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Abstract— Cyber physical systems (CPSs) are pervasive in our 
daily life from mobile phones to auto driving cars. CPSs are 
inherently complex due to their sophisticated behaviors and thus 
difficult to build. In this paper, we propose a framework to develop 
CPSs based on a model driven approach with quality assurance 
throughout the development process. An agent-oriented approach 
is used to model individual physical and computation processes 
using high level Petri nets, and an aspect-oriented approach is used 
to integrate individual models. The Petri net models are 
systematically mapped to classes and threads in Java, which are 
enhanced and extended with domain specific functionalities. 
Complementary quality assurance techniques are applied 
throughout system development and deployment, including 
simulation and model checking of design models, model checking 
of Java code, and run-time verification of Java executable. We 
demonstrate our framework using a car parking system.  
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I.  INTRODUCTION 
Cyber physical systems (CPSs) are pervasive in our daily 

life and need to be extremely reliable since they are often safety 
critical. CPSs consisting of computation and physical processes 
are inherently complex and demonstrate many sophisticated 
behaviors including synchronous, asynchronous, distributed, 
real-time, discrete, and continuous [1]. In [2], several major 
design challenges of CPSs were discussed, including 
concurrency and timing, which are intrinsic and critical in CPSs 
but are not adequately addressed in current computing 
abstractions. While fundamental new technologies are needed 
to develop CPSs, incremental improvements of existing 
technologies including formal verification, simulation, software 
engineering processes, and design patterns are important parts 
of a potential solution [2]. 

In this paper, we provide a concrete framework to realize 
the ideas in [2]. We present a model driven approach from high 
level Petri nets to Java programs where several design heuristics 
are provided for program derivation and system properties 
mapping. Essential CPS design issues including concurrency 
and timing are modeled using high level Petri nets and analyzed 
through model checking and simulation. Assumed environment 
constraints from hardware devices are checked during 
implementation and runtime verification. The overall 
framework is shown in Fig. 1.  

Petri nets are a formal method well suited for modeling 
concurrent and distributed systems. Various time extended Petri 
nets are capable to deal with real-time systems [3]. High level 
Petri nets can use time stamps associated with tokens and timing 
related transition constraints to simulate time Petri nets [4]. 
Thus high level Petri nets are an excellent formal method for 

modeling essential features of CPSs. In addition, we have 
developed an agent oriented modeling approach to capture 
CPSs at a high abstraction level where meaningful 
computational components and physical processes with 
independent behaviors are viewed as agents and modeled 
individual high level Petri nets. An aspect oriented approach is 
used to incrementally integrate system components represented 
using individual high level Petri nets into a complete system 
represented in a single system high level Petri net. The resulting 
system net can be analyzed through simulation as well as model 
checking. The above modeling and analysis techniques are 
supported by tool chain PIPE+ [5] and SPIN [6]. A systematic 
translation approach has been developed, where a set of 
translation rules is used to map the individual agent nets into 
corresponding Java threads to form the general program 
structure. A complete Java program is obtained by combining 
the translated general program structure with domain specific 
program refinements. The additional refinements are necessary 
to realize CPSs, especially domain dependent physical devices. 
Bounded symbolic model checking and runtime-time 
verification are performed to ensure model level properties and 
additional properties are not violated in the implementation. 
The model level analysis and implementation level analysis are 
complementary. At model level, both safety and liveness 
properties can be checked to detect potential errors in the 
requirements with environmental assumptions such as the 
hardware devices working properly. At the implementation 
level, safety properties can be checked through bounded 
symbolic model checking and monitoring the actual behavior of 
hardware devices. 

Our main contributions include: (1) a formal framework for 
developing CPSs supported by a tool chain, (2) an incremental 
agent-oriented modeling methodology for representing CPSs 
using high level Petri nets, (3) a model level analysis 
methodology combining simulation and model checking, (4) a 
pattern based translation method for generating Java threads 
from high level Petri net models, and (5) an implementation 
level analysis methodology combining bounded symbolic 
model checking and dynamic runtime verification. 



