
DOI reference number: 10.18293/SEKE2017-095

A Framework for Developing Cyber Physical Systems

Xudong He
Florida International University, Miami, USA

Heng Yin
University of California at Riverside, Riverside, USA

Zhijiang Dong
Middle Tennessee State University, Murfreesboro, USA

Yujian Fu
Alabama A & M University, Huntsville, USA

Abstract— Cyber physical systems (CPSs) are pervasive in our
daily life from mobile phones to auto driving cars. CPSs are
inherently complex due to their sophisticated behaviors and thus
difficult to build. In this paper, we propose a framework to develop
CPSs based on a model driven approach with quality assurance
throughout the development process. An agent-oriented approach
is used to model individual physical and computation processes
using high level Petri nets, and an aspect-oriented approach is used
to integrate individual models. The Petri net models are
systematically mapped to classes and threads in Java, which are
enhanced and extended with domain specific functionalities.
Complementary quality assurance techniques are applied
throughout system development and deployment, including
simulation and model checking of design models, model checking
of Java code, and run-time verification of Java executable. We
demonstrate our framework using a car parking system.

Keywords - cyber physical systems; model driven development;
high level Petri nets; simulation; model checking, runtime
verification

I. INTRODUCTION
Cyber physical systems (CPSs) are pervasive in our daily

life and need to be extremely reliable since they are often safety
critical. CPSs consisting of computation and physical processes
are inherently complex and demonstrate many sophisticated
behaviors including synchronous, asynchronous, distributed,
real-time, discrete, and continuous [1]. In [2], several major
design challenges of CPSs were discussed, including
concurrency and timing, which are intrinsic and critical in CPSs
but are not adequately addressed in current computing
abstractions. While fundamental new technologies are needed
to develop CPSs, incremental improvements of existing
technologies including formal verification, simulation, software
engineering processes, and design patterns are important parts
of a potential solution [2].

In this paper, we provide a concrete framework to realize
the ideas in [2]. We present a model driven approach from high
level Petri nets to Java programs where several design heuristics
are provided for program derivation and system properties
mapping. Essential CPS design issues including concurrency
and timing are modeled using high level Petri nets and analyzed
through model checking and simulation. Assumed environment
constraints from hardware devices are checked during
implementation and runtime verification. The overall
framework is shown in Fig. 1.

Petri nets are a formal method well suited for modeling
concurrent and distributed systems. Various time extended Petri
nets are capable to deal with real-time systems [3]. High level
Petri nets can use time stamps associated with tokens and timing
related transition constraints to simulate time Petri nets [4].
Thus high level Petri nets are an excellent formal method for

modeling essential features of CPSs. In addition, we have
developed an agent oriented modeling approach to capture
CPSs at a high abstraction level where meaningful
computational components and physical processes with
independent behaviors are viewed as agents and modeled
individual high level Petri nets. An aspect oriented approach is
used to incrementally integrate system components represented
using individual high level Petri nets into a complete system
represented in a single system high level Petri net. The resulting
system net can be analyzed through simulation as well as model
checking. The above modeling and analysis techniques are
supported by tool chain PIPE+ [5] and SPIN [6]. A systematic
translation approach has been developed, where a set of
translation rules is used to map the individual agent nets into
corresponding Java threads to form the general program
structure. A complete Java program is obtained by combining
the translated general program structure with domain specific
program refinements. The additional refinements are necessary
to realize CPSs, especially domain dependent physical devices.
Bounded symbolic model checking and runtime-time
verification are performed to ensure model level properties and
additional properties are not violated in the implementation.
The model level analysis and implementation level analysis are
complementary. At model level, both safety and liveness
properties can be checked to detect potential errors in the
requirements with environmental assumptions such as the
hardware devices working properly. At the implementation
level, safety properties can be checked through bounded
symbolic model checking and monitoring the actual behavior of
hardware devices.

Our main contributions include: (1) a formal framework for
developing CPSs supported by a tool chain, (2) an incremental
agent-oriented modeling methodology for representing CPSs
using high level Petri nets, (3) a model level analysis
methodology combining simulation and model checking, (4) a
pattern based translation method for generating Java threads
from high level Petri net models, and (5) an implementation
level analysis methodology combining bounded symbolic
model checking and dynamic runtime verification.

