

FSCR:A Feature Selection Method for Software

Defect Prediction

Xiao Yu1,2,3, Ziyi Ma2,3, Chuanxiang Ma2,3* ,Yi Gu2,3,Ruiqi Liu4, Yan Zhang2,3
1State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China
2School of Computer Science and Information Engineering, HuBei University, Wuhan, China

3Educational Informationalization Engineering Research Center of HuBei Province, Wuhan, China
4 International School of Software, Wuhan University, Wuhan, China

*Corresponding author email: mxc838@hubu.edu.cn

Abstract—Prediction the number of faults in software

modules can be more helpful instead of predicting the modules

being faulty or non-faulty. Some regression models have been

used for predicting the number of faults. However, the software

defect data may involve irrelevant and redundant module

features, which will degrade the performance of these regression

models. To address such issue, this paper proposes a feature

selection method based on Feature Spectral Clustering and

feature Ranking (FSCR) for the number of software faults

prediction. First, FSCR groups the original features with spectral

clustering according to the correlation between every two

features. Second, FSCR employs ReliefF algorithm to compute

the relevance between each feature with respect to the number of

faults and selects top p most relevant features from each resulted

cluster. We evaluate our proposed method on 6 widely-studied

project datasets with four performance metrics. Comparison

with five existing feature selection methods demonstrates that

FSCR is effective in selecting features for the number of faults

prediction.

Keywords—software fault prediction;regression model;feature

selection; spectral clustering

I. INTRODUCTION

Software defect prediction is one of the most important
software quality assurance techniques. Based on the
investigation of historical metrics, defect prediction aims to
detect the defect proneness of new software modules.
Therefore, defect prediction is often used to help to reasonably
allocate limited development and maintenance resources [1].
So far, many efficient software defect prediction methods using
statistical methods or machine learning techniques have been
proposed [2-5], but they are usually confined to predicting a
given software module being faulty or non-faulty by means of
some binary classification techniques.1

However, predicting the defect-prone of a given software
module does not provide enough logistics to software testing in
practice [6]. Some of the faulty software modules may have
comparatively vast quantities of faults compared to other
modules and hence require some additional maintenance
resources to fix them. So, it may result in a waste of limited
maintenance resources if simply predicting the defect-prone of
a given software module and allocating the limited
maintenance resources solely based on faulty and non-faulty
information. If we are able to predict the accurate number of

1 DOI reference number: 10.18293/SEKE2017-081

faults, software testers will pay particular attention to those
software modules that have more number of faults, which
makes testing processes more efficient in the case of limited
development and maintenance resources. Thus, prediction the
number of faults in software modules can be more helpful
instead of predicting the modules being faulty or non-faulty [6].

A number of prior studies have investigated regression
models on predicting the number of faults. Some researchers
[7-12] have investigated genetic programming, decision tree
regression, and multilayer perceptron in the context of the
number of faults prediction and found that these models
achieved good performance. Chen et al. [11] performed an
empirical study on predicting the number of faults using six
regression algorithms and found that the prediction model built
with decision tree regression had the highest prediction
accuracy in most cases. In another similar study, Rathore et al.
[12] presented an experimental study to evaluate and compare
the other six regression algorithms for the number of faults
prediction. The results found that decision tree regression,
multilayer perceptron, and linear regression achieved better
performance in many cases.

However, the performance of these regression models is
still vulnerable to irrelevant and redundant module features that
may undermine the prediction effect. It is crucial to apply
feature selection to the number of faults prediction since
feature selection can filter out irrelevant and redundant features
by evaluating the contributions of module features. The output
of feature selection is a subset of the original feature set. This
feature subset is more effective for the number of faults
prediction.

In this paper, we propose a novel feature selection method,
FSCR, to support feature selection for the number of faults
prediction. FSCR is short for feature selection based on Feature
Spectral Clustering and feature Ranking, which enhances
feature selection for the number of software faults prediction
via a two-stage approach. First, FSCR groups the original
features with spectral clustering according to the correlation
between every two features. Second, FSCR employs ReliefF
algorithm to compute the relevance between the features and
the number of faults and selects top p most relevant features
from each resulted cluster.

We evaluate our proposed feature selection method, FSCR,
by answering two research questions on performance.
Experiments are conducted on 6 publicly available projects.