 

II. CPS MODELING AND ANALYSIS 
To effectively model and analyze the complex behaviors of 

CPSs, many modeling techniques have been proposed and 
adapted in recent years including formal methods such as 
hybrid automata [7] and special graphical modeling languages 
such as actor-oriented MoC [8]. High level Petri nets [9] are 
well suited to model the complex behaviors of CPSs. The 
graphical representation and data flow nature of Petri nets 
provide a natural and easy to understand model to capture 
physical and computation processes in CPSs. The executability 
of Petri nets further facilitate model level analysis. In this paper, 
we propose an agent-oriented approach to model individual 
physical and computation processes by extending our prior 
work [10] and an aspect-oriented approach [9] to synthesize 
individual models to obtain a complete system model. In the 
following sections, we provide some design heuristics of 
applying high level Petri nets to model CPSs and demonstrate 
them using a car parking system. The detailed Petri net 
definitions are omitted due to space limit. 

A. Modeling Individual Components 
A high level Petri net can be used to capture the structure 

and the behavior of a physical or computation process. Petri nets 
naturally support synchronous, asynchronous, and distributed 
control and data flows. High level Petri nets are capable to 
model virtual time through time stamps associated with tokens 
and transition constraints representing delays and durations. 
Continuous behaviors of physical devices can be abstracted and 
discretized using real typed places and the associated 
transitions, and can be further refined during implementation. 

Each type of physical devices (sensors and actuators) or 
computation processes is modeled with a high level Petri net 
called an agent net that has its own meaningful and 
demonstrates independent reactive and/or proactive agent 
behavior interacting with external environments, while concrete 
physical devices or computation processes are with structured 
tokens containing unique identification in the 1st field. 
Specifically, we provide the following general design heuristics 
in building an agent net: 

● Attributes of a physical device or states of a computation 
process are defined by places with appropriate types. 
Discrete values are defined using string or integer types and 
continuous values are defined using real type. Structured 
types (Cartesian product of basic types) are used to define 
complex attributes. Powerset is used to define multiple 
physical devices and computation processes; 

● Actions or state transitions are modeled with transitions 
containing first order logic formulas defining the 
preconditions and post-conditions; 

● The interaction between a physical device and an external 
environment can be modeled with a transition containing a 
random function emulating the possible values from the 
environment (open system) or with a transition picking up 
a possible value from an additional place denoting the 
external environment (closed system); 

● Virtual time is modeled with tokens having an additional 
field denoting time stamps and a special place modeling a 

logical clock. 

We demonstrate the above design heuristics in modeling a 
robotic car parking system. Each robotic car has one color 
sensor for navigating a path with colored lines and an ultrasonic 
sensor for detecting obstacle during parking. The car parking 
process involves the following steps: (1) finds the entrance of a 
parking garage by detecting a green line, (2) moves forward 
along a red line, (3) makes a turn when a blue line is detected, 
and (4) completes the parking when the minimum specified 
distance is reached. Based on the above simple system 
description. Three individual agent nets corresponding to the 
color sensor, the ultrasonic sensor, and the car parking process 
are constructed. Only essential attributes of the sensors and car 
are represented, for example, only one place ColorSensor for 
holding the current detected color is needed for the color sensor.  

B. Modeling the Whole System 
The overall agent system is obtained by integrating 

individual agent nets to form a system net that shows the 
interaction, communication, and cooperation among different 
agents. Synchronized activities are modeled through new joint 
transitions with modified constraints, and asynchronous 
activities are modeled through connecting a place in one agent 
net to a transition in another agent net. An aspect oriented 
approach [9] is used to build a complex model incrementally 
through weaving individual Petri nets representing agents 
capturing physical devices and computation processes. This 
aspect oriented approach further supports system adaptation 
and evolution, and facilitates compositional analysis. The 
overall car parking system model after weaving three agent nets 
is shown in the following Fig. 2.  

 
C. Analyzing the System Model 

A CPS system is often a hybrid system consisting of both 
continuous hardware devices and discrete computation 
processes. In most cases, the only available technique for 
continuous components is simulation. However, formal 
verification techniques based on symbolic reachability analysis 
is available for sub classes of hybrid systems such as those can 
be modeled using linear hybrid automata [1] where the state 
transition rates are constants with restricted checking and 
updating actions. High level Petri nets are executable and thus 
support simulation of hybrid system models. Furthermore our 
tool PIPE+ supports reachability analysis and model checking 
using SPIN in addition to simulation. 