II. CPS MODELING AND ANALYSIS
To effectively model and analyze the complex behaviors of

CPSs, many modeling techniques have been proposed and
adapted in recent years including formal methods such as
hybrid automata [7] and special graphical modeling languages
such as actor-oriented MoC [8]. High level Petri nets [9] are
well suited to model the complex behaviors of CPSs. The
graphical representation and data flow nature of Petri nets
provide a natural and easy to understand model to capture
physical and computation processes in CPSs. The executability
of Petri nets further facilitate model level analysis. In this paper,
we propose an agent-oriented approach to model individual
physical and computation processes by extending our prior
work [10] and an aspect-oriented approach [9] to synthesize
individual models to obtain a complete system model. In the
following sections, we provide some design heuristics of
applying high level Petri nets to model CPSs and demonstrate
them using a car parking system. The detailed Petri net
definitions are omitted due to space limit.

A. Modeling Individual Components
A high level Petri net can be used to capture the structure

and the behavior of a physical or computation process. Petri nets
naturally support synchronous, asynchronous, and distributed
control and data flows. High level Petri nets are capable to
model virtual time through time stamps associated with tokens
and transition constraints representing delays and durations.
Continuous behaviors of physical devices can be abstracted and
discretized using real typed places and the associated
transitions, and can be further refined during implementation.

Each type of physical devices (sensors and actuators) or
computation processes is modeled with a high level Petri net
called an agent net that has its own meaningful and
demonstrates independent reactive and/or proactive agent
behavior interacting with external environments, while concrete
physical devices or computation processes are with structured
tokens containing unique identification in the 1st field.
Specifically, we provide the following general design heuristics
in building an agent net:

● Attributes of a physical device or states of a computation
process are defined by places with appropriate types.
Discrete values are defined using string or integer types and
continuous values are defined using real type. Structured
types (Cartesian product of basic types) are used to define
complex attributes. Powerset is used to define multiple
physical devices and computation processes;

● Actions or state transitions are modeled with transitions
containing first order logic formulas defining the
preconditions and post-conditions;

● The interaction between a physical device and an external
environment can be modeled with a transition containing a
random function emulating the possible values from the
environment (open system) or with a transition picking up
a possible value from an additional place denoting the
external environment (closed system);

● Virtual time is modeled with tokens having an additional
field denoting time stamps and a special place modeling a

logical clock.

We demonstrate the above design heuristics in modeling a
robotic car parking system. Each robotic car has one color
sensor for navigating a path with colored lines and an ultrasonic
sensor for detecting obstacle during parking. The car parking
process involves the following steps: (1) finds the entrance of a
parking garage by detecting a green line, (2) moves forward
along a red line, (3) makes a turn when a blue line is detected,
and (4) completes the parking when the minimum specified
distance is reached. Based on the above simple system
description. Three individual agent nets corresponding to the
color sensor, the ultrasonic sensor, and the car parking process
are constructed. Only essential attributes of the sensors and car
are represented, for example, only one place ColorSensor for
holding the current detected color is needed for the color sensor.

B. Modeling the Whole System
The overall agent system is obtained by integrating

individual agent nets to form a system net that shows the
interaction, communication, and cooperation among different
agents. Synchronized activities are modeled through new joint
transitions with modified constraints, and asynchronous
activities are modeled through connecting a place in one agent
net to a transition in another agent net. An aspect oriented
approach [9] is used to build a complex model incrementally
through weaving individual Petri nets representing agents
capturing physical devices and computation processes. This
aspect oriented approach further supports system adaptation
and evolution, and facilitates compositional analysis. The
overall car parking system model after weaving three agent nets
is shown in the following Fig. 2.

