
Who Will be Interested in?
A Contributor Recommendation Approach for Open

Source Projects
Xunhui Zhang, Tao Wang, Gang Yin, Cheng Yang, and Huaimin Wang

College of Computer Science
National University of Defense Technology

Changsha, Hunan, China
{zhangxunhui,taowang2005,yingang,hmwang}@nudt.edu.cn, delpiero710@126.com

Abstract—The crowds’ continuous participation and contri-
bution are the key factors for the success of open source
projects. However, among the massive competitors, it is difficult
for a project to attract enough contributors by just passively
waiting for enthusiasts to join in. Instead, it should actively
seek gifted developers. Most of the current studies mainly
focus on recommending experts inside a repository for some
specific development tasks. In this paper, we propose a novel
approach ConRec to recommend potential contributors across
the entire open source community for given projects. It lever-
ages the developers’ historical activities in projects to analyze
their technical interests and technical connections with others.
Thereafter, it combines collaborative filtering algorithm with
text matching algorithm to recommend proper developers. We
conducted extensive experiments on 5,995 open source projects
and 2,938,620 developers in GitHub. The results show that the
proposed algorithm can recommend contributors to open source
projects with the best performance of 63% in accuracy, and solve
the cold start problem as well.

Keywords-Contributor Recommendation; Collaborative Filter-
ing; Text Matching; GitHub

A. Introduction

Open source software (OSS) has become increasingly pop-
ular in software development. Quite different from the tra-
ditional software development, OSS is driven by massive
crowds including developers, users, managers and so on. These
stakeholders involve in OSS by interests, and most of them
have their own full-time job and can only spend spare time
on OSS. They can join in or withdraw from it at any time.
Nevertheless, OSS has achieved great success at creating high-
quality software like Linux, MySQL, Spark and so on, and is
viewed as “eating the software world” by “the Future of Open
Source Survey” [1].

The behavior of open source itself does not necessarily
result in a project’s success, but the continuous participation
and active contribution from the crowds do play a crucial
role. In GitHub, there are more than 48 million open source
projects. However, over 2 million projects are not forked or
watched by anyone after releasing, and 15.1% of them were
not updated for more than a year and finally failed. Even

DOI reference number: 10.18293/SEKE2017-067

for those projects which used to be successful will languish
without continuous contribution of developers.

Therefore, finding and attracting the right developers to
participate is quite crucial for OSS. On the one hand, proper
developers can provide necessary technical expertise that a
project needs; On the other hand, suitable projects can inspire
developers to participate in and to contribute their innovations
continuously. However, there is a massive amount of compet-
itive OSS, and developers are often limited by their time and
energy to browse and choose from all the related projects. An
automatic approach to bridge the gap between developers and
projects and match them means much for both developers and
projects.

Several studies have explored the act of recommending
developers to open source projects. Nguyen et al. [2] and
Ma et al. [3] proposed approaches to fix the recommendation
issues by analyzing the implementation history and expertise
of developers. Thongtanunam et al. [4] and Yu et al. [5]
focused on the automatic pull-request reviewer recommen-
dation problem by analyzing the development history and
social connections of individuals in the software community.
Most of these studies mainly focus on specific software tasks
and limit the recommended candidates to the core developers
of the projects. By contrast, the current study is rooted in
the granularity of open source repositories, and our output
allows recommendations of external experts throughout the
community.

This study developed a general algorithm called ConRec for
recommending suitable contributors to open source projects
based on a collaborative filtering algorithm and text matching
based method. We performed extensive experiments to com-
pare the performances of different algorithms on various types
of projects. The test data included approximately six thousand
projects and over three million candidates in GitHub. ConRec
performed well in all types of projects while solving the “cold
start” problem. The main contributions of this study are as
follows:

• We design a commit network to measure the collaboration
connections between developers. Based on this network,

we develop a weighted collaborative filtering (WCF)
algorithm to recommend.

• We design a text matching based recommendation algo-
rithm based on the text information of projects. It can
solve the cold start problem effectively for projects which
have only few pre-existing developers before recommen-
dation.

