
A Comparison of Two Model Transformation
Frameworks for Multiple-viewed Software

Requirements Acquisition
Bingyang Wei

Department of Computer Science
Midwestern State University
Wichita Fall, Texas, 76308

Email: bingyang.wei@mwsu.edu

Abstract—Multiple-viewed requirements modeling allows mod-
elers to elicit the requirements of a system from different
viewpoints. Requirements are then organized and encoded in
different analysis models which collaboratively form an overall
understanding of the system. Model transformations among those
analysis models at this stage can be used as a way to acquire
requirements knowledge, thus making the set of models complete
and consistent. Two frameworks are found to support such
requirements acquisition: the pairwise framework and the com-
mon representation framework. In practical applications, various
factors need to be considered when requirements modelers choose
between the two frameworks in order to acquire requirements
by analysis model transformations. In this paper, we propose a
set of criteria which provides a theoretical basis for comparing
the two frameworks for their effectiveness of generating models
and acquiring requirements in the context of multiple-viewed
requirements modeling. The results of the comparison is then
presented.

I. INTRODUCTION

Properly eliciting and modeling the requirements are im-
portant to successful software development. Multiple-viewed
requirements modeling is commonly used so that a system is
observed from different viewpoints by different people, and
the requirements are expressed in different types of analysis
models. The creation of different types of analysis models
for a system is parallel and iterative by nature and might
be conducted by different requirements modelers. However,
it is difficult for a modeler to know whether an analysis
model is complete or what requirements are missing from
the current version of a model [6]. The modelers need to be
made aware of the missing requirements of analysis models. In
order to make explicit the missing requirements in an analysis
model, Delugach proposed the idea of conceptual feedback
[4] which can provide prompts for the missing requirements
to modelers (see Figure 1). This approach is based on the
requirements knowledge overlap among analysis models of
the same system. During requirements analysis stage, already-
created analysis models (Model0 to Modeln in (b) of Figure
1) are transformed to a target analysis model Modelx. This
process introduces new requirements to Modelx, which make

subsequent RE activities

[semantic holes]

Elicitation

[No more semantic holes]

Evaluation

Specification
(see (b))

Model1 Model 2

Model0 Model n

Model x

transform to transform to

transform to transform to

Specification

Model0 … Modeln are currently available models of the system
Modelx is the target model to be built

(a) (b)

Fig. 1. Conceptual feedback in RE process

it more complete, and more importantly, reveal some require-
ments acquisition opportunities to the modeler of Modelx.

Alerting

HighWaterSensor

-waterLevelReading
-highWaterSignal

COAlarm

AirflowAlarm

MethaneAlarm

GasAlarm

-alarmStatus:{on, off}

Tracking

1..*

1

Location

Mine

-methaneLevel
-CO-Level
-airflow

1 1
Regulation

Pump

-motorStatus:{on, off}
-switchStatus:{on, off}

Sump

-waterLevel

Fig. 2. Original class diagram before model transformations

A simple example of adopting the conceptual feedback
approach to get more requirements and reveal requirements
acquisition opportunities in a UML class diagram is shown
in Figure 2 and Figure 3. Through model transformations,
the original UML class diagram shown in Figure 2 is aug-
mented by requirements from the current state diagrams and
sequence diagrams of a Mine Safety Control system [10].
The resulting augmented class diagram is shown in Figure 3.
Grey classes represent new classes that are added in throughDOI reference number: 10.18293/SEKE2017-070

Alerting

HighWaterSensor

-waterLevelReading
-highWaterSignal: {on, off}

«from seq diagram»
retract()

COAlarm

?

AirflowAlarm

?

MethaneAlarm

?

GasAlarm

-alarmStatus:{on, off}

?

Tracking

1..*

1

Location

Mine

-methaneLevel: {High}
-CO-Level
-airflow

?

1 1
Regulation

Pump

-motorStatus:{on, off}
-switchStatus:{on, off}

?