C. Analyzing the System Model

A CPS system is often a hybrid system consisting of both
continuous hardware devices and discrete computation
processes. In most cases, the only available technique for
continuous components is simulation. However, formal
verification techniques based on symbolic reachability analysis
is available for sub classes of hybrid systems such as those can
be modeled using linear hybrid automata [1] where the state
transition rates are constants with restricted checking and
updating actions. High level Petri nets are executable and thus
support simulation of hybrid system models. Furthermore our
tool PIPE+ supports reachability analysis and model checking
using SPIN in addition to simulation.

1) Simulation and Simple Reachability Analysis

Simulation is carried by firing enabled transitions. Two
modes of simulation can be done in PIPE+: single steps and
multiple steps. Simulation can be used to test whether a model

satisfies the CPS requirements by examining the tokens in
places of interest or transition firing history. In addition to
simulation, we have also implemented a simple reachability
analysis that checks whether a place hold a particular value
during an execution, which either confirms our intention
(witness) or finds a potential error (counter example). When a
reachability is confirmed, the simulation time and the transition
firing sequence are recorded. However simple reachability
analysis may not be conclusive when a search does not end.
Repeated checking can be used to eliminate possible false
negative in systems with finite execution sequences.

The following table provides a simple reachability analysis
of whether a waiting car will be parked.

Table I – Simple reachability checking results

Parked Reachability Time (ms)
c Yes 459

The firing sequence is very long in this case since both the color
sensor and the ultrasonic sensor are modeled as independent
agents, which are always enabled and keep firing.

2) Model Checking

Model checking performs exhaustive search on finite state
systems and thus is not directly applicable to continuous
systems. However we may be able to model check the bounds
(called barrier certificates) of some continuous state variables.
PIPE+ has a translator that automatically converts a high level
Petri net model to a Promela program in SPIN. During the
translation, each place is translated into a channel with the
place’s type. This kind of conversion may not always work due
to the loss of precision since Promela only supports integer.

Properties to be checked are expressed using linear time
temporal logic formulas. Safety and liveness properties are
expressed in the general form []placename(x) and <>
placename(x) respectively, where [] and <> are the temporal
operators always and sometimes in SPIN and x can be a variable
or a constant (a specific token). More complex formulas are
defined using logical connectives. A safety property of the
parking system is that a car is collision free during parking
[]!(UltraSensor(v)&&v<5), where s is the ultrasonic sensor
detected distance value. In the model, we can only use assumed
value range for checking. A liveness property of the car parking
system is that a waiting car will eventually be parked. Table II
provides model checking results of the above properties.

Table II – Model checking results

Property Satisfied Time (ms)
[]!(UltraSensor(v) && v <5) Yes 47

Waiting(c)-><>Parked(c) Yes 1

III. MODEL REALIZATION
Design models help us to better understand system features

including functionality, structure, and behavior as well as to
detect and prevent early system development errors. To
leverage the design models to increase productivity and
improve code quality, model driven development based on
UML emerged in the last decade [11], in which UML based

models are translated into programs of object oriented
programming languages. However since there are multiple
UML notations such as class diagram, state machine diagram,
and sequence diagram for representing different aspects of a
system, it is not easy to obtain a coherent set of code. We
present a model driven approach to realize our high level Petri
net models, which provides a systematic way of writing Java
programs and establishes the traceability between the models
and resulting programs. Our model driven approach consists of
the general code structure and domain specific refinement. The
general code structure can be systematically generated from the
agent models and the overall system model. However the
domain specific refinement requires manual process in
identifying and defining additional features of the system,
especially with regard to the physical devices.

The following translation rules are used to generate the
general code structure from high level Petri net models:

(1) A class is generated for each agent net, where attributes are
defined based on the unique data type fields of the places, and
methods are the transitions. The behavior of objects (tokens) is
defined by the net structure;

(2) A thread is created based on each class in (1) to capture the
independent active behavior of agents modeled by the agent net;

(3) Agent interactions modeled through agent net weaving are
translated into method calls between threads in (2);

(4) A main program is generated for the overall model, which
starts all the threads generated in (2) according to the initial
marking;

(5) A package is created to include the above code files.