• We combine the above two algorithms together and
design a hybrid approach called ConRec. We conduct
extensive experiments on over 5,990 projects and about
three million developers in GitHub, and achieves recom-
mendation accuracy of about 63%.

The rest of this paper is organized as follows. Section 2
reviews a few related studies. Section 3 describes the frame-
work of ConRec and the detailed recommendation algorithms.
Section 4 presents the design of the experiments. Section
5 discusses the experiment results. Section 6 elaborates the
conclusion and describe the future plans of the study.

I. RELATED WORK

A. Expert Identification and Prediction

In software development, the expertise of developers is one
of the most important factors that influence the efficiency
and quality of software development. Hence, an accurate
expert identification is of immense importance in global and
distributed software development. Many studies have explored
expert identification and prediction from different perspectives.
In references [2][3], Nguyen and Ma, et al. evaluated the
expertise of developers by analyzing the usage frequency of
methods and time distribution on issue fixing, respectively.
Thereafter, they designed the corresponding metrics to mea-
sure the technical capabilities of developers from the aspects
of usage and implementation. Gharehyazie et al. [6] leveraged
the activities of participants in a mailing-list communication
network and issue fixing history, as well as proposed an
approach to predict the probability of becoming a developer in
a project. Robbes [7] used the interactions between developers
to calculate their expertise. Schuler and Zimmermann [8]
measured the expertise of developers by using the frequency
of usage of specific application programming interface.

Most of these studies mainly focused on the capability of
developers to solve problems, thereby failing to consider the
probability of participating in target projects. The current study
combines the ability of developers and the association among
them to find suitable committers to projects.

B. Task Assignment

The development of social coding communities has resulted
in collaboration and cooperation becoming particularly com-
mon. Moreover, the rapidly increasing numbers of repositories
and tasks pose difficulties for developers.

Automatic task assignment has been extensively studied.
In particular, bug assignment has attracted significant re-
search interest. Bhattacharya [9], [10], Naguib [11], Xia [12],

Pre-existing developer: developer who has already committed to the project.

Shokripour [13], and others introduced many methods to
recommend experts to solve bugs. Yu et al. [5], [14], [15]
analyzed the social coding pull-request mechanism and devel-
oped methods for pull-request recommendation. Balachandran
and Thongtanunam et al. [16][4] generated methods for code
reviewing in social coding communities. Kagdi [17] heuristi-
cally created a code reviewer recommendation system using
the history of activities and expertise of developers.

These studies mainly focused on the fine-grained tasks of
open source repositories. By contrast, the present research
is concerned with finding suitable contributors for a project,
which is a coarse-grained topic.

C. Collaborative Network in Social Coding Communities

Although social coding is quite different from traditional
software development, the working habits of developers are
quite similar. People tend to work in groups and form new
groups with familiar cooperators, thereby leading to the for-
mation of a collaborative network.

Hertel et al. [18] studied the motivation of participants in
OSS, and determined that people tend to work as a team.
Grewal et al. [19] explored the network embeddedness of open
source projects and realized that strong embeddedness leads to
success. Weiss et al. [20] revealed that developers will migrate
from one community to another with other collaborators.
Hahn et al. [21] used these studies as basis to indicate that
prior social relations in a network of developers can assist
to attract additional developers. They also determined that
developers tend to join in projects with which they have strong
collaborative ties [22].

In considering the existing studies, we learned that devel-
opers in OSS tend to form collaborative networks. Further-
more, cooperators tend to form groups when developing new
projects. On the basis of this phenomenon, we developed the
following recommendation algorithm.

II. METHOD

In this section, we present the framework of ConRec and
introduce the detailed mechanism of the proposed algorithm.

A. Intuition of ConRec

The basic idea stems from the observation of the rela-
tionship between developers and projects. Hahn [22] and
Madey et al. [23] determined that developers in social coding
communities tend to form groups, and that these collaborative
networks affect the choice of participation of developers. We
extract a part of the commit network in Figure 1.

