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Abstract

Any program may contain more than one fault, and these

faults may interfere with each other in a variety of ways.

Software behavior may be affected by the interference, re-

sulting in some uncertain results. Such results have negative

impact on many software engineering tasks, including re-

gression testing, fault localization, debugging, fault cluster-

ing etc. Therefore, understanding the interference becomes

an important topic. This paper investigates the fault inter-

ference from the perspective of software construction. We

introduce the coupling of software construction in order to

explain the reasons for fault interference. We observed that

different types of coupling may cause three kinds of fault

interference and have different probabilities to make the

software strike the fault interference traps. We conducted

a preliminary experiment on four industrial programs. The

results show that our approach gives a good explanation on

fault interference.

1 Introduction

Software is in the process of an explosive growth on

complexity. Unfortunately, the maintenance process grows

more complicated. This brings more difficulties as the num-

ber of faults increases and multiple faults usually inter-

fere with each other in real-world software. Due to mul-

tiple bugs interfering with each other, some statistical algo-

rithms for single-bug version of software perform poorly in

practice[18, 17]. This problem becomes even more diffi-

cult as the number of faults in software increases, and real-

world software always have multiple faults. Existing statis-

tical algorithms that focus solely on identifying predictors

that correlate with program failure perform poorly, espe-

cially when there are multiple bugs. To alleviate the prob-

lem, failed test cases are segregated into clusters, such that

the failed test cases in each cluster can be mapped to the

same causative fault in [8, 15]. However, such approach is

impractical. Multiple faults may interfere with each other

in complex ways, resulting in an inaccurate clustering re-

sults. This may lead to an critical and negative impact on

some essential software engineering tasks, such as regres-

sion testing, fault localization, fault clustering, etc.

However, only a few studies have been conducted to in-

vestigate the root cause of faults and their interferences. De-

broy and Wong [2] explored the idea of fault interference

(FI) by examining the Siemens suite. It was observed that

FI is a common phenomenon in software, whereas the rea-

sons why FI exists and how to alleviate FI are not given.

Nicholas and James [5] conducted an experiment on some

programs of a larger scale, and they got a persuasive result

and presented a more thorough explanation on such phe-

nomena.

In this paper, we performed a comprehensive experiment

on four industrial C programs. We gain insights in how

faults interfere with each other and some potential patterns

are mined. This can help developers understand how cou-

pling affects the interaction between multiple faults, which

helps them improve their design and implementation. Fur-

ther, distances between faults are defined to predict patterns

that faults interaction will occur and simplify the process to

locate faults. Moreover, our work may help software devel-

opers in at least three aspects: understanding and improv-

ing software tasks mentioned above, obtaining a new per-

spective to understand software design and software testing,

along with learning how to handle and avoid fault interfer-

ence.

1.1 Motivation

Software coupling is the degree to which each program

module relies on each one another[16]. High coupling de-

gree will expose some disadvantages to the software sys-

tem: needing a ripple effect to changes in other modules,

such that it may be hard to reuse and test, lying confusions

in the program logic. Absolutely, FI results from coupling,

though not all of coupling will generate FIs.

In order to understand the coupling problem, this work

examines one aspect of fault behavior: fault interference,
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which has been observed in a variety of research studies. FI

is defined as the change in the behavior of one or more faults

due to multiple faults on the FI working together. This work

provides a deeper investigation of the FI phenomenon. We

expect that a thorough understanding of the root causes of

FI will enable research areas that address issues with faults

to better cope with the challenges that arise from the pres-

ence of multiple faults.

1.2 Contribution

In this paper, we make the following contributions:

• We introduce software engineering knowledge to in-

vestigate fault interference in multiple fault programs.

We define the fault interference problem. As far as we

know, this is the first study to introduce engineering

perspective on fault interference with multiple faults.

• We introduce software coupling to explain the root

causes for different types of fault interference, based

on several types of software coupling. No pioneering

studies have made such attempts.