Applying the above translation rules to the car parking
system, we obtain the following Java code skeleton (due to
space limit, only the translation of car parking agent model and
overall system model are shown) together with some blue
colored domain specific refinement code:

● The Car.java class and the Parking.java thread from
parking process agent model:
package EV3;
import lejos.hardware.motor.Motor;
import lejos.hardware.motor.NXTRegulatedMotor;
…
public class Car {

float wheelWidth = 5.5; // in cm
float trackWidth = 30.0; // in cm
NXTRegulatedMotor leftM = Motor.A;
NXTRegulatedMotor rightM = Motor.B;
UltraSensor ultrasensor;
ColorSensor colorsensor;
…

}
package EV3;
…
public class Parking extends Thread {

private Car carobj;
public void findEntrance (…) {…}
public void findPath (…) {…}
public void findTurn (…) {…}
public void park (…) {…}
 …
public void run {

 findEntrance(…);
 findPath(…);
 findTurn(…);
 park(…);
}

}
● The main program from the system model:

package EV3;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import lejos.robotics.Color;

 import lejos.utility.Delay;
public Class Init {
 public static void main(String[] args){
 Car car = new Car();

ColorDetection cd = new ColorDetection(car);
ObstacleDetection od = new ObstacleDetection(car);
 Parking p = new Parking(car);
 cd.start();
 od.start();
 p.run();
 }
}
In the above code, ColorDetection is a thread object that

asks the color sensor to keep reading and storing the current
color value as long as parking is not completed. The color
sensor is represented by the class ColorSensor.
ObstacleDetection is also a thread object that asks the ultrasonic
sensor to keep reading the distance to the object ahead of the
car in current path as long as parking is not completed. The
ultrasonic sensor is represented by the class UltrasonicSensor.

IV. RUNTIME VERIFICATION
A good model can speed up the development of the system

and provide quality assurance to the implementation. However,
it doesn’t guarantee the correctness of the implementation due
to several reasons. First, the model is an abstraction of the
system. Some details and algorithms are omitted intentionally
and some system properties cannot be specified. Second, the
model driven approach requires some manual refinements and
the complete system with additional code needs to be checked.

To overcome the limitations and restrictions of model
driven development, we adopt runtime verification to ensure
system properties at implementation level. Runtime verification
is a lightweight formal approach to detect violation of
properties. In our work, properties are specified using linear
temporal logic (LTL) formula. Monitors are generated from
these LTL formulas using JavaMop [12] and woven into system
implementation as aspects using AspectJ [13]. This ensures the
independence of system implementation from monitor – the
runtime verification code.

LTL properties specified and analyzed at model level need
to be monitored in implementation level to improve confidence
of system implementation. However, atomic predicates of LTL
formula in implementation level typically represent occurrences
of events such as object creation, object initialization, method
call, member data access and mutation. Such events can be
specified in conjunction with conditions on function arguments,
which are absent at model level. The following principles are
provided to guide the mapping of atomic predicates (places) in
Petri net model to implementation:

(1) A place representing a state of the agent net:

a. If a class generated from the agent net has a member data
representing the state, then the place is mapped to the event
of changing member data. For example, place Parked
represents a state of car and class Car has a member data
parkComplete denoting this state, thus Parked(c) is mapped
to the event of Car.parkComplete being set to true.

b. If a class generated from the agent net doesn’t have a
member data representing the state, then an object reaching
this state is a result of a function call and is mapped to the
event that occurs whenever the function call is completed.

(2) A place representing the duration of an action such as
Turning in the agent net: the place is mapped to the event
of executing the function starting the action.

In our study, five different properties are designed and
monitored at runtime, including:

Property 1: After detecting the entrance, a car will park
successfully within a given time period;

Property 2: A car starts turning to a parking lot only after a blue
line is detected;

Property 3: During the parking process, a car will never
approach too close to any object on the path.