Figure 1 shows that developers who have committed to the
same project tend to collaborate in other projects. The same
is true real life; when developing a project, developers form
groups, become familiar with one another, and gain mutual
trust. Therefore, they are likely to collaborate in other projects.
Figure 1 also shows that developers who focus on “cocos2d”
tend to work on the same projects. This condition indicates that
similar technical interests lead to similar behaviors of partic-
ipation. The same is true in reality, in which developers with

ccs-res

cocos2d-
console

cocos2d-
html5

Spider
monkey

cocos2d-js

ccx-
generator

cocos2d-x

Fig. 1: Part of Commit Network

different skills or in different research fields focus on different
areas. Accordingly, we developed the ConRec algorithm for
recommending suitable contributors to open source projects.

B. Framework of ConRec

ConRec involves three steps: gathering prepared information
for the recommendation algorithm, calculating relations be-
tween potential developers and target projects, and ranking and
obtaining the final results. Figure 2 illustrates the framework.

1) Gather Prepared Information: The first step is to gather
prepared information for the target project, including its pre-
existing developers, potential developers, major programming
language, and the technical terms in the project name and
description.

2) Calculate Relation: The second step is to perform the
recommendation task for the target project based on the
prepared information. We use the WCF algorithm and text
matching based algorithm to calculate the relation between
potential developers and projects. Thereafter, we consolidate
the results by merging the recommendation results of WCF
with the text matching results.

3) Rank Results: The third step is to obtain the final
recommendation results of the target project. After calculating
the relation of developers, we rank the results in descending
order and identify the top-k developers as the final result.

C. WCF Algorithm

This part describes the WCF algorithm in detail, which
comprises two steps. Figure 3 shows the work flow of this
algorithm.

1) Expert Selector: The first step is to select the developers
who are familiar with the major programming language of
the target project. If the developer lacks experience in the
target programming language, then he/she may lack interest
and experience difficulty committing to the target project.
Therefore, we count the number of times a developer commits
with the target programming language, and we consider that
potential developers should commit at least four times to

Latent developer: developer that may commit to the project in the future.

projects which use the target language as the major program-
ming language. The reason for opting for this value as the
threshold is discussed in research question 3.

2) WCF: The second step is to recommend developers
based on the collaborative filtering algorithm. Here, we select
the pre-existing developers from the prepared information
gathered in the first step of ConRec. Thereafter, we calculate
the relation between each pre-existing developer and potential
developer based on their relation to other projects. Equation 1
shows the relation between a developer and a project where the
first and second parameters denote the developer and project,
respectively. Commit(d, p) refers to the number of times
developer d commits to project p, and Up denotes the set of
pre-existing developers for project p.

Rdp(d, p) =
Commit(d, p)∑|Up|

i=1 Commit(Up[i], p)
(1)

For the developer relation, we use the Vector Space Simi-
larity algorithm (Equation 2), where PA refers to the projects
that A have committed to.

Rdd(A,B) =

∑
p:{PA∩PB}Rdp(A, p) ∗Rdp(B, p)√∑
p:PA

R2
dp(A, p) ∗

∑
p:PB

R2
dp(B, p)

(2)

After calculating the relation between the developers, we
compute the relation between the developer and project ac-
cording to Equation 3, where Dp denotes the pre-existing
developers for project p.

result(A, p) =
∑
d:Dp

Rdp(d, p) ∗Rdd(A, d) (3)

Lastly, we rank the results of all potential developers for the
target project in descending order, and select the top-k values
as the final result.

D. Text Matching Based Recommendation Algorithm

This part aims to improve the recommendation result of
WCF algorithm. When lacking pre-existing developers, WCF
is unsuitable for recommendation. To solve the cold start
problem, we extract the technical terms and match the de-
velopers that focus on the target techniques. The idea is based
on reference [24], which uses text information to measure
expertise. Figure 4 shows the work flow.

1) Generate Technical Terms: First, we generate the tech-
nical terms from the name and description of the target
project using smart IKAnalyzer, and remove the words that
are included in the stop-word dictionary.

2) Generate Term Map: Second, we identify the potential
developers based on the technical terms of the target project.
Developers who have participated in projects can get their
related terms. Thereafter, we can calculate the relation between
terms and developers based on the TF-IDF algorithm [25].
The equation is shown as below, where Pt represents the set
of projects with term t, and T refers to the entire set of terms.