Experimental results show that FSCR can effectively select
features to improve the performance of the models for the
number of faults prediction.

II. RELATED WORK

In this section, we first briefly review the existing defect
prediction methods. Then, we review the existing feature
selection methods.

A. Defect Prediction

Many researchers have proposed various models for
predicting the module being faulty or non-faulty. Support
vector machine [13-14], neural networks [15], decision trees
[16] and Bayesian methods [17] paved the way for
classification-based methods in the flied of defect prediction.
These methods used software metrics to properly predict
whether a module is defect-prone or not.

A number of prior studies have investigated regression
models on predicting the number of software faults. Graves et
al. [18] presented a generalized linear regression based method
for the number of faults prediction using various change
metrics datasets collected from a large telecommunication
system and found that modules age, changes made to module
and the age of the changes were significantly correlated with
the defect-prone. Chen et al. [11] performed an empirical study
on predicting the number of faults using six regression
algorithms and found that the prediction model built with
decision tree regression had the highest prediction accuracy in
most cases. In another similar study, Rathore et al. [9]
presented an experimental study to evaluate and compare the
other six regression algorithms for the number of faults
prediction. The results found that decision tree regression,
genetic programming, multilayer perceptron, and linear
regression achieved better performance in many cases.
However, the prediction performance of these models gets
worse when the defect datasets contain irrelevant and
redundant features.

B. Feature Selection in Defect Prediction

A number of prior studies have investigated feature
selection methods on predicting the module being faulty or
non-faulty. Gao et al. [19] studied four different filter-based
feature selection methods with five different classifiers on a
large telecommunication system and found that the
Kolmogorov-Smirnov method performed the best. Gao et al.
[20] presented a comparative investigation to evaluate their
proposed hybrid feature selection method, which first uses
feature ranking to reduce the search space and then applies
feature subset selection. In order to investigate different
feature selection methods to classification-based bug
prediction, Shivaji et al. [21] utilized six feature selection
methods to iteratively remove irrelevant features until
achieving the best performance of F-measure. Chen et al. [22]
proposed a two-stage data preprocessing framework, TC,
which combines feature selection and instance reduction. Liu
et al. [23] proposed a new feature selection framework,
FECAR, to conduct feature clustering and feature ranking.

III. METHODOLOGY

In this section, we present our FSCR method for the
number of faults prediction. We first introduce the framework
of our proposed method; then we present the detailed steps in
the stage of feature spectral clustering and feature ranking.

A. The framework of our method

The method consists of two major stages: feature spectral
clustering and feature ranking. Fig.1 illustrates the process of
FSCR using a simple example.

1

4 0 2

9

3
6

78

5

1

4 2

9

3
6

7

50

8

1 8 0 4

6 2 9

7 3 5

1 8

6

7

Figure 1. The process of FSCR

Assumes that the dataset has ten original features,
represented by hollow circle in Fig.1. In the first stage, these
features are partitioned into three clusters by using the spectral
clustering algorithm, namely, C1={0,1,4,8}, C2={2,6,9} and
C3={3,5,7}. In the second stage, we rank all features in every
clusters based on the relevance between each feature with
respect to the number of software faults, and select the top p
features from each cluster. Therefore, the final feature subset
contains 1, 6, 7 and 8.

Therefore, the input of the FSCR method is the original
feature set {f1,f2,…,fn}, the correlation measure FA between
every two features, the relevance measure FB between each
feature and the number of software faults, the number of the
clusters k and the number of selected features m. The output of
the FSCR method is the final feature subset R. The details are
shown in the Algorithm 1.

B. The first stage

The first stage partitions the original features into k
clusters such that features in the same cluster are similar and
features in different clusters are dissimilar to each other. The
main goal of the stage of feature clustering is to eliminate
redundant features that have similar effect with other features.
Note that in contrast to traditional clustering, our goal is to
group features rather than instances.

This stage first uses the Pearson correlation coefficient to
calculate the pairwise correlation between every two features
using the following formula:

r=
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑖

√∑ (𝑥𝑖−�̅�)2
𝑖 √∑ (𝑦𝑖−�̅�)2

𝑖
 (1)

where values xi and yi denote the numeric values of the feature

x and feature y in the i-th instance (i=1,2,…,n), �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑘=1 and �̅� =

1

𝑛
∑ 𝑦

𝑖
𝑛
𝑘=1 (𝑖 = 1,2, … , 𝑛).