Sump

-WaterLevel: {High}

?

assoc.

assoc.

assoc.

assoc.

PumpActuator

-?

«reception»
?

MethaneAlarmActuator

-?

processMethaneAlarmOnSignal()

pumpFailure_assoc.

ClassCausing
PumpFailureEvent

-?

?

assoc.

assoc.

MethaneSensor

«from state diagram»
-highMethaneSignal:
{on, off}

?

SafetyController

-?

?

Fig. 3. Augmented class diagram after model transformations

model transformation. Note that the augmented class diagram
contains question marks which denote the potentially missing
requirements. In other words, they are requirements of the
class diagram which cannot be automatically generated based
on the existing requirements knowledge in other currently
available models, therefore need to be explicitly provided by
modelers. For example, class PumpActuator in Figure 3 has
two question marks: an unspecified attribute and an unspecified
operation.

Because of the presence of requirements acquisition op-
portunities, the augmented analysis model is considered as
incomplete so modelers are invited to complete it by pro-
viding the missing requirements. This enables additional new
requirements to be elicited by fixing those question marks
(This process is shown as a feedback arrow from Specification
to Elicitation in (a) of Figure 1). After that, the augmented
model with question marks resolved would in turn affect other
models (dotted arrows in (b) of Figure 1), causing further
generation and completion processes in other analysis models.
The process may repeat until no more new requirements
knowledge can be acquired by transforming models, i.e., the
set of models is internally complete and self-consistent.

There are two common used frameworks in Requirements
Engineering community that can support software require-
ments acquisition by model transformations. They are the
pairwise framework (PWF) and the common representation
framework (CRF) shown in Figure 4. The former framework
supports requirements acquisition by direct transformations
between models whereas the latter by relying on a common
knowledge representation that describes the semantics of the
analysis models.

For PWF, transformations between each pair of UML dia-
grams have been studied by many researchers [5][7][8], and
they collaboratively carried out a well-understood semantic
description of model transformations in PWF. A summary of
transformation rules between each pair of three UML diagrams
is available in [11]. As for CRF, Wei and Delugach [13]
proposed using conceptual graphs (CGs) [9] as the common
representation in CRF to transform and acquire requirements
for analysis models. A detailed description of model transfor-
mations with CGs in the CRF used for requirements acquisi-
tion is provided in their work [11][14][12].

Model1

Model2

Model3Model4

Model5

Conceptual
Graphs

Model1

Model2

Model3Model4

Model5

(a) (b)

Fig. 4. PWF and CRF

An important research problem is that the two frameworks’
effectiveness in transforming models and acquiring require-
ments knowledge is largely unknown. There is no theoretical
basis for evaluating which framework is more effective in
transforming models and acquiring requirements in the context
of multiple-viewed requirements modeling. A detailed analysis
of the capability of eliciting requirements from requirements
modelers, the capability of preserving semantics and the
extensibility of each framework, and an objective comparison
is needed so that researchers and modelers can rely on this
proposed criteria and comparison to choose between frame-
works for addressing requirements acquisition problem.

The remainder of the paper is organized as follows: In
Section 2, we explain the approach we use in order to compare
the two frameworks for their effectiveness of exposing require-
ments acquisition opportunities and propose the evaluation
criteria. In Section 3, the two frameworks are evaluated
according to a set of criteria; the results of this comparison
are presented. Section 4 discusses the limitations of this work
and concludes the paper.

II. COMPARISON METHODOLOGY

In this section, details of the comparison are presented.
These include the analysis models used in both frameworks,
comparison procedures, software system examples and pro-
posed criteria.

In this work, three types of UML diagrams are considered
for both frameworks (Figure 5). They are class diagrams, state
diagrams, and sequence diagrams which are among the most
commonly used diagrams in UML for specifying an object-
oriented system. The reason for choosing them is that the
structure, state, and interaction views of a system provide a
sufficiently broad range of the semantics of object-oriented
models to show the generality of our approach. The conver-
sions and comparisons are done by the author: conversion rules
for both frameworks are derived based on the latest UML
specification [1], and the conversions are conducted by strictly
following the rules. We tried to limit the bias to the minimum,
so it does not threat the validity of the results.

