
Using IFML for user interface modeling: an empirical

study

Randerson Queiroz, Tayana Conte

Computer Institute - IComp

Federal University of Amazonas - UFAM

Manaus, AM

(rsq, tayana)@icomp.ufam.edu.br

Anna Beatriz Marques

Federal University of Ceará - UFC

Russas, CE

beatriz.marques@ufc.br

Abstract — Front-end interface and user-system interaction are

factors that must be carefully considered in software development

due to their influence in quality of use. On some occasions, it is the

first concern addressed by developers, as it comes naturally from

the requirements analysis performed with stakeholders. IFML is a

standard language of OMG that supports the abstract description

of these front-end interfaces, for software applications on different

devices. IFML has been used in the context of Model-Driven

Development (MDD) and Model-Driven Architecture (MDA) to

describe the elements and behavior of interfaces, aiming to

generate code for those interfaces. However, it is necessary to

investigate the use of IFML in traditional software development,

in order to better understand how it is used for modeling front-end

interfaces. This article presents an empirical study that aimed to

verify the quality of IFML models created based on a subset of

requirements of software two web applications. The quality was

defined in terms of models’ correctness and completeness. The

results showed that the correctness of the models was low, varying

from 51% to 55%, while the completeness varied from 66% to

69%. In order to better understand the results, we analyzed

syntactic and semantic defects found.

Keywords-component: IFML, User Interface, Software

development, Empirical Study.

I. INTRODUCTION

 The Unified Modeling Language (UML) is widely used to
model the system in different stages of traditional software
development [6]. However, UML does not present a specific
model to describe specifications of front-end interface and user
interaction through this interface [9]. To cover this gap, the
OMG (Object Management Group) proposed the adoption of
Interaction Flow Modeling Language (IFML) [11]. IFML
supports the abstract description of front-ends for devices such
as computers, laptops, mobile phones and tablets. The objective
of IFML is to express the content of these front-end interfaces
and the data flows between the front-end components of the
application [3].

The IFML uses a single diagram, in which developers can
specify the user interface organization, the content displayed for
the users and the effect of interface events produced by user
interaction or by system notifications [1]. Since IFML is an
extension of UML, the artifacts generated by UML notation are
usually used as the basis for modeling with IFML [1][11][5].

IFML has often been used in the context of Model Driven
Development (MDD) Model Driven Architecture (MDA) [10]
to describe the elements and behavior of front-end interfaces,
aiming to generate codes of these interfaces [1] [2][8]. However,
the concern with the quality of the user interface is not present
only in MDD and MDA development contexts. Can the user
interface be modeled in a complete way using IFML in
traditional software development? What is the correctness of the
IFML diagrams created to represent the user interface?

 To answer these questions, we conducted an empirical
study in which graduate students (with experience in software
industry) modeled the front-end interface using IFML, based on
requirements of two web applications. The study aimed to verify
whether the subjects can model using IFML correctly and
completely in the traditional development context (not MDD or
MDA). In order to better understand the results, we analyzed the
syntactic and semantic defects of the models.

In order to analyze the completeness of a IFML model, we
verified whether the elements used by the subjects were
sufficient to represent the system requirements. In the analysis
of the correctness of a IFML model, we verified whether the
elements used by the subjects to represent the requirements were
used correctly according to IFML syntax. It is important to
conduct empirical studies in order to investigate the models and
languages suitable for supporting software development teams
in UI design.

The remainder of this paper is organized as follows: Section
II presents the basic elements of IFML. Section III shows how
we planned and executed the empirical study. Section IV shows
the analysis of the results. Finally, Section V presents a
discussion and final considerations.

II. INTERACTION FLOW MODELING LANGUAGE (IFML)

In this section we present a more detailed view of IFML and

its elements. For a better understanding, we present a simple

example of an IFML diagram.

The Interaction Flow Modeling Language (IFML) is a

platform-independent model (PIM) used to express interaction

design decisions regardless of the deployment platform [8].

Brambilla et al. [4] claim that IFML is designed to express the

content, the user interaction and the control behavior of front-

end software applications. Figure 1 shows the basic elements of

IFML. DOI reference number:10.18293/SEKE2018-103

Figure 1. Basic Elements of IFML.