1) Simulation and Simple Reachability Analysis 

Simulation is carried by firing enabled transitions. Two 
modes of simulation can be done in PIPE+: single steps and 
multiple steps. Simulation can be used to test whether a model 



 

satisfies the CPS requirements by examining the tokens in 
places of interest or transition firing history. In addition to 
simulation, we have also implemented a simple reachability 
analysis that checks whether a place hold a particular value 
during an execution, which either confirms our intention 
(witness) or finds a potential error (counter example). When a 
reachability is confirmed, the simulation time and the transition 
firing sequence are recorded. However simple reachability 
analysis may not be conclusive when a search does not end. 
Repeated checking can be used to eliminate possible false 
negative in systems with finite execution sequences. 

The following table provides a simple reachability analysis 
of whether a waiting car will be parked. 

Table I – Simple reachability checking results 

Parked Reachability Time (ms) 
c Yes 459 

The firing sequence is very long in this case since both the color 
sensor and the ultrasonic sensor are modeled as independent 
agents, which are always enabled and keep firing. 

2) Model Checking 

Model checking performs exhaustive search on finite state 
systems and thus is not directly applicable to continuous 
systems. However we may be able to model check the bounds 
(called barrier certificates) of some continuous state variables. 
PIPE+ has a translator that automatically converts a high level 
Petri net model to a Promela program in SPIN. During the 
translation, each place is translated into a channel with the 
place’s type. This kind of conversion may not always work due 
to the loss of precision since Promela only supports integer. 

Properties to be checked are expressed using linear time 
temporal logic formulas. Safety and liveness properties are 
expressed in the general form []placename(x) and <> 
placename(x) respectively, where [] and <> are the temporal 
operators always and sometimes in SPIN and x can be a variable 
or a constant (a specific token). More complex formulas are 
defined using logical connectives. A safety property of the 
parking system is that a car is collision free during parking 
[]!(UltraSensor(v)&&v<5), where s is the ultrasonic sensor 
detected distance value. In the model, we can only use assumed 
value range for checking. A liveness property of the car parking 
system is that a waiting car will eventually be parked. Table II 
provides model checking results of the above properties. 

Table II – Model checking results 

Property   Satisfied Time (ms) 
[]!(UltraSensor(v) && v <5) Yes 47 

Waiting(c)-><>Parked(c) Yes 1 
 

III. MODEL REALIZATION 
Design models help us to better understand system features 

including functionality, structure, and behavior as well as to 
detect and prevent early system development errors. To 
leverage the design models to increase productivity and 
improve code quality, model driven development based on 
UML emerged in the last decade [11], in which UML based 

models are translated into programs of object oriented 
programming languages. However since there are multiple 
UML notations such as class diagram, state machine diagram, 
and sequence diagram for representing different aspects of a 
system, it is not easy to obtain a coherent set of code. We 
present a model driven approach to realize our high level Petri 
net models, which provides a systematic way of writing Java 
programs and establishes the traceability between the models 
and resulting programs. Our model driven approach consists of 
the general code structure and domain specific refinement. The 
general code structure can be systematically generated from the 
agent models and the overall system model. However the 
domain specific refinement requires manual process in 
identifying and defining additional features of the system, 
especially with regard to the physical devices. 

The following translation rules are used to generate the 
general code structure from high level Petri net models: 

(1) A class is generated for each agent net, where attributes are 
defined based on the unique data type fields of the places, and 
methods are the transitions. The behavior of objects (tokens) is 
defined by the net structure; 

(2) A thread is created based on each class in (1) to capture the 
independent active behavior of agents modeled by the agent net; 

(3) Agent interactions modeled through agent net weaving are 
translated into method calls between threads in (2); 

(4) A main program is generated for the overall model, which 
starts all the threads generated in (2) according to the initial 
marking; 

(5) A package is created to include the above code files. 

Applying the above translation rules to the car parking 
system, we obtain the following Java code skeleton (due to 
space limit, only the translation of car parking agent model and 
overall system model are shown) together with some blue 
colored domain specific refinement code: 

● The Car.java class and the Parking.java thread from 
parking process agent model: 
package EV3; 
import lejos.hardware.motor.Motor; 
import lejos.hardware.motor.NXTRegulatedMotor; 
… 
public class Car { 

float wheelWidth = 5.5; // in cm 
float trackWidth = 30.0; // in cm 
NXTRegulatedMotor leftM = Motor.A; 
NXTRegulatedMotor rightM = Motor.B; 
UltraSensor ultrasensor; 
ColorSensor colorsensor; 
… 