The way to conduct our comparison is shown in Table I. One
model is considered as the target model, and two other models
are transformed to it using one of the two frameworks: In PWF,
two models are transformed to the third one directly, while
in CRF, two models are first converted to CGs from which

Class
diagram

State
diagram

Sequence
diagram

Conceptual
Graphs

Class
diagram

State
diagram

Sequence
diagram

Fig. 5. Three UML diagrams in two frameworks

TABLE I
TRANSFORMATION STRATEGY

Transf. # Source models Target model

1 state diag., sequence diag. class diag.

2 sequence diag., class diag. state diag.

3 state diag., class diag. sequence diag.

the third diagram is derived. The target models generated by
different frameworks are then compared based on a set of
criteria.

Three non-trivial software case studies are used. They
are the University Information System (UnivSys.)[2],
which is an information system; the Cryptanalysis System
(Cryptanlys.)[3], which is an AI system, and the Mine Safety
Control System (MineSys.)[10], which is a real time control
system. The use of three case studies in three different
domains makes sure that our comparison results are not
dependent on the domain. The results of working out the
three case studies in both frameworks are available in the
appendices of [11].

A set of criteria that can be used to evaluate frameworks
used for requirements knowledge acquisition is then proposed.
Although only two specific frameworks are compared in this
paper, these criteria are not limited to them. The criteria
are meant to be applicable to any transformation framework
that claims to address the requirements knowledge acquisition
problem. The set of criteria is presented here:

1) Capability of acquiring missing requirements
2) Capability of generating definite requirements
3) Percentage of the missing requirements in generated

UML diagrams
4) Extensibility
5) Knowledge acquisition effort
The reason these criteria are picked is the purpose of the

model transformations in the two different frameworks: we are
interested in the fact that which framework will produce more
requirements acquisition opportunities for a modeler.

III. COMPARISON RESULTS

The results of the comparison are shown here. Each of
criteria proposed in last section is explained in detail.

A. Capability of Acquiring Missing Requirements

Both model transformation frameworks can generate a target
UML diagram and reveal requirements acquisition opportu-
nities. In this work, a requirements acquisition opportunity
refers to something that needs clarification in an augmented
UML diagram. For example, a question mark on an association
in a class diagram or an automatically generated class name
like ClassCausingPumpFailureEvent in Figure 3. It
reveals some missing requirement that a modeler needs to
provide, and there is no way that a framework can generate
that missing requirement automatically. Since the presence of
requirements acquisition opportunities indicates the possible
missing requirements knowledge, a high number of require-
ments acquisition opportunities in a UML diagram is a sign
that more requirements knowledge will be potentially acquired
from a modeler. This criterion evaluates the capability that a
framework has to acquire the missing requirements. This is
measured by counting the number of requirements acquisition
opportunities in the UML diagrams generated by a framework.
An advantage of using the quantity of requirements acquisition
opportunities as the metric is that this only depends on the
representation of UML diagrams and not on any subjective
judgment of incompleteness or experience of requirements
modelers. For example, different class diagram modelers will
have different ways to complete the same augmented class
diagram (Figure 3). So instead of asking several modelers to
really fill in the holes and getting an average, we simply count
the number of requirements acquisition opportunities that need
to be filled, since these requirements (requirements acquisition
opportunities) are missing for sure, and need to be provided
by the requirements modelers.