The basic elements of IFML are described below: 1)
ViewContainer is an interface element that comprises elements
displaying content and supporting the interaction and/or other
ViewContainers; 2) ViewComponent is an interface element that
displays content, i.e., content and data entry elements contained
in ViewContainers; 3) Event is an occurrence that affects the
state of the application. Events can be produced by user
interaction, by the application or by an external system; 4)
Navigation Flow is an update of the interface elements in view
or triggering of an action caused by the occurrence of an event.
Data may be associated with the flow through parameter
bindings; 5) Parameter Binding is a specification in which an
input parameter of a source is associated with an output
parameter of a target; 6) Action is a piece of business logic
triggered by an event; it can be server-side (default) or client-
side, denoted as (Client).

Figure 2 shows an example of an IFML diagram, describing
a user interface where the user can search for a product by
entering some search criteria in the Product Search form. The
model consists of a Product view container (depicting a screen
or Web page) that contains two view components (visual widgets
placed on the screen), i.e., the Product Search form, where the
user can enter the search criteria, and the Search Result list,
which displays the search results. In addition, a product
exclusion action can be triggered when the user selects the
Exclusion Event associated with the Search Result.

Figure 2. Example of IFML diagram.

III. EMPIRICAL STUDY

In this section we present the empirical study, the details of

the study planning and the execution based on [13]. The

artifacts used in the empirical study are available in a technical

report [12].

A. Study Planning

The empirical study aimed to analyze the use of IFML in the
modeling of interfaces in order to analyze the quality of the
models in terms of correctness and completeness. Based on the
we defined the following research questions: Can the user
interface be modeled in a complete way using IFML in
traditional software development? What is the correctness of the
IFML diagrams created to represent the user interface?

We defined the necessary resources for its execution during
the planning of the study, as detailed below:

1) Context: we carried out the study in academic context

with graduate students.

2) Subjects: 16 graduate students participated in the study.

All subjects had experience in software industry. However, they

had not previously used IFML. We divided the subjects into two

groups for modeling different scenarios.

3) Artifacts used: we prepared a consent form, in which the

subjects could agree or not agree to make their data available

for analysis in this research. In order to assist the subjects during

modeling, we developed a guide of IFML elements.

4) Scenarios: the subjects used functional requirements of

a system as the basis for modeling the interface. The

requirements were described as scenarios. The scenario that

group A received described a system of an airline company,

which could be used to track flights to its destination. The

scenario that group B received described a website that

provided tips of restaurants by area of the city. Both scenarios

had the same number of requirements (four requirements).

a) Group A Scenario: the scenario of group A contained

the following requirements: 1) to access the system with login

and password; 2) to track previously registered flights; 3) to

register flights to be tracked; and 4) to configure notifications

with flight route updates.

b) Group B Scenario: this scenario contained the following

requirements: 1) to search for restaurant per area; 2) to bookmark

a chosen restaurant as favorite; 3) to view tips about the park nest

to a favorite restaurant; and 4) to confirm a restaurant booking.

B. Study Execution

The study was conducted in a single day lasting 2 hours and

30 minutes. We divided the activity into training, preparation of

the activity with receipt of the scenarios and modeling with

IFML. The study started with the training. In the training, the

subjects received training on all the elements of IFML. The

training contained examples and two practical exercises and

lasted about 1 hour and 30 minutes. After the training, the

subjects received and signed the consent form. The subjects

were randomly organized in two groups (A and B). Each subject

received a requirements scenario, according to the group he was

assigned to.

 After receiving the scenarios, the subjects started the

modeling step using IFML. After concluding the modeling task,

we carried out a discussion with the subjects about the activity

they developed. In the discussion, each subject talked a little

about their perceptions of the IFML. The discussion was

recorded via audio and video. Thus, the audio was transcribed

and analyzed.

IV. DATA ANALYSIS

This section presents the analysis of the results, through

which we aimed to identify the completeness and correctness of

the modeling. We also performed an analysis in order to identify

the syntactic and semantic defects of each model. The subjects’

perception about IFML was also analyzed. To perform this

analysis, a researcher inspected the models developed by both

groups and a second researcher validated the identified defects.

Data from subject S1 were excluded from the analysis because

he did not participate in all activity.

A. Completeness and Correctness

To achieve the completeness and correctness of each model,

we elaborated oracles in order to support the analysis. The

oracle corresponds to a possible solution for the scenarios

modeling and defines a set of IFML elements that can be used

in the solution. In the analysis, we used the oracles as basis for

analyzing the elements used by the subjects, the elements not

used and the elements that they could use in the model. Each

oracle has specific requirements for each scenario. For each

requirement, we listed which elements were necessary to model

the front-end related to the requirement described. Table I

shows part of the oracle, with the required elements for the

front-end related to the modeling of the Access System

requirement.