} 
package EV3; 
… 
public class Parking extends Thread { 

private Car carobj; 
public void findEntrance (…) {…} 
public void findPath (…) {…} 
public void findTurn (…) {…} 
public void park (…) {…} 
 … 
public void run { 



 

     findEntrance(…);  
  findPath(…);  
  findTurn(…);  
  park(…);  
} 

} 
● The main program from the system model: 

package EV3; 
import java.util.concurrent.ExecutorService; 
import java.util.concurrent.Executors; 
import lejos.robotics.Color; 

   import lejos.utility.Delay;  
public Class Init { 
    public static void main(String[] args){  
 Car car = new Car(); 

ColorDetection cd = new ColorDetection(car); 
ObstacleDetection od = new ObstacleDetection(car); 
 Parking p = new Parking(car); 
 cd.start(); 
 od.start(); 
 p.run(); 
   } 
} 
In the above code, ColorDetection is a thread object that 

asks the color sensor to keep reading and storing the current 
color value as long as parking is not completed. The color 
sensor is represented by the class ColorSensor. 
ObstacleDetection is also a thread object that asks the ultrasonic 
sensor to keep reading the distance to the object ahead of the 
car in current path as long as parking is not completed. The 
ultrasonic sensor is represented by the class UltrasonicSensor.  

IV. RUNTIME VERIFICATION 
A good model can speed up the development of the system 

and provide quality assurance to the implementation. However, 
it doesn’t guarantee the correctness of the implementation due 
to several reasons. First, the model is an abstraction of the 
system. Some details and algorithms are omitted intentionally 
and some system properties cannot be specified. Second, the 
model driven approach requires some manual refinements and 
the complete system with additional code needs to be checked.  

To overcome the limitations and restrictions of model 
driven development, we adopt runtime verification to ensure 
system properties at implementation level. Runtime verification 
is a lightweight formal approach to detect violation of 
properties. In our work, properties are specified using linear 
temporal logic (LTL) formula. Monitors are generated from 
these LTL formulas using JavaMop [12] and woven into system 
implementation as aspects using AspectJ [13]. This ensures the 
independence of system implementation from monitor – the 
runtime verification code.  

LTL properties specified and analyzed at model level need 
to be monitored in implementation level to improve confidence 
of system implementation. However, atomic predicates of LTL 
formula in implementation level typically represent occurrences 
of events such as object creation, object initialization, method 
call, member data access and mutation. Such events can be 
specified in conjunction with conditions on function arguments, 
which are absent at model level. The following principles are 
provided to guide the mapping of atomic predicates (places) in 
Petri net model to implementation: 

(1) A place representing a state of the agent net: 

a. If a class generated from the agent net has a member data 
representing the state, then the place is mapped to the event 
of changing member data. For example, place Parked 
represents a state of car and class Car has a member data 
parkComplete denoting this state, thus Parked(c) is mapped 
to the event of Car.parkComplete being set to true. 

b. If a class generated from the agent net doesn’t have a 
member data representing the state, then an object reaching 
this state is a result of a function call and is mapped to the 
event that occurs whenever the function call is completed. 

(2) A place representing the duration of an action such as 
Turning in the agent net: the place is mapped to the event 
of executing the function starting the action. 

In our study, five different properties are designed and 
monitored at runtime, including: 

Property 1:  After detecting the entrance, a car will park 
successfully within a given time period; 

Property 2:  A car starts turning to a parking lot only after a blue 
line is detected; 

Property 3:  During the parking process, a car will never 
approach too close to any object on the path. 

Due to space limit, we only provide and discuss the monitor 
code of property 1. This liveness property is to guarantee the 
correctness of the overall program: A car eventually parks 
successfully. In the model level, it is specified as: [](Waiting(c) 
-> <>Parked(c)). This property can be verified in the model but 
its violation cannot be determined at runtime due to its infinite 
nature. Therefore, we modify the property to reflect the reality 
– the car must be parked within a given time period. Such 
modification is reasonable given the unreliable nature of robots: 
the color sensor may report wrong color or miss a color. The 
monitor of this property contains the following three main 
events: entranceDetectedtrue, parkCompletedtrue and timeout. 
Event entranceDetectedtrue occurs when car’s member data 
entranceDetected becomes true. When entranceDetectedtrue 
occurs, a timer is started. Event parkCompletedtrue occurs when 
car’s member data parkComplete is set to true. Event timeout 
occurs when a given time expires. 
event entranceDetectedtrue after(Car car, boolean val) : 

set(private boolean Car.entranceDetected) 
  && args(val)  && target(car) && condition(val){ 
 //start timer  
     ... 
  } 

event parkCompletedtrue after(Car car, boolean val) : 
  set(private boolean Car.parkComplete) 
  && args(val) && target(car) && condition(val)) { 
 //kill timer 
  } 

event timeout after(TimeoutEventGenerator t) : 
execution(publicvoidTimeoutEventGenerator.timeoutEvent()) 