Algorithm 1. FSCR method

Input:

Original feature set {f1,f2,…,fn}

Correlation measure FA between every two features

Relevance measure FB between each feature and the
number of software faults

Number of the clusters k

Number of selected features m

Output:

Final feature subset R

/*The first stage: feature clustering*/

1: for i=1 to n do

2: for j=1 to n do

3: Compute the correlation between fi and fj. using FA;

4: end for

5: end for

6: Partition original n features into k clusters {C1,C2,…,Ck}using

spectral clustering algorithm;

/*The second stage: feature ranking*/

7: for i=1 to n do

8: Using the relevance measure FB to compute the relevance

between fi and the number of the software faults;

9: end for

10: for i=1 to n do

11: Ranking the features in Ci in descending order according to

the relevance;

12: end for

13: for i=1 to k do

14: Adding top [
|𝐶𝑖|×𝑚

𝑛
] features of Ci into R;

15: end for

16: return R；

 Then, this stage uses spectral clustering to cluster the
original feature set based on the correlation between every two
features. Different from the other distance-based clustering
algorithms, spectral clustering [24] makes use of the spectrum
(eigenvalues) of the similarity matrix of the instances to
perform dimensionality reduction before clustering in fewer
dimensions. The similarity matrix can be defined as a
symmetric matrix W, where Wij represents a measure of the
similarity between every two instances Xi and Xj.

C. The second stage

In this stage, we select top p relevant features from each
resulted cluster to construct the final feature subsets. We first
employ the ReliefF algorithm [25] to compute the relevance
between each feature and the number of the software faults.
ReliefF randomly selects an instance Ri, but then searches for k
of its nearest neighbors from the same class, called nearest hits
Hj, and also k nearest neighbors from each of the different
classes, called nearest misses Mj(C). It updates the quality
estimation for all features depending on their values for Ri, hits
Hj and misses Mj(C). If instances Ri and H have different
values of the attribute A then the attribute A separates two
instances with the same class which is not desirable so we
decrease the quality estimation W[A]. On the other hand if
instances Ri and M have different values of the attribute A, then
the attribute A separates two instances with different class
values which is desirable so we increase the quality estimation
W[A]. The whole process is repeated for q times, where q is a
user-defined parameter. In this experiment, we use the default
parameter specified by sklearn [26].

Then, we rank the features in Ci in descending order

according to the relevance and select [
|𝐶𝑖|×𝑚

𝑛
] features from

each clusters, where |Ci| is the number of the features in the
cluster Ci, m is the size of the final feature subset and n
represents the number of the original features. The selected
features construct the final feature subset. According to

literature [19], we select ⌈log2n⌉ features from the original

features.

IV. EXPERIMENT SETUP

A. Data set

In this experiment, we employ 6 available and commonly
used software project datasets with their 22 releases which can
be obtained from PROMISE [27]. The details about the
datasets is shown in Table I, where #Instance represents the
number of instances, #Defects represents the total number of
faults in the release, %Defect represents the percentage of
defect-prone instances, and Max is the maximum value of
faults. There are the same 20 independent variables (the 20
feature metrics) and one dependent variable (the number of
faults) in the six datasets. A comprehensive list of the metrics
refers to literature [12].

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Release #Instance #Defects %Defects Max

Ant

Ant-1.3 125 33 16.0% 3

Ant-1.4 178 47 22.5% 3

Ant-1.5 293 35 10.9% 2

Ant-1.6 351 184 26.2% 10

Ant-1.7 745 338 22.3% 10

Camel

Camel-1.0 339 14 3.4% 2

Camel-1.2 608 522 35.5% 28

Camel-1.4 872 335 16.6% 17

Camel-1.6 965 500 19.5% 28

Jedit

Jedit-3.2 272 382 33.1% 45

Jedit-4.0 306 226 24.5% 23

Jedit-4.1 312 217 25.3% 17

Jedit-4.2 267 106 13.1% 10

Jedit-4.3 492 12 2.2% 2

Project Release #Instance #Defects %Defects Max

Synaps

e

Synapse-1.0 157 21 10.2% 4

Synapse-1.1 222 99 27.0% 7

Synapse-1.2 256 145 33.6% 9

Xalan

Xalan-2.4 724 111 15.3% 7

Xalan-2.5 804 388 48.3% 9

Xalan-2.6 886 412 46.5% 6

Xerces
Xerces-1.3 503 69 13.7% 30

Xerces-1.4 589 438 74.4% 62

B. Performance measures

Since CERFS is a model to predict the number of faults, it
should be evaluated using criteria for regression models. In the
experiment, we employ root mean square error (RMSE) to
measure the performance. In addition, considering the
imbalanced characteristic of software defect datasets, we also
employ three commonly used performance measures that
evaluate classification models, including pd, pf and G-measure.
These performance measures are defined in Table III and
summarized as follows.