Due to space limit, we only provide and discuss the monitor
code of property 1. This liveness property is to guarantee the
correctness of the overall program: A car eventually parks
successfully. In the model level, it is specified as: [](Waiting(c)
-> <>Parked(c)). This property can be verified in the model but
its violation cannot be determined at runtime due to its infinite
nature. Therefore, we modify the property to reflect the reality
– the car must be parked within a given time period. Such
modification is reasonable given the unreliable nature of robots:
the color sensor may report wrong color or miss a color. The
monitor of this property contains the following three main
events: entranceDetectedtrue, parkCompletedtrue and timeout.
Event entranceDetectedtrue occurs when car’s member data
entranceDetected becomes true. When entranceDetectedtrue
occurs, a timer is started. Event parkCompletedtrue occurs when
car’s member data parkComplete is set to true. Event timeout
occurs when a given time expires.
event entranceDetectedtrue after(Car car, boolean val) :

set(private boolean Car.entranceDetected)
 && args(val) && target(car) && condition(val){
 //start timer
 ...
 }

event parkCompletedtrue after(Car car, boolean val) :
 set(private boolean Car.parkComplete)
 && args(val) && target(car) && condition(val)) {
 //kill timer
 }

event timeout after(TimeoutEventGenerator t) :
execution(publicvoidTimeoutEventGenerator.timeoutEvent())

 && target(t) && condition(t == teg) {
 }

ltl:[](entranceDetectedtrue =>
 (!timeout U parkCompletedtrue))

The second property in model level specified as:
[](Searching(c) => <>ColorSensor(Blue)) can be verified at
both model level and implementation level.

The third property is a safety property to ensure collision

free during parking. In model level, it is specified as:
[](UltraSensor(v) /\ v < value), where value is a given constant.
However, the verification results of such safety properties are
based on some assumptions, and thus their violations must be
monitored during runtime.

Therefore runtime verification complements model level
and implementation analysis through monitoring program
behaviors that cannot be fully verified at model and
implementation levels due to the limitation of models or
bounded space explosion at implementation level.

V. IMPLEMENTATION-LEVEL MODEL CHECKING
Implementation level model checking is complementary to

both modeling and runtime verification. While modeling is
concerned about the correctness at design level, as the name
suggests, implementation level model checking aims to verify
the properties in the actual software implementation, because
errors may be introduced during the software implementation.

It is also well accepted that model checking and runtime
verification should be combined to address each other’s
weaknesses [14, 15]. Model checking achieves completeness,
but often is too conservative and impractical for many realistic
applications, whereas runtime verification can perform
excellent checks over a portion of the program that is actually
executed during the real deployment.

Researchers have explored different approaches to combine
model checking and runtime verification. For instance, [15]
presents an analysis framework that can reuse the same
analysis/verification algorithms for both static and dynamic
analysis, in other words, model checking and runtime
verification. While this is useful, it does not answer when to use
model checking and when to use runtime verification. [14]
explores the idea of partitioning a software system, such that
one partition can be verified using model checking and the other
can be checked via runtime verification. However, a user must
identify this partitioning boundary based on her domain
knowledge, which may not be practical in reality.

A. Bounded Symbolic Model Checking
In this work, we explore a new approach to combine model

checking and runtime verification, namely bounded symbolic
model checking. Specifically, we perform symbolic execution
to examine the program execution space as much as possible to
directly verify the property validation logic inserted by runtime
verification. Given that a program may have infinite loops or
loop conditions depending on symbolic inputs, the program
execution space is infinitely large. As a result, our symbolic
execution is bounded to search limited iterations in each loop.

Fig.3 illustrates the workflow of this technique. Given a CPS

program, we perform symbolic execution to generate a set of
test cases, which will exercise as many code paths as possible.
These test cases are then fed into the program with runtime
verification code weaved in, to verify the properties.

It is worth noting that we do not directly perform symbolic
execution on the program with runtime verification code
weaved in. This is because the inserted runtime verification
code greatly increases the complexity of the code logic, and
symbolic execution on it will quickly run into state explosion
problem.

Moreover, for convenience, we directly take advantage of the
runtime verification code that has already been inserted, rather
than verify the properties separately. In this way, we can also
detect errors introduced by runtime verification.

