
A Non-Functional Requirements Recommendation
System for Scrum-based Projects

Felipe Ramos§, Alexandre Costa§, Mirko Perkusich¶, Hyggo Almeida§ and Angelo Perkusich§
§Intelligent Software Engineering (ISE) Group, Federal University of Campina Grande,

Campina Grande, Paraı́ba, Brazil, 58429-140
{feliperamos, antonioalexandre}@copin.ufcg.edu.br,

hyggo@dsc.ufcg.edu.br, perkusic@dee.ufcg.edu.br
¶Federal Institute of Paraı́ba, Monteiro, Paraı́ba, Brazil, 58500-000

mirko.perkusich@ifpb.edu.br

DOI reference number: 10.18293/SEKE2018-107

Abstract—Agile software development focuses on quick deliv-
ery and flexibility to change. Despite being effective in delivering
quality functional requirements, agile practices tend to neglect
non-functional requirements until the later stages of software
development. This work focuses on Scrum, the most popular
agile method, and presents a non-functional requirements recom-
mendation system to support Scrum practitioners on their early
identification. The solution is based on instrumenting the Scrum
process to extract useful data and the use of collaborative filtering
and item recommendation. To evaluate the recommendations, we
conducted off-line experiments with data collected from 12 Scrum
practitioners through a survey. The data was analyzed using 10-
fold cross-validation. As a result, our proposed solution showed
a recall rate of up to 81%, which indicates that it is a promising
approach to recommend non-functional requirements given a set
of functional requirements identified by project stakeholders.

Keywords—Non-functional Requirements; Scrum; Recommen-
dation System; Agile Software Development.

I. INTRODUCTION

Agile software development (ASD) methods, such as
Scrum and XP, have gained strength with the acceptance
of the fact that uncertainty is part of software development
[4], emerging as an alternative to keep up with the high
competitiveness and volatility of the software market. Unlike
traditional approaches, which rely on detailed processes and
extensive planning, ASD focuses on the rapid delivery of busi-
ness value to customers. Moreover, ASD supports requirement
changes at any stage of the development process [4]. However,
as well as in traditional approaches, Requirements Engineering
(RE) is a crucial process for the success of agile projects.

ASD methods, in contrast to traditional plan-driven pro-
cesses, follow an incremental and iterative development pro-
cess. Even though they are efficient in delivering quality
functional requirements (FRs) [7], non-functional requirements
(NFRs) are often overlooked until the later stages of software
development [10], which might increase the costs [10] and
probability of failure [2].

This work focuses on Scrum, the most popular agile
method. In Scrum, the requirements are usually managed by
a person with a business-oriented profile (i.e., the Product
Owner), which tends to focus on FR, neglecting NFRs. [13].

Most existing studies related to applying NFRs processes
to ASD [10], [6], [5] do not consider Scrum’s artifacts, events

and roles, reducing their applicability. The studies [14], [13],
[3] that focus on Scrum present processes to complement it and
consider, for instance, modeling NFRs as a “done” criteria or
a constraint story [13].

Our goal is to automate the definition of NFRs given
historical data of Scrum projects, supporting the team on
identifying them early in the process. For this purpose, in this
paper, we present a NFRs recommendation system to support
Scrum practitioners. It is based on collaborative filtering and
item recommendation and supported by an instrumentation of
the Scrum process to enable the collection of quality data for
the recommendations.

This paper is organized as follows. Section II presents
previous works on NFRs applied to the ASD. Section III
presents the proposed solution. Section IV presents the design
of the validation process. Section V discusses the results; and
Section VII presents our conclusions and future work.

II. RELATED WORK

There are several studies regarding the management of
NFRs on ASD [3], [5], [6], [7], [8], [10], [11], [13], [14],
[15].

In a study including a series of papers, authors presented
solutions for the capture, definition and prioritization of NFRs
in ASD. First, authors proposed a NFR modeling framework
that is tailored for agile processes, called Non-Functional
Requirements Modeling for Agile Processes (NORMAP) [6].
In addition, a simulation tool was proposed for modeling non-
functional requirements for semi-automatic agile processes
(NORMATIC) [7], which supports the more general NORMAP
methodology. In [5], authors proposed a methodology for
elicitation, reasoning and validation of NFRs in agile processes
(NERV), which showed better results in comparison to the
NORMAP framework. NERV is a lightweight methodology to
address NFRs early in ASD. In the study [10], the authors
proposed to use NFRs metadata from software requirements
artifacts - documents and images - as an extension of previous
works [6] and [5]. Finally, in [12], authors investigated the pri-
oritization of requirements based on the framework proposed
in [11].