TABLE II. PERFORMANCE MEASURES

 Actual

yes no

Predicted yes TP FP

no FN TN

pd 𝑻𝑷

𝑻𝑷 + 𝑭𝑵

pf 𝑭𝑷

𝑭𝑷 + 𝑻𝑵

G-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)

RMSE

√
∑ |𝒀�̅� − 𝒀𝒊|

𝟐𝒏
𝒊=𝟏

𝒏

● Probability of detection or pd is the measure of defective
modules that are correctly predicted within the defective class.
The higher the pd, the fewer the false negative results.

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the
results.

● G-measure is a trade-off measure that balances the
performance between pd and pf. A good prediction model
should have high pd and low pf, and thus leading to a high G-
measure.

● RMSE measures the deviation between the predicted
value �̅� i and the actual value Yi. It is a good measure of
accuracy to compare prediction errors of different regression
models for a given variable, e.g., the number of faults.

C. Research Questions

Our evaluation answers two research questions.

RQ1. Does our proposed FSCR method perform better than
state-of-the art feature selection methods in terms of predicting
the modules being faulty or non-faulty?

This question validates the important criterion of defect
prediction: the performance improvement in terms of pd, pf
and G-measure (as defined in Section IV-B).

RQ2. Does our proposed FSCR approach perform better
than state-of-the art feature selection methods in terms of the
accuracy of predicting the number of the software faults?

This question validates the important criterion of the
number of faults prediction: the performance improvement in
terms of RMSE. (as defined in Section IV-B).

We compare our method with six classical feature
selection methods in defect prediction:(1)Full, (2)Chi-Square
[28], (3) Signal-to-Noise [29], (4)Information Gain [30],
(5)Gain Ratio [31], and (6)FSCAR [23].

Full is the original feature subset. Compared to this
method, we can study whether the FSCR can improve the
performance of the number of faults prediction. Chi-Square
(CS) and Signal-to-Noise (S2N) are statistic-based feature
selection methods. Information Gain (IG) and Gain Ratio (GR)
is the probability-based feature selection method. FECAR is a
feature selection method combining feature ranking and
feature clustering proposed by Liu et al [23]. FECAR first
clusters features via k-medoids method and then select several
representative features from each cluster.

D. Experiment Procedure

In experiments, we performed 10-fold cross validation
when training classifiers on the selected features throughout
this paper, to avoid any potential problem of overfitting
particular training and test sets within a specific project. In 10-
fold cross validation, a dataset is divided into 10 folds at
random. Nine of the ten folds take turns to be used as the
training set while the other fold is used as the test set. The
training data are used to build a regression model; then the
built model is evaluated on the test data. The above procedure
is repeated 300 times (10 folds 30 independent runs) in total
for each feature selection method to avoid sample bias. Then,
the mean values of performance for all methods are calculated.

In order to compare the performance of feature selection

methods, we employ three regression models in defect

prediction, Bayesian Ridge Regression (BRR), Gradient

Boosting Regression (GBR) and Linear Regression (LR). The

reason we choose these regression models is that these models

perform best in predicting the number of software faults [11-

12].

V. EXPERIMENT RESULTS

In this section, we present the experiment results to answer
our two research questions mentioned above.

A. RQ1

As mentioned in Sections IV-C, we compare our method
FSCR with six feature selection methods. Table IV records the
pd, pf and G-meausre of six datasets with six different feature
selection methods on three regression models, BRR, GBR, LR.
The column “Full” presents the training set without involving
any feature selection method; W/D/L, short for Win/Draw/Loss,
denotes the number of projects, on which FSCR performs
better than, the same as, or worse than another method, in
terms of G-measure.