• We conducted a comprehensive experiment on indus-

trial subject programs, and the results show that cou-

pling frequency and coupling values contribute to fault

interference.

The rest of paper is organized as follows. Section 2 ex-

plains the detail of our approach. The experimental design

and the result analysis are presented in Section 3. Related

work and discussion are presented in Section 4. The con-

clusion and future work are presented in Section 5.

2 Approach

2.1 Fault Coupling

Some empirical studies [1, 4] show that the designs and

implementations with low coupling and high cohesion will

lead to more reliable and maintainable products. The in-

dustry and academia have been proposed some theories to

measure the coupling. Experts have reached an agreement

on the coupling type and hold clear definition and threats in

software construction of them [11]. We introduce coupling

to measure and predicate fault interference. The following

five types [] of coupling are observed in our investigation of

fault interference. All of them lead to one or more types of

fault interference.

We list them in the coupling degree ascending order:

• C1: Data Coupling, communication via scalar param-

eters;

• C2: Stamp Coupling, dependency induced by the type

of structured parameters;

• C3: Control Coupling, parameters are used to control

the behavior of a module;

• C4: Common Coupling, communication via shared

global data;

• C5: Content Coupling, one module shares and/or

changes the definition of another nodule.

2.2 Fault Interference

There exist some studies on fault interference on pro-

grams with multiple faults. However, to the best of our

knowledge, the formal definition on fault interference is ab-

sence. In this section, we propose the definition of fault

interference and then category it into three types.

Definition 2.1 (Fault Interference) Given a test case t, a

program P and some faults f1, · · · , fk, it is called that

f1, · · · , fk interfere on t if

O(Pf1+···+fk , t) 6= O(Pf1 , t) ∨ · · · ∨O(Pfk , t) (1)

O(P, t) is a boolean function of oracle. That is,

O(P, t) = 1 indicates that P is failed by running t, other-

wise, O(P, t) = 0. Pfi is a program with one single fault fi
and Pf1+···+fk is a program with multiple faults f1, · · · , fk.

Equation (1) implies an inconsistent behaviors between all

single versions and a multiple version. To give a deep in-

sight of the fault interference, we introduce the following

definition.

Definition 2.2 Given a program P and some faults

f1, · · · , fk interfere on t, (1) the interference is called β-

I if O(Pf1+···+fk , t) = 1;(2) the interference is called α-I

if O(Pf1+···+fk , t) = 0; (3) For α-I in (2), the interfer-

ence is called α1-I if ∀i ∈ [1, k], O(Pfi ) = 1, α1-I if

∃i ∈ [1, k], O(Pfi ) = 0.

For fault interference, as O(Pf1+···+fk , t) 6= O(Pf1 , t)∨
· · · ∨ O(Pfk , t),O(Pf1+···+fk , t) = 0 implies that

O(Pfi , t) = 1 for some i; O(Pf1+···+fk , t) = 1 implies

O(Pfi , t) = 0 for all i. α-I indicates a devoid phenomenon

of fault interference. β-I indicates an enhancement phe-

nomenon of fault interference. In particular, we further clas-

sify α-I into two types: α1-I if O(Pfi , t) = 1 for all i and

α0-I otherwise. That is, α1-I could be considered as the

strong one of α-I.

Note that there is a key difference between our definition

and the previous. As we observed in our experiment, the

root causes of α0-I interference and α1-I interference are

generally different. In our opinion, these two phenomena

should not be categorized into one type, though the result

seems to be similar. In the rest of this paper, we just use α0,

α1, β to denote the α0-I, α1-I, β-I.



2.3 Research Questions

According to the classical software engineering theory,

the higher coupling degree is between two blocks, the more

possibly exists unpredictable software behavior. To facil-

itate the discussion, we use S(F ) to denote the faults set

of the program, and B(F ) the block of fault exists. In this

case, we can get the mapping: S(F ) → B(F ). B(F ) con-

tains the location information, including line number, fault

type, existing function head, involving global parameters.