B. Implementation
We implemented this idea as a plugin to the Java Path Finder

framework [16] to perform model checking on LeJOS programs
1) JPF model classes

A LeJOS program can only run inside the LeJOS
environment. As a result, it cannot run directly within JPF. In
order to analyze a LeJOS program within JPF, we need to
provide proper model classes to simulate the behaviors of
related LeJOS APIs and classes. More specifically, we model
following LeJOS classes:

lejos.hardware.lcd.LCD;
lejos.hardware.motor.BaseRegulatedMotor;
lejos.hardware.sensor.EV3ColorSensor;
lejos.hardware.sensor.EV3UltrasonicSensor;
lejos.hardware.sensor.SensorMode;
lejos.hardware.sensor.UARTSensor;
lejos.robotics.navigation.MovePilot;

2) JPF Symbolic Execution

We make use of JPF-symbc to perform symbolic
execution. For the auto parking example, the program reads
input from the color sensor and the ultrasonic sensor. Therefore,
by adding JPF symbolic annotations, we make these sensors
return symbolic values.

Since the auto parking program repeatedly reads from the
sensors and perform corresponding behaviors, there exist
several infinite loops. To ensure symbolic execution terminates
within a reasonable time frame, we limit the number of loop
iterations, by using JPF Verify API.

Following is a code snippet showing how we limit loop
iterations in the auto parking program:
int in_count = 0;
int out_count = 0;
while (carObj.isFindLine()) {
 int color = getColorSin(1);
 while(color != Color.RED && color != Color.BLUE){
 in_count ++;
 Verify.ignoreIf(in_count > 3);
 ...
 }
 out_count++;
 Verify.ignoreIf(out_count > 2);
 ...
}

In this example, there are two while loops, inner loop and

outer loop. There is a chance of program being trapped in either
inner loop or outer loop (or both) during execution. So, we add
a counter for each loop. When the counter is larger than a
threshold, JPF will not continue execute the current path. We
then solve the constraint for each path, and generate test inputs.

C. Evaluation results
Table III – Bounded symbolic model checking results

of test cases # of violations Generation time Replay time

688 344 519 s 13120 s

Table III lists the performance results for our bounded

symbolic model checking on the original auto parking example.
Symbolic execution generated 688 test cases totally in 519
seconds.

We then replayed these test cases on the auto parking
program with runtime verification logic weaved in. The replay
lasted for 13120 seconds. This process is significantly slower,
because the auto parking program periodically calls
Delay.msDelay(int time) to wait for amount of time. Symbolic
execution would ignore this delay to quickly explore multiple
execution paths, while during replay in order to validate time-
related properties, we cannot ignore these delays.

Eventually, we observed violations in 344 test cases. All
the violations happened on only one LTL property, which is
collision free property. This property is violated when the EV3
car approaches too close to an obstacle.
public void turn() {
 if (carObj.getCMD() == 1){
 carObj.pilot.stop();
 carObj.pilot.setAngularSpeed(7);
 carObj.pilot.arc(25, 90, true);
 carObj.setMoving(true);
 Delay.msDelay(15000);
 }else if (carObj.getCMD()==0){
 carObj.pilot.stop();
 carObj.setMoving(false);
 }
}

In the above example, the EV3 car would possibly turn for
15000 milliseconds. After each turn, Ultrasonic sensor is used
to detect distance between an obstacle and EV3. When the EV3
car is running in a physical system (parking lot), this could be a
safe action due to parking lot layout. However, during symbolic
execution without knowledge about physical system, JPF
explores all possible paths, and could read in a distance value
less than safe distance after such a long turn, and results in a
violation of collision free property.

Through bounded symbolic model checking, we have
verified that four LTL properties are ensured at least within a
limited search scope. When resource is limited on the LeJOS
system, one might consider removing the runtime monitor code
for checking these four properties. On the other hand, collision
free property cannot be properly verified using model checking,
so runtime verification on this property is necessary.