Rdt(d, t) =
∑
p:Pt

Rdp(d, p) ∗ log
|
⋃
x:T

Px|

|Pt|
(4)

target
project

Term
Matching

history
developers

rank 1
rank 2

…

language

no
language

� � �

Expert
Selector

Collaborative
Filtering

WCF

text info

latent
developers

commit info

Term
Extractor

Fig. 2: Framework of ConRec

target
project

Java

…

HTML

Python

project
language

experts
expert

selector

collaborative
filtering

history
developers

prepared
information

Target
Lang

rec
results

� �

Fig. 3: Weighted Collaborative Filtering Algorithm

project
information

latent developers

Term
Extractor

developer
term
map

target
project <term 1><term 2>…<term n>

…

rank 2

rank 4
rank 3

rank 1

�

� �

Fig. 4: Work Flow of Text Matching Algorithm

3) Rank Result: After calculating the relation between the
potential developers and terms, we compute the final results
using Equation 5, where Tdp denotes the set of terms that
match developer d with project p. Thereafter, we rank the
results in decreasing order. When WCF cannot recommend
a sufficient number of developers, the text matching based
algorithm serves as the supplement of the WCF algorithm,
the recommendation result of which is used for those projects

that lack of pre-existing developers.

result(d, p) = |Tdp| ∗
∑
t:Tdp

Rdt(d, t) (5)

III. EXPERIMENT

In this section, we will propose some research questions
about our recommendation algorithm, and describe the exper-
iment data set. Meanwhile, we describe the metrics that is used
to validate the proposed algorithm.

A. Research Questions

We derive the following research questions to explore the
relation between developers and projects based on the commit
number and analyze the performance of our recommendation
algorithm.
• Q1: How does ConRec perform compared with the two-

value traditional collaborative filtering method?
• Q2: How do the algorithms differ for projects with

different numbers of pre-existing developers?
• Q3: How will the number of commits affects the rec-

ommendation performance when defining the experts in
given programming languages?

For Q1, we conduct experiments and compare the accuracy
of different algorithms when recommending to a number of
projects. For Q2, we divide the test projects into two parts. One
part involves projects that have few pre-existing developers
and the other involves projects with adequate pre-existing
developers. Thereafter, we compare their performance. For Q3,
we conduct experiments to observe the performance of ConRec
when providing different threshold values to the expert selector
part.

B. Data Set

Prior to the experiment, we generate data from the GHTor-
rent MySQL dump, which was released in March 2016. We
firstly determine a time point. All the information prior to the
time point is referred to as pre-existing information and the
remaining is regarded as potential information.

http://ghtorrent.org/downloads.html
Time point: 2014-09-14.

In order to validate our recommendation algorithm, we
should select well developed open source projects and deter-
mine whether our algorithm can recommend new committers
to them after the time point. We select 492,590 projects, the
commit numbers of which rank in the top 5% of all projects
with over one committer. We consider them well-developed
projects after the time point. Meanwhile, we select 450,170
projects, the number of new committers of which rank in
the top 5% after the time point. Thereafter, we calculate the
intersection of the projects with the top 5% commits and the
projects with top 5% number of new committers after the time
point. We also remove those projects created after the time
point or had already been deleted or forked from others, and
eventually obtain 5,995 projects. In the entire set, 888 projects
have less than two committers prior to the time point; these
projects are treated as ones with few pre-existing developers.
The rest of the projects are deemed to have adequate pre-
existing developers.

For potential developers, we remove those who have
no commit experience prior to the time point; thus, from
10,132,629 users in GitHub, we arrive at 2,938,620 developers.

For the CF and WCF algorithm, we run them on the entire
set of 10,132,629 developers and 28,118,416 projects.

The data set that we obtained is shown in Table I.