During the comparison, given the same state and sequence
diagrams of a software system, two class diagrams are gener-
ated by PWF and CRF, respectively; then the number of re-
quirements acquisition opportunities yielded in each of the two
generated class diagrams is counted. The types of requirements
acquisition opportunities that we are counting in an augmented
class diagram are listed under the gray row “In generated class
diagram” in Table II. The same comparison process works for
augmented state diagrams and augmented sequence diagrams.
The types of requirements acquisition opportunities that we
are counting in a generated state diagram are listed under
the gray row “In generated state diagram” and the types of
requirements acquisition opportunities that we are counting in
a generated sequence diagram are listed under the gray row “In
generated sequence diagram” in Table II. The complete results
of evaluating the generated class, state and sequence diagrams
for three case studies in the two frameworks are listed in Table
II. Higher values are better. Based on the result, CRF generated
more missing requirements than PWF did.

B. Capability of Generating Definite Requirements

In a generated target UML diagram, besides requirements
acquisition opportunities, there are newly generated require-
ments that are certain. We named these requirements “definite
inferred requirements” in this paper, and they do not need

TABLE II
COMPARISON OF THE CAPABILITY OF ACQUIRING MISSING REQUIREMENTS IN TWO FRAMEWORKS

PWF CRF

requirements acquisition opportunities UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

In generated class diagram

Number of unknown class names 7 8 4 7 8 6

Number of unknown attribute names 0 0 0 15 20 25

Number of unknown operation names 13 14 27 49 59 81

Number of unknown association names 12 11 13 12 11 15

Total 32 33 44 83 98 127
In generated state diagram

Number of unknown/potential states 20 18 19 20 18 13

Number of unknown transitions 4 3 5 5 4 3

Number of unknown events 5 3 2 5 4 3

Number of unknown effects 0 0 0 7 7 5

Number of unknown guards 0 0 0 15 14 10

Number of unknown entry/exit, do activities 0 0 0 60 54 39

Number of state invariants 0 0 0 10 10 7

Total 29 24 26 122 112 80
In generated sequence diagram

Number of unknown neighboring lifelines 6 8 8 6 7 8

Number of unknown messages 0 1 0 0 0 0

Number of unknown execution specs 0 0 0 25 37 58

Total 6 9 8 31 44 66

further clarification by modelers. For example, the method
processMethaneAlarmOnSignal() in the augmented
class diagram in Figure 3. This criterion evaluates the capa-
bility that a framework has to acquire the definite requirements
knowledge. This is measured by counting the number of
definite model elements in the UML diagrams generated by
a framework. The types of definite requirements that we are
counting in the three generated UML diagrams are listed in
the first column in Table III. The results of evaluating the
generated class, state and sequence diagrams for three case
studies in two frameworks are listed in Table III. Higher values
are better. Based on the result, the difference between PWF
and CRF is small.

C. Percentage of the Missing Requirements in Generated UML
Diagrams

This criterion evaluates the incompleteness of the UML
diagrams generated by PWF and CRF. The incompleteness
of a generated UML diagram is the number of requirements
acquisition opportunities over the number of overall generated
model elements in a generated UML diagram. The results of
evaluating the incompleteness of generated class, state, and
sequence diagrams for three case studies in two frameworks

are listed in Table IV. For example, for the generated class
diagram of the UnivSys. by CRF, it is 83.8% incomplete and
16.2% complete. Since the purpose of this paper is to evaluate
requirements acquisition, higher percentages are better. Based
on the result, CRF produces more incomplete diagram than
PWF.

D. Extensibility

In this work, three types of UML diagrams are chosen
for both frameworks. However, more UML diagrams can be
added to expand the frameworks. This criterion evaluates the
extensibility of a framework by measuring the amount of effort
needed to introduce another type of UML diagram (activity
diagram in this case) in both frameworks. For simplicity, only
limited model elements in activity diagrams are considered:
Activity partitions, Activity nodes, control flows, Forking, and
joining. When a new type of model is introduced, new trans-
formation rules need to be developed for both frameworks.
We are counting the number of new rules developed for a
framework to evaluate its extensibility. Lower values are better.
In PWF, 26 new rules are needed to add a fourth diagram (the
activity diagram), while in CRF, only 4 new rules are needed.
Apparently, CRF is more extensible than PWF.

