similarity coefficients are
calculated. One represents the similarity between the Back-
log Vector and Curriculum Vector and the other represents
the similarity between the Backlog Vector and Development
Vector. Before the similarity calculation, the Backlog Vector
is filled with 1s (ones) to represent a maximum technical
demand of a project, i.e., the developer feature vectors, which
are composed by values closer to 1s (ones), will have higher
values of similarity.

1−
∑k

i=1 |u[i]− v[i]|
k

(2)

5) Genetic Algorithm to Form Multiple Teams: The multi-
ple team formation process consists of allocating multiple de-
velopers into multiple project team to maximize the technical
compatibility between the project demands and the developer
skills. For this purpose, we propose a metric called Technical
Compatibility Level (TCL). The TCL is generated based on a
weighted similarity coefficient given by the Equation 3. The
α represents the weight of the similarity calculated between
the Backlog and Curriculum vectors [sim(vB , vC)]. The β
represents the weight of the similarity calculated between the
Backlog and Development vectors [sim(vB , vD)]. For each
project and developer, a TCL is generated.

TCL =
α · sim(vB , vC) + β · sim(vB , vD)

2
(3)

An example of the chromosome structure used in the
Genetic Algorithm is presented in Figure 2. In this case, we
have 3 projects and 12 developers. The genes represent the
developers and, depending on his position in the structure,
a different TCL is used during the fitness calculation. For
instance, if a developer D1 appears in the indexes between
0 and 4, the TCL between D1 and the Project A is used. If
D1 appears in the indexes between 5 and 7, the TCL between
D1 and the Project B is used. The goal of the fitness function
is to find a candidate solution, where the sum of the TCLs
corresponded to each gene is maximized. Consequently, an
optimal solution corresponds to a configuration where the
matching represents maximum technical compatibility.

IV. EMPIRICAL EVALUATION

To evaluate our approach, we conducted an empirical
evaluation in a Brazilian software development company, in



Fig. 1. Scrum Instrumentation

Fig. 2. Example of a chromosome used in the Genetic Algorithm

which we collected real-world data from eight Scrum software
projects. Four of them (P1, P2, P3 and P4) were running
during the evaluation and the remaining projects (P5, P6, P7
and P8) were already finished. Each of the running projects
is composed by a project manager (PM) and four junior
developers. The PMs know the profiles of all 16 developers,
since there is a regular rotation among the projects, to avoid
knowledge islands. The PMs have 2-5 years of experience
in Scrum projects and the developers 1-3 years in software
development.

In Table I, we show statistics regarding the projects. The first
column contains the identification of the running projects; the
second contains the number of Sprints executed in the project.
Each Sprint lasted 2 weeks; the third presents the number
of User Stories completed; the fourth is the number of tasks
done (each task was performed individually); the fifth shows
the identification of the team members; the sixth, contains the
Backlog Tag set collected during the instrumentation process
performed in the evaluation. For reasons of confidentiality, the
projects and developers identifications were presented in an
anonymous way.

We performed the instrumentation process with the four
running projects (P1, P2, P3 and P4). The instrumentation
was designed to be executed in a interactive and incremental

way during the Scrum Events and throughout the project.
Unfortunately, the projects were already started and we had
to apply the process at once to retrieve the previous data of
the projects. For each project, we applied the three labeling
processes described in Section III-A. To avoid overloading
of the participants, which could compromise the process, we
divided the labeling in turns. During the morning, the team
performed the Backlog and User Story labeling processes and
during the afternoon the Tasks’ one. The instrumentation was
applied in different days for each project. The Scrum Tagger
role was performed by the first author of this paper. In Table
I, we can see the Backlog Tag set of projects P1, P2, P3 and
P4.

To create the Curriculum Source, we provided an online
questionnaire and all developers were guided to respond to
it. The questionnaire was composed by the tags present in
the Backlog Tag set (Table I) and complemented with tags
that represent popular technologies which not appeared during
the instrumentation. Also, the developers were free to add
other technologies he have worked outside the company by
answering an open-ended question. Naturally, duplicated tags
were excluded from the questionnaire. For each tag, the
developers were asked to register their experience (in months)
with the given technology.

To evaluate the approach, we simulated a scenario in which
four projects (P1, P2, P3 and P4) were used to learn the profile
of the developers with the goal of allocating them to other four
projects (P5, P6, P7 and P8). We present the Backlog Tag set
for projects P5, P6, P7 and P8 in Table II. To collect the data
for projects P5, P6, P7 and P8, we only executed the Product
Backlog labeling process.

We executed our approach varying α and β weights and the
results are presented in Table III. For each new project, we



TABLE I
DATASET STATISTICS

Project #Sprints #User Stories #Tasks Team Formation Backlog Tag set

P1 6 41 136 D3, D7, D9, D14
angular-charts, angular-material, angularjs, bower, Chart.js, checkstyle, css,

ESlint, express, Firebase, Gitlab, gulp, html, javascript, jenkins, JSHint, json,
Mocha, MongoDB, node.js, pmd

P2 4 15 97 D1, D2, D10, D11

angular-charts, angular-material, angularjs, bower, Chart.js, checkstyle, css,
cytoscape, eslint, findBugs, gitlab, gson, hamcrest, html, java, javascript, jpa,
JSHint, json, junit, maven, mockito, mySQL, PMD, spring-boot, spring-jpa,

swagger

P3 3 12 63 D4, D5, D6, D8
angular-charts, angularjs, bootstrap, bower, chart.js, css, eclipse, gitlab, gulp,

html, http-request, java, javascript, javascript, javax, json, maven, mysql,
npm, spring-boot, spring-jpa, sts, swagger, webstorm