As is shown in the Table III, FSCR performs better G-
measure values than all the other methods. For BRR model,
FSCR achieves the best average pd and G-measure value, but
fails in the best pf value. For GBR model, FSCR can achieve
the best pf and G-measure values. For LR model, FSCR
achieves best values in terms of all the three measures. The
Win/Draw/Loss values shows that, on three regression models,
FSCR outperforms others on over half of projects in terms of
all the three measures.

TABLE III. AVERAGE PERFORMANCE OF 6 PROJECTS WITH THREE

REGRESSION MODEL ON PD, PF, AND G-MEASURE

Model Metric Full FSCR CS GR S2N IG FECAR

BRR

PD 0.512 0.584 0.514 0.521 0.556 0.548 0.579

PF 0.236 0.169 0.182 0.171 0.164 0.165 0.170

G 0.613 0.668 0.591 0.586 0.642 0.622 0.665

W/D/L 4/0/2

5/0/1 4/0/2 5/0/1 4/0/2 4/0/2

GBR

PD 0.479 0.521 0.466 0.498 0.535 0.501 0.513

PF 0.157 0.121 0.206 0.142 0.123 0.161 0.126

G 0.610 0.637 0.585 0.613 0.633 0.609 0.631

W/D/L 6/0/0

5/0/1 4/0/2 6/0/0 4/0/2 4/1/1

LR

PD 0.504 0.591 0.434 0.536 0.523 0.511 0.586

PF 0.244 0.152 0.183 0.213 0.221 0.175 0.159

G 0.604 0.671 0.565 0.625 0.609 0.649 0.668

W/D/L 5/0/1

4/0/2 4/0/2 6/0/0 6/0/0 3/0/3

Fig. 2 shows the box-plots of G-measure values, with six

methods for three regression models on 6 projects. For BRR
model, the median value by FSCR is much higher than that by
all the other methods. For GBR model, the median value by
FSCR is higher than that by CS and S2N, while is similar with
that by GR and IG, and is a little lower than that by FECAR.
However, the maximum by FSCR is much higher than FECAR
and all the other methods. For LR model, the median is similar
with that by GR and FECAR, while is much higher than that by
S2N and IG. In addition, the maximum by FSCR is much
higher than that by all the other methods.

Figure 2. Box-plots for G-measure on 6 projects with three regression
models.

RQ1 Summary. According to the experiment results in
Table 4 and Figure 2, we conclude that FSCR can perform
better than state-of-the-art feature selection methods in
terms of predicting the modules being faulty or non-
faulty.

B. RQ2

Tables IV, V and VI present the detailed RMSE values of
each project on three regression models. From these tables, we
can observe that FSCR performs better average RMSE value
than all the other methods. The Win/Draw/Loss records also
indicate that FSCR wins other methods on most projects on
three regression models in term of RMSE measure. In addition,
Hedges’g [32] is employed to demonstrate the effect size. The
effect size of Hedges’g values are greater than 1.0 on most
projects, which can be interpreted as a large improvement.