FIαβ(FIi, F Ij) → Bi, Bj we can get construct informa-

tion between Bi and Bj , which could present the coupling

relationshipC(Fi, Fj) between Fi and Fj . In this paper, we

will investigate research questions as follows.

• RQ1: How frequently the three types of fault interfer-

ence happen? This question will investigate in what

extent fault interference happens and affects program

behaviors. Besides, we are interested in whether all the

three types have a same change to show up.

• RQ2: Does more fault coupling counts imply more

fault interference? This question aims to find the re-

lation between the number of fault coupling and fault

interference.

• RQ3: Does high fault coupling value imply more fault

interference? Different from RQ2, this questions fo-

cuses on whether a higher value coupling means a

higher possibility of fault interference.

3 Experiment

3.1 Subject Programs

In order to collect sufficient data about fault interference,

we used four subject programs: flex, gzip, space and make,

all of which are downloaded along with their test sets from

the Software-artifact Infrastructure Repository (SIR)1. The

four programs have been well studied and used as subject

programs in many other essential software engineering ex-

ploring experiments. Table 1 presents the detailed informa-

tion. Thanks to the previous researchers [], we excluded

some faults that could not cause any failures independently,

which results in reducing the number of faults. Besides,

using the same approach in [5], we combine faults by ran-

domly selecting a line or block to replace the excluded ones,

ensuring that no faulty block is overlapped and the size of

fault set is not changed.

1http://sir.unl.edu/portal/index.php

Table 1. Subject Programs
Program Flex Gzip Make Space

Release No. 2.5 1.1.2 3.76.1 2.0

# LOC 14273 7928 35545 6445

# Functions 162 104 268 136

# Faults 20 16 19 33

# Faulty Versions 190 120 171 528

# Test Cases 567 214 1043 13527

3.2 Experiment Setup

To facilitate manual analysis on the causes of fault inter-

ference, we simplify the question: two faults interference

situation is the best choice, which is of simplicity and rep-

resentativeness. In this experiment we gathered the pass/fail

status of our four subject programs containing one fault in-

dependently as well as two faults at same time.

In order to get the pass/fail status, we compare the out-

puts of test cases run on the fault-seeded versions with that

of the golden version. MD5 algorithm is applied to check

whether the outputs are the same or not. If the MD5 value

is not equal, the execution was marked as a fail; otherwise,

it was considered as a pass. With the help of the pass/fail

status matrix of all test cases running on all fault-seeded ver-

sions, FI types occurrence times, two bugs interacting with

each other were recorded by scripts.

The second step is to analyze the root cause of FI. We

gather all the fault information, the fault location(in which

LOC), fault type, the function header which the fault state-

ments or parameters belong to, the control flow informa-

tion the faulty block contains, the global parameters which

are involved and the local parameters which are used in the

block. Furthermore, Egypt2 is used to generate the function

call graph (FCG) and data flow graph (DFG) to assist the

software construction analysis procedure. Finally, we apply

the information collected to Formula 2, to get the total and

average coupling value (CV) of all types of FI.

3.3 Evaluation

For all subject programs are written in C, as described

in [1][4], we introduce the Dhama[4] coupling metric that

measures the coupling inherent to an individual module M

to evaluate the coupling value when FI occurred. The for-

mula is as following:

CV (M) = 1 −

1

i1 + q1i2 + u1 + q2u2 + g1 + q3g2 + w + r
, (2)