TABLE I. ORACLE GROUP A

Group A – Scenario A

Access System
ViewContainer

ViewComponent Form

Submit event

Type of Data

Action

Parameter Binding

In order to define the completeness of each model, we

proceeded with the sum of the number of elements used in the

requirements divided by the number of elements necessary to

represent the requirements according to the oracle. To obtain

the correctness of each model, we also performed a calculation

of the number of elements correctly used in the requirements

divided by the number of elements defined in the oracle. Table

II shows the mean of completeness and correctness of each

subject and its respective group.

TABLE II. COMPLETENESS AND CORRECTNESS RESULTS.

Group A

 S3 S5 S7 S8 S10 S11 S13 S15 Mean

Comple. 81% 67% 46% 86% 31% 82% 70% 89% 69%

Correct. 57% 52% 26% 74% 30% 70% 52% 83% 55%

Group B

 S2 S4 S6 S9 S12 S14 S16 S17 Mean

Comple. 50% 55% 86% 90% 57% 72% 50% 70% 66%

Correct. 41% 23% 64% 73% 27% 68% 45% 68% 51%

 The mean for completeness of the diagrams created by
group A and group B were close to 69% and 66%, respectively.
This shows that the subjects had difficulty to completely model
the requirements. The ViewComponent and Event elements were
not used. In addition, the mean for correctness of the diagrams
created by groups A and B were 55% and 51%, respectively.
This result shows that even though the elements have been used,

they were used incorrectly, thus decreasing the quality of the
diagram created.

Since the subjects from group A and B used different
scenarios, the results could have been influenced by the
difference between these scenarios. The level of difficulty for
modeling a requirement of one scenario could be greater than the
requirement of the other scenario. In order to verify whether the
scenarios had influenced the results, we applied a statistical
hypothesis test. Table III shows the null and alternative
hypotheses. The null hypotheses states that: “H01 - There is no
difference in terms of completeness in modeling with IFML
based on scenario A or B”, and “H02 - There is no difference in
terms of correctness in modeling with IFML based on scenario
A or B”.

TABLE III. NULL AND ALTERNATIVE HYPOTHESES

Null Hypotheses

H01 – There is no difference in terms of completeness in modeling with

IFML based on scenario A or B

H02 - There is no difference in terms of correctness in modeling with IFML

based on scenario A or B

Alternative Hypotheses

HA1 – There is a difference in terms of completeness in modeling based on

Scenario A in relation to Scenario B

HA2 – There is a difference in terms of correctness in the modeling based

on Scenario A in relation to Scenario B

We used the statistical Mann-Whitney non-parametric
method. We used α = 0.05 due to the sample size [5]. To perform
the tests, we used the SPSS tool v20.0.0. The obtained results
support the null hypotheses H01 and H02, indicating that there is
no significant difference in the completeness indicator (p =
0.878) nor in the correctness indicator (p = 0.574) when
modeling using IFML with scenario A or B. Therefore, the fact
that a group modeled using scenario A or B did not influence in
the way the subjects modeled. It means that the scenarios did not
influence the results of completeness and correctness, not
affecting the results reliability.

B. Syntactic and semantic defects

We decided to classify the defects in syntactic or semantic

for a better understanding about the defects and their impact.

We also explored the possible difficulties in using the elements

to model in a correct and understandable way. The concepts of

syntactic and semantic properties have been adapted to the

context of this study [8]. The definitions we used are: Syntactic,

defect characterized by the incorrect use of IFML elements;

Semantic, defect characterized by the incorrect modeling of the

problem domain. Figure 3 shows the total number of syntactic

and semantic defects, distributed into each group.

Figure 3. Total number of defect occurrences.

We identified 101 occurrences of defects, being 73 syntactic
and 28 semantic, considering all the diagrams created by the
subjects. When we did not consider repeated defects, we
obtained a list of 24 unique defects. Figure 3 shows that we
identified 41 occurrences of syntactic defects and 13 occurrences
of semantic defects in diagrams created based on “scenario A”.
On the other hand, we identified 32 occurrences of syntactic
defects and 15 of semantic defects in diagrams modeled based
on “scenario B”. For a better view, we listed the most common
defects in Table IV, mentioning the type and number of
occurrences for each defect. The list shows only the defects that
have been repeated more than once. The other defects that
occurred only once are not presented in the list.