Some studies conducted research on the topic of NFRs in
the context of Scrum [3], [13], [14].

Bourimi et al. [3] proposed the Agile Framework For In-
tegrating Non-functional requirements Engineering (AFFINE)
with the goals of: (1) conceptually considering NFRs early in
the development process, (2) explicitly balancing end-users’
with developers’ needs, and (3) having a reference architecture
to support NFRs. The authors introduced the role of an
NFR stakeholder. Although the proposed solution presents
contributions, the method is based only on a conceptual effort
of the early consideration of NFRs.

On the other hand, Sabry and El-Rabbat [13] discussed
about architectural refactoring framework and techniques for
achieving required levels of NFRs through the formalization of
Spikes and Definition of Done (DoD) within Scrum practices.

Sachdeva and Chung [14] proposed a novel approach to
handle non-functional requirements of security and perfor-
mance in Scrum-based projects involving big data and Internet
of Things (IoT). In their approach, authors proposed to con-
sider security as system functionalities (set of user stories) and
performance as spikes and acceptance criteria of user stories.

Although previous studies focused on the early definition
of NFRs in ASD, they based their approaches on conceptual
reinforcement or on the automatic capture of NFRs from
project documents, which may not always be available at the
beginning of agile projects. In this study, we focus on the early
definition of NFRs, but unlike previous works, we propose the
use of historical (considering Scrum roles, artifacts and events)
to generate recommendations of NFRs.

III. PROPOSED SOLUTION

In this section, we present the NFR recommendation sys-
tem, which aims to support Scrum practitioners in the early
definition of NFRs.

In Figure 1, we present an overview of the recommenda-
tion process, which is based on the Scrum instrumentation,
presented as follows. The activities take place during Sprint
Planning meetings: (1) the Scrum Team, with the support of
the Scrum Architect (SA), details product backlog items using
Semi-structured User Stories (SUS) (2). The SUSs is used by
the recommendation system (3) to generate recommendations
of NFRs for each FR; (4) The Product Owner (PO) and the
Development Team evaluate the recommendations, accepting
or rejecting them. If recommendations are accepted, the in-
formation about recommended NFRs is stored. If they are
rejected, negative feedback is stored.

A. Scrum Instrumentation

We instrument the Scrum framework by adding two new
elements, as shown in Figure 2. We added a new role, the
Scrum Architect (see Figure 2 (1)), and a new artifact based in
tags and categories to represent product backlog items: Semi-
structured User Story (see Figure 2 (3)). We detail the new
role and artifact as follows.

1) Semi-structured User Story

In Scrum, user stories are generally used to represent
product backlog items. They are composed of three aspects:
written description, conversations about their details and a list
of acceptance criteria. They usually have the following format:

Fig. 1: An overview of the recommendation process.

As a [type of user], I want [some goal] so that [some
reason].

This level of information is not enough to retrieve useful
data for the recommendation system. Therefore, to ensure
the traceability of requirements among different projects, we
propose the SUS (see Figure 3).

The SUSs are developed during Sprint Planning meetings
and, compared to traditional user story, they contain the
following additional information:

• FR category: represents a predefined category that
classifies a user story based on its goal (high-level FR).
For example, “Login”, “Alarm and Notifications”,
“Report Visualization”, etc.;

• Technology tags: represent labels related to the tech-
nologies necessary for the development of a user
story. For example, programming language (e.g., java,
python, etc.), database (e.g., mongo, sql, etc.), etc.;

• Associated NFRs: set of quality attributes that are
associated with the functional requirement represented
by the user story. Each NFR presents the following
information:
◦ NFR category: represents a predefined cate-

gory, which classifies the non-functional re-
quirement (e.g., security, performance, privacy,
etc.);

◦ NFR statement: represents the condition of
the NFR that must be met to consider the
associated functional requirement done. For
example, “SSL encryption” for a given FR.

In Figure 3, we present an example of a SUS, in which
FR category is “Login” (1), technology tags are “android”,
“java” and “mongo” (2), and presents an associated NFR (3)
of “Security” (4) with “SSL encryption” as statement (5).

Fig. 2: An overview of the instrumented Scrum process.

Fig. 3: An example of a Semi-structured User Story.