where q1, q2 and q3 are weight factor to improve the pred-

icator weight. For data and control flow coupling: i1 is the

2http://www.gson.org/egypt/



Table 2. FI Information

Flex Gzip Make Space

β FI Occurrence Times 0 229 0 138

α0 FI Occurrence Times 82 103 15 2552

α1 FI Occurrence Times 652 79 605 13276

Total FI 734 411 620 15966

Single Bug Execution Times 11340 3424 19817 446391

Two Bug Execution Times 107730 25680 178353 7142256

Total Execution times 119070 29104 198170 7588647

FI Occurrence Percent 0.681% 1.60% 0.34% 0.224%

Average of FI in LOC 0.0514 0.0518 0.0174 2.4772

Average of FI in test case 1.2945 1.9205 0.5944 1.1803

Average of FI in function 4.53 3.95 2.31 117.40

input data number, i2 is the control parameter number, u1 is

the output data number, and u2 is the output control parame-

ter number. For global coupling: g1 is the number of global

parameters used as data, and g2 is the number of global pa-

rameters used for control. For environment coupling: w is

the number of other modules called from module M, and r

is the number of modules calling module M; The formula

has a minimum value of g1 and g2 is the number of global

variables used for control. In our experiment, to concen-

trate on the FI occurrence, we just calculate the faulty block

coupling value, and q1, q2, q3 are assigned to 2 as a heuris-

tic estimate. To simplify the experiment, we treat the faulty

block as the fault module. When the FI occurred in two

faulty block, we just treat the involved parameters as the

factor of our evaluation formula.

3.4 Experiment Result and Analysis

The analysis of the experiment result includes three

parts: FI occurrence statistic, the cause investigation, and

the relation between coupling value and FI analysis, to an-

swer the three questions proposed in II-C. The FI statistic

information is presented in the Table 2. The coupling per-

centage analysis is shown in Fig. 1, where α, β denote the

FI types depicted in the previous section, and the coupling

value statistic is in the Table 3.

Fig. 1 presents the percent of each coupling effect in

each type of FI, about the Fig. 1. We must explain that

the occurrence of FI may be not caused by only one type of

coupling. To facilitate statistical analysis and assure the pre-

cision, we record all of the coupling type when FI occurred.

We use CPT (X) to denote the T type(data, stamp, control,

common, content) of Coupling Proportion(CP) which lead

to X(α0, α1, β) type of FI, and the T type of coupling count

in X type of FI is denoted as CCOT (X). The CPT (X) cal-

culated as follows.

CPT (X) =
CCOT (X)

Occurrence Number of X
(3)

Table 3. Coupling Values of FI

FI Flex Gzip Make Space

Total CV 73.0412 39.6661

β FI Occurrence NA 229 NA 138

Average CV 0.3189 0.2874

Total CV 28.6061 5.5943 3.2166 785.849

α0 FI Occurrence 82 103 15 2552

Average CV 0.3488 0.2484 0.2144 0.3079

Total CV 316.4958 26.5607 176.329 5520.1608

α1 FI Occurrence 652 79 605 13276

Average CV 0.4845 0.3362 0.2914 0.4158

In this way, the total coupling proportion leads to one type

of FI may be over 100 percent.

RQ1: Frequency of fault interference. It is obvious

that, the FI occurred in a low frequency, about 1%. In the

experiment, we did not observe the FI type, β, in the flex

and make, and only a few (about 0.86% = 138/15966) in

the Space. The data of Gzip is totally different from other

subject programs. The function of Gzip is to compress or

decompress the files. We analyze the aberration by tracing

the test cases function call routes on the FCG. And the re-

sults show that a very high proportion of the test cases called

almost all the functions and that each test case has a high

code coverage value. In such case, the test case may have

a relative high possibility to cover the faulty block. This is

considered as the reason why the α0 and α1 FI proportion

is relatively low in Gzip.

RQ2:The relation between coupling frequency and

fault interference. As shown in the Fig. 1, no content cou-

pling is observed in the programs, which may benefit from

the well-defined programming style of the four subject pro-

grams. However, based on the analysis on the FI types, it

reveals that any kind of coupling could lead to FI, that is,

a low data coupling frequency corresponds to a low aver-

age FI in test cases and a high common coupling frequency

generate a high average FI in test cases.