P4 7 21 76 D12, D13, D15, D16

android, angular-material, angularjs, http-request, Beaglebone, Bonescript,
Bootstrap, C++, Chart.Js, Css, Express, Gitlab, Heroku, Html, iot, jade, java,

javascript, material-design, MongoDB, node.js, npm, parse-server, python,
Raspberry, Socket.io, XML

TABLE II
PROJECT’S BACKLOG TAG SET

Project Backlog Tag set

P5
android, android-studio, Beaglebone, firebase, git, glide,
http-request, iot, java, javascript, node.js, parse-server,
postman, sqlite, xml, zxing

P6
android, java, xml, node.js, volley, firebase, butterknife,
Body-parser, Json, Express, Mongoose, Nodemailer, Validator,
webstorm, javascript

P7
Body-parser, node.js, bootstrap, css, express, Gitlab, html,
http-request, javascript, JSHint, json, jwt, MongoDB,
Mongoose, Nodemailer, npm, webstorm, git

P8

angularjs, Body-Parser, bootstrap, bower, css, cytoscape,
ESlint, express, git, Gitlab, gulp, html, http-request, jasmine,
javascript, jenkins, JQuery, JSHint, json, karma,
material-design, Mocha, MongoDB, Mongoose, bootstrap,
node.js, NPM, tslint, typescript,Postman

formed five teams and presented to the corresponding project
managers. The PM1 was manager of P8, PM2 was manager
of P7, PM3 was manager P5, PM4 was manager P6. Then,
we asked them to answer a couple of questions. First, the PM
was required to rank the five teams suggested, according to the
level of suitability to the project, i.e, the better ranked teams
should be those who posses the set of technical skill that best
meets the demands of the project. Second, they should rate
using five point Likert scale their satisfaction with the best
ranked team(s) (i.e., multiple teams could be considered tied
with the best rank).

In Figure 3, we show the results related to the first question.
It indicates that when the weight of the Curriculum source of
the developer is high the team is ranked in the best position
by most of the managers. When we increase the weight of
the Development History source the suggested teams start
to be ranked in the last positions. Althought the Curriculum
may not be the most reliable information source, it has the
bigger amount of data, since it represents the knowledge
accomplished by the developers during all their professional
journey. On the other hand, the volume of the Development
History source is much smaller, because the data collected
came only from the projects the developers were participating
during the evaluation and it corresponded just to a few months

of development. This indicates that Curriculum data reflected
most of the technical knowledge the developers claimed to
have, at least by the PMs expectations. Unfortunately, we can
not make solid conclusions about the Development History
source, because of its small amount of data. We believe that,
at a given point after collecting data, this source is more
trustworthy than the Curriculum, but need to collect more data
to verify this hypothesis. In Figure 4, we present the results
related to the second question, which show that the PMs were
satisfied with the allocations.

V. THREATS TO VALIDITY

We identified a few threats to validation in our work. As
same as others agile methodologies, Scrum stands for individ-
uals and interactions over processes and tools. We proposed
a Scrum instrumentation as an incremental and interactive
process. It is designed to be less intrusive as possible to Scrum
framework, since it occurs during already existents events and
demands just a few more steps. Althought the process was
carefully designed, we could not apply it as it is suppose to
be, because the projects had already started. So, we applied
the process at once in each project. We consider this to be an
internal threat to validity.

Since we only collected data from one company for a short
period of time, we cannot claim external validity. We aim to
address this threat in future work.

VI. CONCLUSIONS

In this paper, we propose a SBSE approach to support mul-
tiple team formation for Scrum projects. Among our contri-
butions, we can highlight the Scrum Instrumentation process,
which allows the creation of tag-based profiles for developers
and projects. These profiles can be used to assist technical
knowledge management. Since, the instrumentation process is
designed to be incremental and interactive, the profiles are
susceptible to reflect changes during the project execution
and grow gradually. We can also emphasize the creation of
an automated method based on Genetic Algorithm to support
the project managers during the simultaneously allocation of
multiple developers into multiple software projects, forming
teams with maximum technical compatibility.



TABLE III
OBTAINED RESULTS FROM THE VARIATION OF α AND β WEIGHTS

P5 P6 P7 P8
α = 100% and β = 0% D4, D12, D13, D15 D7, D8, D9, D14 D1, D2, D3, D6 D5, D10, D11, D16
α = 75% and β = 25% D7, D12, D13, D15 D4, D8, D9, D14 D1, D2, D3, D6 D5, D10, D11, D16
α = 50% and β = 50% D7, D12, D13, D15 D4, D8, D9, D16 D1, D2, D3, D6 D5, D10, D11, D14
α = 25% and β = 75% D7, D12, D13, D15 D2, D4, D8, D16 D3, D5, D6, D14 D1, D9, D10, D11
α = 0% and β = 100% D7, D12, D13, D16 D2, D4, D8, D11 D3, D5, D14, D15 D1, D6, D9, D10

Fig. 3. Ranked teams by the projects managers

Fig. 4. Project managers satisfaction to the better ranked teams

As a limitation of our approach, we can point the slow
growth of the Development History data source. Since this
source depends on the developer participation in software
projects of the company, the amount and diversity of these
data might need time to reach the same size as the Curriculum
source. We hypothesize that the Development History is a
more reliable source, but we could not verify it in this study.
We plan to verify it in future work, by increasing the number of
projects and developers for the next empirical evaluation and
test different scenarios. Also, we intend to determine optimum
values for α and β dynamically, according to the information
volume of each data source. Furthermore, we plan to integrate
our tagging mechanism to quality and productivity indicators,
to have a more reliable regarding the knowledge (i.e., expected
performance) of the developers.
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