TABLE III
COMPARISON OF THE CAPABILITY OF GENERATING DEFINITE REQUIREMENTS IN TWO FRAMEWORKS

PWF CRF

Definite requirements UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

In generated class diagram

Number of definite classes acquired 5 4 8 5 4 8

Number of definite attributes acquired 2 3 11 1 2 5

Number of definite operations acquired 11 9 0 10 9 0

Number of definite association names acquired 0 0 0 0 0 0

Total 18 16 19 16 15 13
In generated state diagram

Number of definite state machines 5 4 5 5 4 5

Number of definite states 0 0 0 0 0 0

Number of definite transitions 15 14 9 10 10 7

Number of definite events 10 8 7 10 10 7

Number of definite effects 9 9 7 9 9 5

Total 39 35 28 34 33 22
In generated sequence diagram

Number of definite sequences 4 2 4 9 9 11

Number of definite messages 6 6 6 6 6 6

Number of definite execution specs 5 4 0 5 3 0

Number of definite states 6 10 14 6 10 14

Number of definite combined fragments 2 2 10 0 0 0

Total 23 24 34 26 28 31

TABLE IV
COMPARISON OF INCOMPLETENESS OF GENERATED UML DIAGRAMS BY TWO FRAMEWORKS

Generated PWF CRF

UML diagrams UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

Class diagram 64.0% 42.7% 20.7% 83.8% 78.2% 54.4%

State diagram 67.4% 40.7% 27.3% 86.7% 77.2% 61.1%

Sequence diagram 69.8% 48.2% 19.1% 90.7% 78.4% 68.0%

E. Knowledge Acquisition Effort

This criterion is used to evaluate and compare the amount of
effort needed to complete requirements acquisition opportuni-
ties in the UML diagrams generated by PWF and CRF. When
a modeler is presented with UML diagrams with requirements
acquisition opportunities, she needs to look at each hole and
choose to either fill it in or delete it. So, in this work, the
knowledge acquisition effort is measured by counting the
number of requirements acquisition opportunities that needed
to be considered (Table V). Higher values are better. Based on
the result, CRF requires more effort than PWF.

IV. DISCUSSION OF THE RESULTS

Criterion 1 compared the capability of acquiring missing
requirements of the two frameworks. Based on the results
of applying both frameworks to three case studies, the CRF
outnumbered the PWF in all generated UML diagrams in three
case studies (see Table II). In other words, using CRF, more
possible requirements may be acquired from a modeler in
the multiple-viewed requirements modeling context. Currently,
there is no metric to measure the usefulness of a requirements
acquisition opportunity. Criterion 2 compared the capability
of generating definite requirements in the two frameworks.

TABLE V
COMPARISON OF THE KNOWLEDGE ACQUISITION EFFORT NEEDED IN UML DIAGRAMS GENERATED BY TWO FRAMEWORKS

Generated PWF CRF

UML diagrams UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

Class diagram 32 33 44 83 98 127

State diagram 29 24 26 122 112 80

Sequence diagram 6 9 8 31 44 66

Based on the results of applying both frameworks to three case
studies, PWF outnumbered CRF in almost all generated UML
diagrams in three case studies. In other words, using PWF,
more determined requirements can be generated. This implies
that PWF is better at generating target models from source
models. However, the difference is not much. Given a set of
requirements acquisition opportunities and a set of definite
requirements in a generated target UML diagram, readers may
wonder which one is more desired. In this work, we are aiming
for knowledge acquisition, so more requirements acquisition
opportunities are desired.

Built upon the previous two criteria, the comparison based
on criterion 3 shows that UML diagrams generated in CRF are
generally more incomplete than in PWF. This matches our first
conclusion that CRF is more capable of exposing requirements
acquisition opportunities in the multiple-viewed requirements
modeling context.