VI. CONCLUSION
This paper presented a framework for developing CPSs

supported by a tool chain. High level Petri nets are used for
modeling CPSs due to their capability in addressing the critical
features including concurrency and timing of CPSs. An
incremental agent-oriented modeling methodology is used for
creating CPS models. The resulting models are analyzed using
simulation and model checking to detect early design problems.
A translation method for generating general Java thread
structure from high level Petri net models is provided. The
resulting general Java code structure is manually extended with
domain specific code refinement to obtain a complete program.
This partial manual process of domain specific refinement
requires creativity in adding details and thus is unavoidable;
however is minimized in our framework. Implementation level
quality assurance is carried out by combining bounded
symbolic model checking and dynamic runtime verification.
We demonstrated our framework thorough a simple parking
system. There are still many gaps to fill to make our framework
successful. We are currently working on a multi-car parking
system and a drone system to gain more experience with regard
to the applicability and scalability of our approach.

ACKNOWLEDGMENT
This work was partially supported by AFRL under FA8750-

15-2-0106. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.

REFERENCES

[1] R. Alur: “Principles of Cyber-Physical Systems”, MIT Press, 2015.
[2] E. Lee: “Cyber Physical Systems: Design Challenges”, Proc. of

International Symposium on Object/Component/Service-oriented Real-
Time Distributed Computing, Orlando, FL, 2008, 363-369.

[3] D. Xu, X. He, and Y. Deng: “Schedulability Analysis of Real-Time
Systems Using Time Petri Nets”, IEEE Transaction on Software
Engineering, vol.28, no.10, 2002, 984-996.

[4] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzi: “A Unified High-
Level Petri Net Formalism for Time-Critical Systems”, IEEE
Transactions on Software Engineering, vol.17, no. 2, 1991, 160-172.

[5] Su Liu and Xudong He: “PIPE+Verifier - A Tool for Analyzing High
Level Petri Nets”, Proc. of the 27th International Conference on Software
Engineering and Knowledge Engineering (SEKE15), Pittsburgh, July 6 –
8, 2015.

[6] Gerard Holzmann: The SPIN Model Checker, Addison Wesley, 2004.
[7] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine: “The algorithmic analysis of hybrid
systems”, Theoretical Computer Science, vol. 138, 1995, 3 – 34.

[8] P. Derler, E. Lee, and A. Vincentelli: “Modeling Cyber-Physical
Systems”, Proceedings of the IEE, vol. 100, no.1, 2012, 13 – 28.

[9] X. He: “A Comprehensive Survey of Petri Net Modeling in Software
Engineering”, International Journal of Software Engineering and
Knowledge Engineering, vol. 23, no. 5, 2013, 589-626.

[10] L. Chang, S. Shatz, and X. He: “A Methodology for Modeling Multi-agent
Systems using Nested Petri Nets”, International Journal of Software
Engineering and Knowledge Engineering, vol.22, no.7, 2012, 891-926.

[11] B. Selic: “The Pragmatics of Model-Driven Development”, IEEE
Software, 2003, 10 – 25.

[12] D. Jin, P. Meredith, C. Lee, and G. Rosu: “JavaMop: Efficient Parametric
Runtime Monitoring Framework”, International Conference on Software
Engineering, Zurich, Switzerland, June 2 – 9, 2012.

[13] The AspectJ Project homepage: https://eclipse.org/aspectj/.
[14] T. Hinrichs, P. Sistla, and L. Zuck: “Model Check What You Can,

Runtime Verify the Rest”, EPiC Series in Computing, vol. 42, 2014, 234
– 244.

[15] C. Artho and A. Biere: “Combining Static and Dynamic Analysis”,
Electronic Notes in Theoretical Computer Science, vol.131, 2005, 3 – 14.

[16] Java Path Finder: http://javapathfinder.sourceforge.net.

https://eclipse.org/aspectj/
http://javapathfinder.sourceforge.net/

	I. Introduction
	II. CPS Modeling and Analysis
	A. Modeling Individual Components
	B. Modeling the Whole System
	C. Analyzing the System Model

	III. Model Realization
	IV. Runtime Verification
	V. Implementation-Level Model Checking
	A. Bounded Symbolic Model Checking
	B. Implementation
	1) JPF model classes
	2) JPF Symbolic Execution

	C. Evaluation results

	VI. Conclusion
	Acknowledgment
	References