TABLE IV. RMSE VALUES ON 6 PROJECTS USING BAYESIAN RIDGE

REGRESSION WITH THE HEDGES’G

Project Full FSCR CS GR S2N IG FECAR

Ant 1.155 0.829 1.074 1.129 0.945 1.176 0.921

Camel 1.046 1.031 1.142 1.023 0.972 0.824 0.837

Jedit 1.426 0.986 0.965 0.965 1.028 0.975 0.912

Synapse 1.247 0.892 0.978 0.911 0.945 0.994 0.978

Xalan 1.010 0.714 1.123 1.101 0.897 1.109 0.925

Xerces 1.206 0.821 0.912 0.956 0.852 0.912 0.944

AVG 1.181 0.878 1.032 1.014 0.939 0.998 0.919

W/D/L 6/0/0

6/0/0 5/0/1 5/0/1 5/0/1 5/0/1

Hedges’g 2.252 1.457 1.327 0.657 0.980 0.462

TABLE V. RMSE VALUES ON 6 PROJECTS USING GRADIENT BOOSTING

REGRESSION WITH THE HEDGES’G

Project Full FSCR CS GR S2N IG FECAR

Ant 1.011 0.986 0.894 0.954 0.949 1.024 0.929

Camel 0.945 1.031 1.035 0.927 0.975 0.961 1.163

Jedit 1.295 0.714 0.917 1.082 1.021 0.913 1.075

Synapse 1.091 0.821 0.941 0.959 1.047 0.974 0.838

Xalan 0.906 0.837 1.109 1.056 1.145 1.127 0.914

Xerces 1.472 0.892 0.952 1.214 0.969 0.917 0.977

AVG 1.120 0.880 0.974 1.032 1.017 0.986 0.982

W/D/L 5/0/1

6/0/0 4/0/2 4/0/2 5/0/1 6/0/0

Hedges’g 1.361

0.939 1.356 1.420 1.064 0.873

TABLE VI. RMSE VALUES ON 6 PROJECTS USING LINEAR REGRESSION

WITH THE HEDGES’G

Project Full FSCR CS GR S2N IG FECAR

Ant 1.152 0.957 0.982 1.053 0.964 1.058 0.973

Camel 1.059 1.045 1.123 0.949 1.103 0.934 1.078

Jedit 0.914 0.794 0.994 1.027 1.025 0.853 0.935

Synapse 1.015 1.124 0.854 1.154 1.161 0.927 0.926

Xalan 1.205 0.885 0.942 1.048 1.054 1.185 0.910

Xerces 1.012 0.921 0.952 1.038 1.035 0.924 0.953

AVG 1.059 0.954 0.974 1.044 1.057 0.980 0.962

W/D/L 5/0/1

5/0/1 5/0/1 6/0/0 5/0/1 5/0/1

Hedges’g 0.944 0.193 1.048 1.075 0.219 0.086

RQ2 Summary. According to the experiment results in

Tables 4-6, we conclude that FSCR can perform better than

state-of-the-art feature selection methods in terms of the

number of faults prediction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel feature selection method
for the number of faults prediction. The method involves the
following two stages: in the first stage, we employ a feature
spectral clustering method to cluster the original features; in the
second stage, we select the highly relevant features from each
cluster. Experiments on 6 project datasets indicate that the
proposed method, FSCR, can perform competitive results for
the number of faults prediction.

In the future, we will further investigate the impact of the
parameters setting, such as the number of clusters and the
number of features selected from each cluster. In addition, we
would like to validate the generalization ability of our method
on more datasets [33-34].

ACKNOWLEDGMENT

This work is partly supported by Educational
Informationalization Engineering Research Center of HuBei
Province.

REFERENCES

[1] F. Rahman, D. Posnett, P. Devanbu , Recalling the imprecision of cross-
project defect prediction, Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering,2012, 61.

[2] Q. Song, Z. Jia, M. Shepperd, et al, A general software defect proneness
prediction framework, Software Engineering, IEEE Transactions on,
2011, 37(3): 356-370.

[3] X. Yang, K. Tang, X. Yao, A Learning-to-Rank Approach to Software
Defect Prediction, IEEE Transactions on Reliability, 2015,64(1): 234-
246.

[4] R. Malhotra, A systematic review of machine learning techniques for
software fault prediction, Applied Soft Computing, 2015, 27: 504-518.

[5] M. Shepperd, D. Bowes, T. Hall, Researcher bias: The use of machine
learning in software defect prediction, IEEE Transactions on Software
Engineering, 2014, 40(6): 603-616.

[6] N. E. Fenton, M. Neil, A critique of software defect prediction models,
IEEE Transactions on software engineering, 1999, 25(5): 675-689.

[7] Rathore S S, Kuamr S, Comparative analysis of neural network and
genetic programming for number of software faults prediction, 2015
National Conference on Recent Advances in Electronics & Computer
Engineering (RAECE), 2015: 328-332.

[8] W. Afzal, R. Torkar, R.Feldt, Prediction of fault count data using genetic
programming, Multitopic Conference, 2008. INMIC 2008. IEEE
International. IEEE, 2008: 349-356.

[9] S. S. Rathore, S. Kumar , Predicting number of faults in software system
using genetic programming, Procedia Computer Science, 2015, 62: 303-
311.

[10] S. S. Rathore, S.Kumar, A Decision Tree Regression based Approach
for the Number of Software Faults Prediction,” ACM SIGSOFT
Software Engineering Notes, 2016, 41(1): 1-6.

[11] M. Chen, Y. Ma, An empirical study on predicting defect numbers, 28th
International Conference on Software Engineering and Knowledge
Engineering, 2015: 397-402.