Criterion 4 is crucial for framework developers since a
framework grows when new types of diagrams are introduced.
By introducing a new type of UML diagram, activity diagrams,
in both frameworks, CRF is found to be clearly more exten-
sible than PWF. This advantage becomes more evident when
a framework supports more UML diagrams.

More requirements acquisition opportunities mean more
effort involved in resolving them. In CRF, a modeler has to go
through each requirements acquisition opportunity to decide if
it is indeed useful and meaningful. In this work, we assume
that every requirements acquisition opportunity takes the same
amount of time to be completed. We conclude that it takes
more time to complete a UML diagram generated by CRF
than by PWF because more need to be taken into account.

Besides the purpose of requirements acquisition, CRF has
the advantage of reasoning with the CGs Reservoir (the central
conceptual graphs in Figure 5) which stores the entire require-
ments of the system. We recommend CRF as a better model
transformation framework for the purpose of requirements
acquisition.

Two current limitations are the lack of automation support
and usage of simple case studies. Future work obviously will
focus on automation and industrial examples. The current work
assumes its input UML diagrams are syntactically and seman-
tically correct. If errors exist, those errors will be converted to
CGs or other UML diagrams and then used to infer incorrect

or badly formed requirements knowledge. Retracting the CGs
inferred from this wrong knowledge is a time-consuming and
complex task that the current framework cannot handle.

V. CONCLUSION

In this paper, we proposed and conducted a comparison
of two model transformation frameworks that can be used
in requirements acquisition. Five general comparison criteria
are provided for evaluating the frameworks so that modelers
can reference them when choosing frameworks. Based on the
results, common representation framework exceeds pairwise
Framework in term of requirements acquisition.

REFERENCES

[1] OMG Unified Modeling LanguageTM (OMG UML), Version 2.5. object
management group, 2015.

[2] S. W. Ambler. The object primer: Agile model-driven development with
UML 2.0. Cambridge University Press, 2004.

[3] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and
K. Houston. Object-oriented Analysis and Design with Applications,
Third Edition. Addison-Wesley Professional, third edition, 2007.

[4] H. S. Delugach. An approach to conceptual feedback in multiple viewed
software requirements modeling. In Joint proceedings of the second
international software architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software development (Viewpoints’
96) on SIGSOFT’96 workshops, pages 242–246. ACM, 1996.

[5] A. F. Egyed. Heterogeneous view integration and its automation. PhD
thesis, University of Southern California, 2000.

[6] D. Firesmith. Are your requirements complete? Journal of Object
Technology, 4(1):27–44, 2005.

[7] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing
the relationships between multiple views in requirements specification.
Software Engineering, IEEE Transactions on, 20(10):760–773, 1994.

[8] P. Selonen, K. Koskimies, and M. Sakkinen. Transformation between
uml diagrams. Journal of Database Management, 14(3):37–55, 2003.

[9] J. F. Sowa. Conceptual structures: information processing in mind and
machine. 1983.

[10] A. Van Lamsweerde et al. Requirements engineering: from system goals
to uml models to software specifications. 2009.

[11] B. Wei. A comparison of two frameworks for multiple-viewed software
requirements acquisition. PhD thesis, Ph. D. thesis, University of
Alabama in Huntsville, 2015.

[12] B. Wei and H. S. Delugach. A framework for requirements knowledge
acquisition using uml and conceptual graphs. In Software Engineering
Research, Management and Applications, pages 49–63. Springer, 2016.

[13] B. Wei and H. S. Delugach. Transforming uml models to and from
conceptual graphs to identify missing requirements. In International
Conference on Conceptual Structures, pages 72–79. Springer, 2016.

[14] B. Wei, H. S. Delugach, E. Colmenares, and C. Stringfellow. A con-
ceptual graphs framework for teaching uml model-based requirements
acquisition. In 2016 IEEE 29th International Conference on Software
Engineering Education and Training (CSEET), pages 71–75. IEEE,
2016.