2) Scrum Architect

The SA is responsible for the following three activities:
i) categorize product backlog items and gather project infor-
mation (see Figure 2 (1)); ii) assign tags to the SUSs (see
Figure 2 (2)); and (iii) review previously assigned tags (see
Figure 2 (4)). The activities are executed at the beginning of
the project, during the initial definition of the product backlog
and, continuously, in the Scrum Planning and Review meetings
at each Sprint.

During the initial definition of the project backlog, the SA
is responsible to assign a predefined category for each product
backlog item defined by the PO. The decision on the category
of each item should be defined in common agreement between
PO and SA by face-to-face communication. If an specific
requirement can not be classified in any of the predefined
categories, the SA can create a new category, insert it into the
dataset, and reuse it (i.e., reuse-driven approach). By catego-
rizing product backlog items, we aim to classify requirements
of same purpose, and later, to ease the information retrieval.
Additionally, the SA is responsible for filling the project
profile with information such as project category (e.g., web,
mobile, embedded, desktop, etc.), project domain (e.g., health,
banking, etc), project goal (e.g., product or prototype), project
architecture (e.g., client-server, MVC, multilayered, etc.), and

assign technology tags to the project, which represent the basic
technologies needed in the software product development (e.g.,
programming language, database, etc.).

During Sprint Planning meetings, the SA is responsible for
obtaining the remaining information of the SUSs by following
the discussions between the PO and the Development Team,
ensuring that all product backlog items are categorized and
technology tags are properly assigned. Since it is during the
Sprint Planning meeting that the Development Team defines
all the tasks that must be performed to complete each selected
user story for a Sprint, the SA has the chance to accurately
obtain the information on which technologies will actually be
used to complete each one of them, based on direct feedback
from the Development Team.

Finally, during the Sprint Review meeting, the SA is
responsible for reviewing the tags assigned to user stories, i.e.,
to identify if any tag should be removed from a user story
representation and/or if new tags should be assigned to it.

B. NFR Recommendation

We address the definition of NFRs as a recommendation
problem. Thus, by adapting the generic definition of recom-
mendation problems presented by Adomavicius and Tuzhilin
[1], we have the following: let F be the set of all FRs and let
N be the set of all possible NFRs that can be recommended.
Let u be an utility function that measures the usefulness of a
NFR n to a FR f , i.e., u: F × N → T , where T is a totally
ordered set. Then, for each FR f ∈ F , we want to choose
such NFR n′ ∈ N that maximizes the utility of the FR f .
More formally:

∀f ∈ F, n′
f = argmax

n∈N
u(f, n). (1)

As follows, we present the main components of the NFR
recommendation system:

• Data Collector: collects information from SUSs and
project profiles to generate FR and NFR profiles;

• Profile Manager: generates FRs and NFRs profiles
based on information collected by the Data Collector;

• Recommender: analyzes FRs and NFRs profiles to
generate customized NFRs recommendations.

We detail each one of the three components in the following
subsections.

1) Data Collector

The data collection task consists of extracting information
from data sources to represent the elements of the recom-
mendation system to generate their profiles. In our case, the
elements are represented by FRs and NFRs. Before extracting
the information through the Data Collector, we need to define
the features capable of generating representative profiles of
the elements in the problem domain. For this purpose, we
elicited the knowledge of 3 scrum experts with experience
between 4 and 10 years. They identified 5 features of software
projects that may influence the definition of NFRs: project
category (e.g., web, mobile, embedded, desktop, etc.), project
domain (e.g., health, banking, etc.), project goal (e.g., product
or prototype), project architecture (e.g., client-server, MVC,
multilayered, etc.), and technologies (e.g., java, mongo, etc.).

For data collection, information about the FRs are retrieved
from the SUSs and project profiles. More specifically, for
each FR, information about FR category (high-level FR) and
project profile are collected. For each NFR, NFR category and
statements are extracted from the SUSs. Finally, information
about the association between FRs and NFRs are collected.

2) Profile Manager

After collecting the data through the Data Collector, FR and
NFR profiles are generated in the Profile Manager component.
The profile of a FR f ∈ F is composed by its FR category in
addition to the 5 features of project p which it belongs to. In
Table I, we present examples of FR profiles.

TABLE I: Examples of FR profiles.