  && target(t) && condition(t == teg) { 
  } 

ltl:[](entranceDetectedtrue =>  
            (!timeout U parkCompletedtrue)) 

The second property in model level specified as: 
[](Searching(c) =>  <>ColorSensor(Blue)) can be verified at 
both model level and implementation level. 

The third property is a safety property to ensure collision 



 

free during parking. In model level, it is specified as: 
[](UltraSensor(v) /\ v < value), where value is a given constant. 
However, the verification results of such safety properties are 
based on some assumptions, and thus their violations must be 
monitored during runtime. 

Therefore runtime verification complements model level 
and implementation analysis through monitoring program 
behaviors that cannot be fully verified at model and 
implementation levels due to the limitation of models or 
bounded space explosion at implementation level.  

V. IMPLEMENTATION-LEVEL MODEL CHECKING  
Implementation level model checking is complementary to 

both modeling and runtime verification. While modeling is 
concerned about the correctness at design level, as the name 
suggests, implementation level model checking aims to verify 
the properties in the actual software implementation, because 
errors may be introduced during the software implementation.  

It is also well accepted that model checking and runtime 
verification should be combined to address each other’s 
weaknesses [14, 15]. Model checking achieves completeness, 
but often is too conservative and impractical for many realistic 
applications, whereas runtime verification can perform 
excellent checks over a portion of the program that is actually 
executed during the real deployment.  

Researchers have explored different approaches to combine 
model checking and runtime verification. For instance, [15] 
presents an analysis framework that can reuse the same 
analysis/verification algorithms for both static and dynamic 
analysis, in other words, model checking and runtime 
verification. While this is useful, it does not answer when to use 
model checking and when to use runtime verification. [14] 
explores the idea of partitioning a software system, such that 
one partition can be verified using model checking and the other 
can be checked via runtime verification. However, a user must 
identify this partitioning boundary based on her domain 
knowledge, which may not be practical in reality.  

A. Bounded Symbolic Model Checking 
In this work, we explore a new approach to combine model 

checking and runtime verification, namely bounded symbolic 
model checking. Specifically, we perform symbolic execution 
to examine the program execution space as much as possible to 
directly verify the property validation logic inserted by runtime 
verification. Given that a program may have infinite loops or 
loop conditions depending on symbolic inputs, the program 
execution space is infinitely large. As a result, our symbolic 
execution is bounded to search limited iterations in each loop.  

 

 
Fig.3 illustrates the workflow of this technique. Given a CPS 

program, we perform symbolic execution to generate a set of 
test cases, which will exercise as many code paths as possible. 
These test cases are then fed into the program with runtime 
verification code weaved in, to verify the properties.  

It is worth noting that we do not directly perform symbolic 
execution on the program with runtime verification code 
weaved in. This is because the inserted runtime verification 
code greatly increases the complexity of the code logic, and 
symbolic execution on it will quickly run into state explosion 
problem.  

Moreover, for convenience, we directly take advantage of the 
runtime verification code that has already been inserted, rather 
than verify the properties separately. In this way, we can also 
detect errors introduced by runtime verification. 

B. Implementation 
We implemented this idea as a plugin to the Java Path Finder 

framework [16] to perform model checking on LeJOS programs  
1) JPF model classes 

A LeJOS program can only run inside the LeJOS 
environment. As a result, it cannot run directly within JPF. In 
order to analyze a LeJOS program within JPF, we need to 
provide proper model classes to simulate the behaviors of 
related LeJOS APIs and classes. More specifically, we model 
following LeJOS classes: 

lejos.hardware.lcd.LCD; 
lejos.hardware.motor.BaseRegulatedMotor; 
lejos.hardware.sensor.EV3ColorSensor; 
lejos.hardware.sensor.EV3UltrasonicSensor; 
lejos.hardware.sensor.SensorMode; 
lejos.hardware.sensor.UARTSensor; 
lejos.robotics.navigation.MovePilot; 

  
2) JPF Symbolic Execution 

We make use of JPF-symbc to perform symbolic 
execution. For the auto parking example, the program reads 
input from the color sensor and the ultrasonic sensor. Therefore, 
by adding JPF symbolic annotations, we make these sensors 
return symbolic values.  