[12] S. S. Rathore, S. Kumar, An empirical study of some software fault
prediction techniques for the number of faults prediction, Soft
Computing, 2016: 1-18.

[13] D. Gray, D. Bowes, N. Davey, et al, Using the support vector machine
as a classification method for software defect prediction with static code
metrics, International Conference on Engineering Applications of Neural
Networks. Springer Berlin Heidelberg, 2009: 223-234.

[14] Z. Yan, X. Chen, P. Guo, Software defect prediction using fuzzy support
vector regression, International Symposium on Neural Networks.
Springer Berlin Heidelberg, 2010: 17-24.

[15] M. M. T. Thwin, T. S.Quah, Application of neural networks for software
quality prediction using object-oriented metrics, Journal of systems and
software, 2005, 76(2): 147-156.

[16] J. Wang, B. Shen, Y.Chen, Compressed C4. 5 models for software
defect prediction, 2012 12th International Conference on Quality
Software. IEEE, 2012: 13-16.

[17] T. Wang, W. Li, Naive bayes software defect prediction model,
Computational Intelligence and Software Engineering (CiSE), 2010
International Conference on. IEEE, 2010: 1-4.

[18] T. L. Graves, A. F. Karr, J. S. Marron, et al, Predicting fault incidence
using software change history, IEEE Transactions on software
engineering, 2000, 26(7): 653-661.

[19] K. Gao, T. M. Khoshgoftaar, H. Wang. An empirical investigation of
filter attribute selection techniques for software quality classification.
Information Reuse & Integration, 2009. IRI'09. IEEE International
Conference on. 272-277. IEEE, 2009.

[20] K. Gao, T.M. Khoshgoftaar, H. Wang, et al. Choosing software metrics
for defect prediction: an investigation on feature selection techniques .
Software Practice & Experience, 41(5):579-606, 2011.

[21] S. Shivaji, J. E. J. Whitehead, R. Akella, et al. Reducing features to
improve bug prediction. Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE
Computer Society, 600-604, 2009.

[22] J. Chen, S. Liu, W. Liu, et al. A Two-Stage Data Preprocessing
Approach for Software Defect prediction. Software Security and
Reliability (SERE), 2014 Eighth International Conference on. 20 - 29.
IEEE, 2014.

[23] S. Liu, X. Chen, W. Liu, et al. FECAR: A Feature Selection Framework
for Software Defect Prediction. 2014 IEEE 38th Annual Computer
Software and Applications Conference (COMPSAC). IEEE Computer
Society, 426-435, 2014.

[24] Von Luxburg U. A tutorial on spectral clustering. Statistics and
computing, 2007, 17(4): 395-416.

[25] Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of
ReliefF and RReliefF. Machine learning, 2003, 53(1-2): 23-69.

[26] http://scikit-learn.org/

[27] G. Boetticher, T. Menzies, T. Ostrand, The PROMISE Repository of
Empirical Software Engineering Data, 2007
<http://promisedata.org/repository>.

[28] Jin X, Xu A, Bie R, et al. Machine learning techniques and chi-square
feature selection for cancer classification using SAGE gene expression
profiles. International Workshop on Data Mining for Biomedical
Applications. Springer Berlin Heidelberg, 2006: 106-115.

[29] Plapous C, Marro C, Scalart P. Reliable A posteriori Signal-to-Noise
Ratio features selection. 2005 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics. IEEE, 2005: 66-69.

[30] Abadi D. Perbandingan Algoritme Feature selection information gain
dan Symmetrical Uncertainty pada Data Ketahanan Pangan [J]. UT -
Computer Science, 2013.

[31] Praveena P R, Valarmathi M L, Sivakumari S. Gain ratio patio based
feature selection method for privacy preservation [J]. Ictact Journal on
Soft Computing, 2011, 1(4).

[32] Kampenes, V. By, et al, A systematic review of effect size in software
engineering experiments, Inform. Softw. Technol. 49.11 (2007) 1073-
1086.

[33] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based
hierarchical opportunistic routing protocol for WSNs, International
Conference on Wireless Algorithms, Systems, and Applications.
Springer Berlin Heidelberg, 2013: 175-185.

[34] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based
hierarchical opportunistic routing protocol for WSNs, International
Conference on Wireless Algorithms, Systems, and Applications.
Springer Berlin Heidelberg, 2013: 175-185.