ID Proj.
Categ. Domain Goal Arch. Tech.

tags
FR

categ.

f1 Mob. Home
Auto. Product MVC android, java,

mongo Login

f2 Mob. Home
Auto. Product MVC android, java,

sqlite
Alarm

and notif.

f3 Mob. Educat. Product MVC android, jsoup,
java, retrofit Login

f4 Web Busin.
info. sys. Product Client-

server
nodejs,angular,

webstorm Login

f5 Web Busin.
info. sys. Prototype multilayer nodejs,angular,

bootstrap
Status
Vis.

NFR profiles present two features, i.e., NFR category and
NFR statement. In Table II, we present examples of NFR
profiles.

TABLE II: Examples of NFR profiles.

ID NFR statement NFR category
n1 SSL encryption Security
n2 retrieved result must be paginated Performance
n3 access functionality with less than X clicks Usability

Finally, FR profiles are complemented with the analysis of
co-occurrences between FRs and NFRs based on information
from the SUSs. The result of this analysis is a binary matrix.
In Table III, we present an example of the matrix, in which
the assigned value is 1, if a FR f ∈ F has considered a NFR
n ∈ N or 0, otherwise.

TABLE III: Example of binary matrix that represents the co-
occurrence between FRs and NFRs.

n1 n2 n3

f1 1 0 1
f2 0 0 1
f3 1 0 1
f4 1 0 0
f5 0 1 1

After generating FR and NFR profiles, it is possible to
generate customized recommendations of NFRs to FRs.

3) Recommender

The proposed recommendation system is based in the
following characteristics:

• memory-based collaborative filtering (neighbor-
hood based technique) [9]: recommendations are
generated from the analysis of historical data on the
co-occurrence between FRs and NFRs. To calculate
the utility u of a NFR n for a FR f , we evaluate the
relation of n with the k FRs (from previous projects)
most similar to f ;

• recommendation of good items [9]: the proposed
recommendation system suggests a list with the j
NFRs best suited to a given FR f .

To generate NFR recommendations, we carry out two activ-
ities: (i) estimate neighborhood using the k-Nearest Neighbors
algorithm (kNN); and (ii) generate item recommendations.

For (i), we aim to identify the set of FRs F̂ which includes
the most similar FRs to a FR fa, where fa is the FR we intend
to generate recommendations, called target FR. We use the
kNN method to perform this task, since it returns the k nearest
neighbors of an input element. Before applying the kNN, we
perform a pre-filtering in the dataset to retrieve just those FRs
of the same category of the target one. Then, the returned list of
FRs is used as input of the kNN for the similarity calculation.

Before calculating similarities between FRs, we need to
represent each FR profile through an m-dimensional feature
vector, which enables the use of a similarity metric. We
generate feature vectors based on the information extracted
from the target FR profile, where each vector position refers
to its features and is filled with a value (i.e., 0 or 1) according
to the following condition: receives the value 1 if the feature
is present in the FR profile, or 0, otherwise. In Table IV, we
present an example of the vectors generated based on features
extracted from a target FR fa. In this example, it is possible
to see that requirement f ′

1 shares the same features of fa,
since its feature vector is filled only with values equal to 1.
On the other hand, the functional requirement f ′

3 differs from
fa in terms of “project domain” (i.e., Home Automation) and
technology tag “mongo”.

To calculate similarities among the feature vectors of fa
and pre-filtered FRs, we use the similarity based on Manhattan

TABLE IV: Examples of feature vectors generated based on
features extracted from a target FR fa.

Mobile Home
Auto. Product MVC android java mongo

fa 1 1 1 1 1 1 1
f ′

1 1 1 1 1 1 1 1
f ′

3 1 0 1 1 1 1 0
f ′

4 0 0 1 0 0 0 0

Distance (Equations 2 and 3), which is given by the sum of
the differences between the values of the two input vectors
of same dimension m. For example, the distance (Equation
2) between fa and f ′

3 is equal to 2, whereas the similarity
(Equation 3) between them is 0.71 (see Table IV).

d(fa, f
′) =

m∑
i=1

|fai − f ′
i| , (2)

sim(fa, f
′) = 1− d(fa, f

′)

m
. (3)

Therefore, to identify the k nearest neighbors of target FR
fa, we only have to sort in descending order the list of pre-
filtered requirements by the calculated similarity, and return
the first k items from that list. At the end of the process, we
have the set with FRs f ′ ∈ F̂ most similar to fa.