RQ3:The relation between coupling value and fault

interference. According to Table 3, all of the subject pro-

grams have a higher average CV in α1 than that in α0, which

indicates that the occurrence of α1 always results from a

much tighter coupling than that resulting in α0. When we

analyze the source code of α FI involved in faulty blocks,

we discovered that the main reasons for α0 and α1 are to-

tally different: when the α0 FI occurring, software usu-

ally performs correct behavior, which leads the software

to skipping the wrong behaviors. In other words, the pro-

gram seems to behave correct, and jump over another faulty

block. In this way the correct behavior cover the wrong be-

havior and the program seems correct. Another finding is

that about 65% α0 are caused by the use of global param-

eters. The most important reason leading to α1 FI is that



Figure 1. Coupling Percent Analysis

one of the wrong behavior corrects another wrong behav-

ior by coincidence. And such situation almost occurs in the

condition branch. The β FI usually occurs in the situation

that: the two independent correct behaviors are not strictly

or logically correct, the two faulty blocks form a more fatal

fault to some software behavior, and the new fault is easier

to be detected for the test case.

In our experiment, we just investigate the FI in two faults

as the same with Nicholas and James’ excellent research[5].

In general, as the program scale and faults number increase,

the FI occurrence frequency will increase. The interference

of more than two faults may be a more complicated topic.

4 Related Work and Discussion

Fault localization techniques relying on slicing or statis-

tics usually depend on fault behavior. In [12], James et. al.

found that multiple faults can introduce noise, which can

decline the effectiveness of fault localization tools. Zheng

et al. [18] and Liblit et al. [14] also found a similar phe-

nomenon that multiple faults make feature selection diffi-

cult. Denmant et al. [3] coverage-based fault location re-

quires an assumption that multiple faults should be inde-

pendent with each other. Further, DiGiuseppe et. al. [6]

found that fault interference has a large impact on the ca-

pability of fault localization techniques on multiple faults

program. However, these studies focuses on influence of

fault interference on fault localization techniques.

Regression Testing[10] aims to ensure new faults are

not introduced when software evolve. In [7], a hierarchy of

logic faults are investigated on regression testing with sing

fault versions. The fault interference may affect the perfor-

mance of regression testing.[13] found that a fault may not

be detected when it is mixed with other faults.

Fault Interference Debroy and Wong[2] explored the

idea of fault interference and they examined whether a test

suite perform the same on single-fault versions or multiple-

fault versions. Their empirical studies suggest that failure

masking is a very quite common phenomenon. DiGiuseppe

and Jones [5] provided evidence for the prevalence of fault

interference and found that faults obscuring is the most

prevalent type. Further, they gave a thorough discussion

about the adverse effect of fault interference on many exist-

ing studies, such as regression testing and fault localization.

Comparing to the existing studies, we introduce software

coupling and present explanations on the root causes of fault

interference.

5 Conclusion & Future Work

Investigating the fault interference root cause is an im-

portant task of software engineering. The interference be-

tween faults threats many important software engineering

tasks. In this paper, we present a theory to explain the fault

interference. The main challenge on this topic is that the

developers and testers ignore the fault interference; a natu-

ral idea is to propose a theory to explain the phenomenon,

predict it and avoid it.

We noticed the phenomenon in our experiment and try

to apply the framework to analyze it, but we cannot dis-

cuss them in detail due to the limited pages. The approach

present in our paper, do not cover how to treat the coupling

on the popular Object-Oriented programming, and thanks

to the smart previous researchers, there exists some math-

ematical measuring to measure Object-Oriented, Modular,

Aspect-Oriented programming. We will introduce these ex-

cellent methodology to investigate the FI.

There is little research on revealing and explaining the



fault interference, and the methodology on handling mul-

tiple bugs program is in lack. The exploration of multiple

bugs is preliminary. There are many aspects about this topic

that could be improved or studied in the future. The fault

localization algorithm, testing clustering methods, regres-

sion testing techniques should take fault interference into

consideration. Furthermore, we should build a more de-

tailed theory to explain, predicate and avoid fault interfer-

ence. For example, predefined specifications with respect

faults can be investigated[9]. We will also conduct a more

comprehensive experiment to explore the fault interference

and take it into consideration to improve other software en-

gineering tasks in the future.
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