TABLE IV. MOST COMMON DEFECTS

Defect Type of defect Number of
Occurrences

Does not specify the data type Syntactic 27

Uses the wrong event Syntactic 15

Does not inform the data that is being
passed

Syntactic 14

Uses the wrong ViewComponent Syntactic 6

Uses Default ViewContainer outside
of XOR ViewContainer

Syntactic 5

Did not model the interaction of
notification settings

Semantic 5

Did not model the actions cancel and
confirm

Semantic 4

Did not model the requirement
confirmation View

Semantic 4

The action to choose the View
Booking feature was not modeled

Semantic 3

We also listed the number of defects per element, but this
was only possible for syntactic defects. Making up a list for
semantic defects was not possible because 16 out of the total 28
semantic defects are related to the complete omission of a
requirement. These semantic defects are related to the omission
of all the elements that subjects could apply in the modeling, so
it is not possible to make the exact count of the elements
involved in each defect. Figure 4 shows all the syntactic defects
found in both scenarios, considering each possible element
involved in the defect.

1) Syntactic defects
Figure 4 shows the number of occurrences of defects in each

element of the IFML. The major number of defects is related to
the Parameter Binding component, with 16 defects. Although
the subjects used this element correctly in order to inform the
data related to the interactions modeled, they did not correctly
apply the standard specified by the language. There were also 14
occurrences of defects involving the select event. The subjects

preferred to only indicate that there was an event, without
specifying the element type. There was a large number of defect
involving the ViewComponent List and ViewComponent Details.
We identified 34 defects in total. Some of these occurrences are
related to the misuse of the ViewComponent type used to model
the requirement. This may indicate that the subjects did not
understand the difference among the types of view components.

As shown in Table IV, the most frequently defect “Does not
specify the data type” is related to the ViewComponent, in which
the subjects did not demonstrate the data of the components by
following the standard proposed by the language. The definition
of the type of data is typically represented in UML diagrams,
such as the class diagram. However, since the only artifact
elaborated in this study was the IFML diagram, the omission of
this type of information may reduce the understanding of the
content of the interface. The “Uses the wrong event” defect is
directly related to changes in the state of the modeled system.
These changes are initiated through the events and the subjects
did not use the correct events for each requirement. In some
cases, the subjects did not specify the type of event. This shows
that they did not understand the difference between event types.

The defect “Does not inform the data that is being passed” is
related to non-compliance with the standard language in the use
of the Parameter Binding element. In the particular context of
this study, this defect did not impair the comprehension of these
data. On the other hand, this defect may be harmful in systems
where the data stream is essential for the full operation of the
system itself. The defect “Uses Default ViewContainer outside
of XOR ViewContainer” refers to the non-organization of the
containers in the models. This shows that the subjects who
modeled with this defect had difficulty in understanding the
organization rule of the containers. Considering systems with a
large number of tabs and navigations among windows, this
defect would be potentially harmful.

2) Semantic defects
Among the 28 semantic defects we identified in the diagrams

created, 16 of them are complete omissions of a requirement or
part of a requirement. We noted that these defects are related to
the omission of the elements necessary to adequately model the
requirement. The reasons for this phenomenon of omission may
be the misunderstanding of the elements involved or the
tiresome that the subjects may have felt during the final part of
the modeling. However, the semantic defects of omission are
related to the requirements that can be considered as the most
difficult ones for modeling. For example, in Group A, the
semantic defects of omission are related to the requirement “to
configure notifications with flight route updates”. This

Figure 4. Number of syntactic defects per element

requirement requires a wider combination of elements to model
the interaction that the user needed to complete their goal. In
Group B, the requirement “to confirm a restaurant booking”
requires that the subject models the system feedback for the user.
For this requirement, we identified the major number of
semantic defects.

The action element was related to all semantic defects, so
there is a possibility that the major cause of this defect is the
misunderstanding about the way that elements should be used.
The quantitative data related to semantic defects indicates that
the subjects found to be more difficult to use correctly the action
element. Other semantic defects were repeated only once, e.g.
the defect "Wrong Organization of Containers" and "Wrong
Flow Sequence between containers". Both of them are semantic
defects and impair the understanding of the model as a whole.

3) Perception of the subjects
The results of the correctness indicated a high number of

occurrences of syntactic defects, pointed out a subjects'
difficulty in correctly using some of the elements of IFML.
Some subjects spontaneously commented something about this
difficulty, further reinforcing the results of the study.

Subject S4, for example, reported that “it is very challenging
in the form of representing the screens, even getting tiring
because of its many containers and types”. Subject S15 also
reported the same difficulty “it is difficult to use [the IFML] due
to the numerous containers, it ends up leaving the diagram a
little messy, making it difficult to visualize and have an idea of
the requirements which are being put there”.