The second activity is to generate item recommendations.
More formally, we intend to recommend NFRs n′ ∈ N that
maximize the utility of a target FR fa. Thus, the value of
the unknown utility ufa,n′ (Equation 4) for target FR fa and
NFR n′ is computed as an aggregate of the amount of co-
occurrence between the k neighbors of fa and n′, weighted
by the similarity among fa and its neighbors, where uf ′,n′

returns 1 if NFR n′ was considered in the development of
neighbor FR f ′, or 0, otherwise.

ufa,n′ =
∑
f ′∈F̂

sim(fa, f
′)× uf ′,n′ . (4)

Finally, we generate recommendations for target FR fa as
a list of NFRs n′ ∈ N sorted in descending order by the utility
calculated for fa and each NFR n′, where ufa,n′ > 0.

IV. VALIDATION

To validate our approach, we executed an offline exper-
iment following the instructions presented by Gunawardana
and Shani [9], to answer the following research question: is
it possible to automate the definition of NFRs in scrum-based
projects based on historical data?

A. Experiment Goal

As mentioned before, the proposed recommendation sys-
tem is based on collaborative filtering and item recommenda-
tion approaches. In this context, the most suitable metrics for
evaluating our RS in an offline evaluation setup are related to
precision and recall [9].

Therefore, the main goal of the experiment is to analyze
the proposed RS for the purpose of NFRs recommendation

with respect to the precision and recall metrics from the point
of view of a dataset generated with information provided by
Scrum practitioners in the context of Scrum.

B. Data Collection Procedure

To perform an offline experiment, it is necessary to use a
dataset that corresponds as faithfully as possible to the real data
of the problem domain. Thus, we conduct a survey with Scrum
practitioners. To guarantee the reliability of the collected data,
we only requested information that can be collected with the
proposed instrumented Scrum.

The survey was responded by 12 Scrum project managers
with 4 to 10 years of experience, who are mostly members of
the same software company. At the end of the data collection,
we gathered a dataset with the following attributes:

• 31 different software projects profiles, each one with
its 5 features described;

• 31 different types of FR categories (e.g., “Login”,
“Status visualization”, etc.);

• 47 different types of NFR statements (e.g., “SSL en-
cryption”, “retrieved result must be paginated”, etc.);

• 130 functional requirements instances, where each
instance represents a FR of a software project and a
set of associated NFRs.

C. Offline Experimental Evaluation

In our experiment, we have two independent variables as
input source and two dependent variable as output information.
The first independent variable is represented by the number k
of neighbors considered in the generation of recommendations,
with 5 levels (1, 3, 5, 7 and 10). The second independent
variable is represented by the number j of recommended NFRs
that are considered to calculate the metrics, with 6 levels
(1, 3, 5, 7, 10 and |N̂ |, where N̂ represents the full list). Our
two dependents variable are represented by the precision and
the recall of the NFR recommendation achieved through a run
based on a set of independent variables.

To perform the experiment we use the 10-fold cross-
validation method, which randomly splits the dataset into 10
independent parts, and each part is used once as test set and
the remaining as training set. Therefore, we separate the whole
data into 90% for training and 10% for testing. Additionally,
we repeat the execution for each set of independent variables.
Thus, we have an amount of 300 runs.

D. Threats to Validity

The data collection was not done continuously during the
Sprints as indicated in the Scrum instrumentation, which is a
threat to internal validity. The size of the dataset is a threat to
external validity, because it is required to have a large dataset to
validate memory-based recommendation systems to represent
different cases of the domain. We plan to address both threats
in future work.

V. RESULTS AND DISCUSSION

In Figure 4, we present the scatter plot of the two evaluated
metrics (i.e., precision and recall), which summarizes the
results obtained in the experiments. For example, the averages
of precision and recall for the round with k = 10 and j = 5
are 44% and 73%, respectively.

Fig. 4: Results obtained in the experiments.

Considering that the domain of NFRs recommendation is
not sparse, since a FR is generally associated to a small number
of NFRs, we conclude the results of the offline experiments are
promising, since we observe rates of up to 81% of recall in the
recommendations (k = 7 and j = 10), i.e., we correctly rec-
ommended 8 out of 10 NFRs raised in the dataset. Moreover,
we observe recall rates greater than 70% and precision rates
of up to 49% based on lists of recommendations with a size
j equal to 5 (k ∈ {3, 5, 7, 10}), which can be easily handled
by Scrum Teams at Sprint Planning meetings and support the
early definition of NFRs. We also notice that the ideal number
of neighbors k is greater than or equal to 3.