Since the auto parking program repeatedly reads from the 
sensors and perform corresponding behaviors, there exist 
several infinite loops. To ensure symbolic execution terminates 
within a reasonable time frame, we limit the number of loop 
iterations, by using JPF Verify API.  

Following is a code snippet showing how we limit loop 
iterations in the auto parking program: 
int in_count = 0; 
int out_count = 0; 
while (carObj.isFindLine()) { 
    int color = getColorSin(1); 
    while(color != Color.RED && color != Color.BLUE){ 
        in_count ++; 
    Verify.ignoreIf(in_count > 3); 
 ... 
    } 
    out_count++; 
    Verify.ignoreIf(out_count > 2); 
    ... 
} 
 

In this example, there are two while loops, inner loop and 



 

outer loop. There is a chance of program being trapped in either 
inner loop or outer loop (or both) during execution. So, we add 
a counter for each loop. When the counter is larger than a 
threshold, JPF will not continue execute the current path. We 
then solve the constraint for each path, and generate test inputs.  

C. Evaluation results 
Table III – Bounded symbolic model checking results 

# of test cases # of violations Generation time Replay time 

688 344 519 s 13120 s 

 
Table III lists the performance results for our bounded 

symbolic model checking on the original auto parking example. 
Symbolic execution generated 688 test cases totally in 519 
seconds.  

We then replayed these test cases on the auto parking 
program with runtime verification logic weaved in. The replay 
lasted for 13120 seconds.  This process is significantly slower, 
because the auto parking program periodically calls 
Delay.msDelay(int time) to wait for amount of time. Symbolic 
execution would ignore this delay to quickly explore multiple 
execution paths, while during replay in order to validate time-
related properties, we cannot ignore these delays.  

Eventually, we observed violations in 344 test cases. All 
the violations happened on only one LTL property, which is 
collision free property. This property is violated when the EV3 
car approaches too close to an obstacle.  
public void turn() { 
    if (carObj.getCMD() == 1){ 
        carObj.pilot.stop(); 
        carObj.pilot.setAngularSpeed(7); 
        carObj.pilot.arc(25, 90, true); 
        carObj.setMoving(true); 
        Delay.msDelay(15000); 
    }else if (carObj.getCMD()==0){ 
        carObj.pilot.stop(); 
        carObj.setMoving(false);     
    }        
} 

In the above example, the EV3 car would possibly turn for 
15000 milliseconds. After each turn, Ultrasonic sensor is used 
to detect distance between an obstacle and EV3. When the EV3 
car is running in a physical system (parking lot), this could be a 
safe action due to parking lot layout. However, during symbolic 
execution without knowledge about physical system, JPF 
explores all possible paths, and could read in a distance value 
less than safe distance after such a long turn, and results in a 
violation of collision free property.  

Through bounded symbolic model checking, we have 
verified that four LTL properties are ensured at least within a 
limited search scope. When resource is limited on the LeJOS 
system, one might consider removing the runtime monitor code 
for checking these four properties. On the other hand, collision 
free property cannot be properly verified using model checking, 
so runtime verification on this property is necessary.  

VI. CONCLUSION 
This paper presented a framework for developing CPSs 

supported by a tool chain. High level Petri nets are used for 
modeling CPSs due to their capability in addressing the critical 
features including concurrency and timing of CPSs. An 
incremental agent-oriented modeling methodology is used for 
creating CPS models. The resulting models are analyzed using 
simulation and model checking to detect early design problems. 
A translation method for generating general Java thread 
structure from high level Petri net models is provided. The 
resulting general Java code structure is manually extended with 
domain specific code refinement to obtain a complete program. 
This partial manual process of domain specific refinement 
requires creativity in adding details and thus is unavoidable; 
however is minimized in our framework. Implementation level 
quality assurance is carried out by combining bounded 
symbolic model checking and dynamic runtime verification. 
We demonstrated our framework thorough a simple parking 
system. There are still many gaps to fill to make our framework 
successful. We are currently working on a multi-car parking 
system and a drone system to gain more experience with regard 
to the applicability and scalability of our approach. 
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