We observed that some subjects considered difficult the
IFML elements with similar features. For example, elements like
ViewComponent and Event have several types to be used in
different situations in modeling. That difficulty was also
reported by subject S3 “it is difficult to use because it may have
many similar components, making it a little confusing when it
comes to choosing. There are too many elements, it's very
confusing when it comes to doing it”.

V. DISCUSSION AND FINAL CONSIDERATIONS

This study aimed to verify how graduate students model the
user interface using IFML. The overall results of this study
showed that the subjects had difficulties in modeling correctly
the front-end based on a scenario describing a set of
requirements. Furthermore, the elements of IFML were misused.
Syntactic defects showed that the subjects had major difficulties
in using the events and view component elements correctly.
Regarding semantic defects, 16 out of the 28 defects were of
total omissions of the requirements, which indicate models that
do not specify all the requirements described in the scenarios.

In the context of this study, the subjects were able to model
the requirements contained in the scenario with a completeness
of 69% and 66% (Groups A and B respectively). The correctness
of the models was even lower, with a mean of 55% and 51%
respectively. The low number of the correctness can be related
to the difficulties that the subjects have faced in using the
elements of IFML.

With the results of this study, we expect that this research
provides a better direction for professionals interested in using

IFML in the user interface design. The results explore how the
IFML diagram can be used in the interface design and possible
difficulties the professionals can face when using some IFML
elements. It is necessary to investigate the use of IFML in
different contexts, with subjects from different levels of
experience. The results of this research show that it is possible
to comprehensively model the front-end interface of a web
application using the IFML language. However, some
difficulties regarding the elements of the IFML language can
affects the correctness of the front-end interfaces.

Finally, as the study was applied in a small sample in an
academic environment, it should be replicated with a more
representative and heterogeneous sample.

ACKNOWLEDGMENTS

We would like to thank the financial support granted by
UFAM, CNPq through processes numbers 423149/2016-4 and
311494/2017-0, and CAPES through process number
175956/2013.

REFERENCES

[1] C. Bernaschina, S. Comai and P. Fraternali, “Formal semantics of OMG’s
Interaction Flow Modeling Language (IFML) for mobile and rich-client
application model driven development”, Journal of Systems and Software,
137, 239-260, 2018.

[2] C. Bernaschina, S. Comai and P. Fraternali, “IFMLEdit. org: model driven
rapid prototyping of mobile apps”, In Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems p. 207-208,
IEEE Press, 2017.

[3] M. Brambilla and P. Fraternali, “Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML”,
Morgan Kaufmann, 2014.

[4] M. Brambilla, E. Umuhoza and R. Acerbis, “Model-driven development
of user interfaces for IoT systems via domain-specific components and
patterns”, Journal of Internet Services and Applications, 8(1), 14, 2017.

[5] T. Dyba, V. Kampenes and D. Sjoberg, “A systematic review of statistical
power in software engineering experiments”, Information and Software
Technology, Volume 48, Issue 8, 2006.

[6] K. Frajták, M. Bureš and I. Jelínek, “Transformation of IFML schemas to
automated tests”, In Proceedings of the 2015 Conference on research in
adaptive and converggent systems p. 509-511, ACM. 2015.

[7] P. Kamthan, “A framework for understanding and addressing the semiotic
quality of use case models” Model-driven software development:
Integrating quality assurance. Hershey, PA: IGI Global, 2008

[8] N. Laaz and S. Mbarki, “A model-driven approach for generating RIA
interfaces using IFML and ontologies”, In Information Science and
Technology (CiSt), 2016 4th IEEE International Colloquium on p. 83-88,
IEEE, 2016.

[9] N. Moreno, P. Fraternali and A. Vallecillo, “WebML modelling in UML”,
IET software, 1(3), p. 67-80,2007

[10] J. R. P. Moreira and R. S. P. Maciel, “Towards a Models Traceability and
Synchronization Approach of an Enterprise Architecture” In The 29th
International Conference on Software Engineering & Knowledge
Engineering (SEKE), 2017.

[11] OMG, 2015. Interaction flow modeling language (IFML), version 1.0.
http://www. omg.org/spec/IFML/1.0/ .

[12] R. Queiroz, A. Marques and T. Conte, “USES Technical Report TR-
USES-2018-005. Using IFML for user interface modeling”. Technical
Report of Usability and Software Engineering Group (USES), 2018.
Available in http://uses.icomp.ufam.edu.br/relatorios-tecnicos/

[13] C. Wohlin, P. Runeson, and M. Höst, “Experimentation in Software
Engineering: An Introduction, Kluwer International Series in Software
Engineering, 2000.