Finally, we conclude that it is possible to automate the
definition of NFRs in scrum-based projects based on histori-
cal data. Furthermore, the precision observed in experiments
can be improved with a larger dataset, since the proposed
recommendation system is memory-based and the quality of
recommendations depends on the representativeness of the
dataset.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a NFRs recommendation system
to support Scrum practitioners to consider NFRs early in the
process. The proposed solution is divided into two main steps,
a Scrum instrumentation and a recommendation system. The
instrumentation contributes to the data collection process in
Scrum-based projects and can be used for different application
domains. The NFRs recommender uses historical data from
Scrum-based projects, which was not seen in previous works in
this research field. Therefore, our work can be used as baseline
for future works that intend to investigate this subject.

The offline experimental evaluation showed the feasibility
of automating the definition of NFRs through historical data
of Scrum projects. We observed an average recall rate of up
to 81%, which is promising. Although we observed values of

less than desired precision, we believe that the results can be
improved with a larger dataset.

For future work, we intend to keep the data collection
process to increase the dataset and improve its representative-
ness, and then, replicate experiments. Additionally, we intend
to carry out a case study with running Scrum-based projects
to evaluate recommendations in online environments.

ACKNOWLEDGMENT

The authors would like to thank CAPES for supporting this
work.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE TKDE, 17(6):734–749, 2005.

[2] V. Bajpai and R. P. Gorthi. On non-functional requirements: A survey.
In 2012 IEEE Students’ Conference on EECS, pages 1–4, March 2012.

[3] M. Bourimi, T. Barth, J. M. Haake, B. Ueberschär, and D. Kesdogan.
AFFINE for enforcing earlier consideration of NFRs and human factors
when building socio-technical systems following agile methodologies.
Lecture Notes in Computer Science, 6409 LNCS:182–189, 2010.

[4] T. Dingsyr, S. Nerur, V. Balijepally, and N. B. Moe. A decade of
agile methodologies: Towards explaining agile software development.
Journal of Systems and Software, 85(6):1213 – 1221, 2012. Special
Issue: Agile Development.

[5] D. Domah and F. J. Mitropoulos. The nerv methodology: A lightweight
process for addressing non-functional requirements in agile software
development. In SoutheastCon 2015, pages 1–7, April 2015.

[6] W. M. Farid. The normap methodology: Lightweight engineering
of non-functional requirements for agile processes. In Proceedings
of the 2012 19th APSEC - Volume 01, APSEC ’12, pages 322–325,
Washington, DC, USA, 2012. IEEE Computer Society.

[7] W. M. Farid and F. J. Mitropoulos. Normatic: A visual tool for modeling
non-functional requirements in agile processes. In 2012 Proceedings of
IEEE Southeastcon, pages 1–8, March 2012.

[8] A. Firdaus, I. Ghani, D. N. Abg Jawawi, and W. M. N. Wan Kadir.
Non functional requirements (NFRs) traceability metamodel for agile
development. Jurnal Teknologi, 77(9):115–125, 2015.

[9] A. Gunawardana and G. Shani. A Survey of Accuracy Evaluation
Metrics of Recommendation Tasks. The Journal of Machine Learning
Research, 10:2935–2962, 2009.

[10] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, predicting
and prioritizing (cepp) non-functional requirements metadata during the
early stages of agile software development. In SoutheastCon 2015,
pages 1–8, April 2015.

[11] R. R. Maiti and F. J. Mitropoulos. Capturing, eliciting, and prioritizing
(cep) nfrs in agile software engineering. In SoutheastCon 2017, pages
1–7, March 2017.

[12] R. R. Maiti and F. J. Mitropoulos. Prioritizing Non-Functional Require-
ments in Agile Software Engineering. Proceedings of the SouthEast
Conference on - ACM SE ’17, pages 212–214, 2017.

[13] A. E. Sabry and S. S. El-Rabbat. Proposed framework for handling
architectural nfr’s within scrum methodology. In Proceedings of the
International Conference on SERP, page 238. The Steering Committee
of The World Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp), 2015.

[14] V. Sachdeva and L. Chung. Handling non-functional requirements for
big data and iot projects in scrum. In 2017 7th International Conference
on Cloud Computing, Data Science Engineering - Confluence, pages
216–221, Jan 2017.

[15] T. Suryawanshi and G. Rao. A Survey to Support NFRs in Agile
Software Development Process. 6(6):5487–5489, 2015.