TABLE I: Dataset for Test

Items Number
ProjectCF

a 28,118,416

Projecttest b num(p.d.)c≤ 1 888
num(p.d.) ≥ 2 5107

DeveloperCF
d 10,132,629

Developerpotential
e 2,938,620

a ProjectCF : projects used in CF algorithm.
b Projecttest: projects used to test the performance.
c num(p.d.): the number of pre-existing developers.
d DeveloperCF : developers used in CF algorithm.
e Developerpotential: potential developers with over one commit
prior to the time point.

C. Experiment Metrics

For the validation of our experiment, precision, recall,
and MRR are unsuitable to evaluate the performances. For
precision, we cannot ensure that the false positives (i.e.,
recommended developers who have not committed to the
project) will not commit to the target project sometime in the
future. For recall, the developers we recommend may commit
to the target project later even though they have yet to commit.
For MRR, committers whose commit numbers rank low are
temporary, but they may surpass those leaders in the future.

We can use the accuracy value to test the effectiveness of the
algorithm. If our algorithm can find a developer who commits
to the target project after the time point, then we can say
that the system takes effect. The accuracy value is positively
correlated with the effectiveness of the algorithm. The equation
of accuracy is shown below, where hit@k refers to the number

New committer: developer who commit to the project for the first time.

of hit projects when recommending k developers and |test|
represents the number of all the test projects.

accuracy =
hit@k

|test|
(6)

IV. RESULTS

In order to answer the three research questions mentioned
above, we carried out three sets of experiments.

A. Overall Performance of ConRec

To answer Q1, we compare the accuracy value of our
recommendation algorithm with the traditional collaborative
filtering (CF) algorithm using the whole set of testing projects.
For the CF algorithm, it first constructs a two-value matrix to
record the commits of potential developers. Accordingly, 1
stands for the developer who has already committed to the
project and 0 stands for the opposite. Thereafter, it calculates
the relationship between the potential developers and the target
project, and eventually ranks the results in descending order.

Figure 5 shows the result.

0 10 20 30 40 50
recommend number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
a
cc

u
ra

cy

WCF
CF
Term
ComRec

Fig. 5: Accuracy Comparison with the Entire Set of Projects

Our recommendation algorithm ConRec performs consid-
erably better than the CF algorithm, with the accuracy of
the former ranging from 26.5% to 63%. Hence, ConRec
can meet the requirements of many projects and recommend
suitable committers to them. For CF, the result shows that
the two-value relation between committers and projects is
inaccurate, that is, the algorithm cannot measure the strength
of relationships.

B. Performance under Different Numbers of Pre-existing De-
velopers

For Q2, we perform experiments and compare the perfor-
mance of different algorithms in projects that have few or
adequate pre-existing developers to determine whether ConRec
can solve the cold start problem. Precisely 888 projects have
few pre-existing developers. Figures 6 and 7 show the result.

0 10 20 30 40 50
recommend number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
a
cc

u
ra

cy

WCF
CF
Term
ComRec

Fig. 6: Accuracy for Projects with Few Pre-existing
Developers

0 10 20 30 40 50
recommend number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
cc

u
ra

cy

WCF
CF
Term
ComRec

Fig. 7: Accuracy for Projects with Adequate Pre-existing
Developers

Figure 6 shows that the CF and WCF algorithms do not per-
form satisfactorily when recommending developers to projects
that have few pre-existing developers. Hence, collaborative
filtering is not suitable for newly joined or unpopular projects.
The text matching based algorithm shows a good performance,
but the performance of ConRec is superior. For projects with
adequate pre-existing developers (Figure 7), ConRec achieves
the best performance, followed by WCF and CF. ConRec
evidently performs better than WCF; thus, the complement of
the text matching based results can facilitate the improvement
of the recommendation results even for projects with adequate
pre-existing developers. The CF algorithm performs better
than the text matching based algorithm, thereby indicating that
a collaborative network is more suitable than text information
when recommending. This factor is our basis for using the
text matching based algorithm to complete the matching result
of WCF. The text matching based algorithm performs better
than CF when recommending developers to an entire project
set (see Figure 5). The reason is that, the number of projects
that have few pre-existing developers is 888, which comprises
14.8% of all the test projects.

Therefore, the terms generated from the text information of
the projects can facilitate solving the cold start problem and
improve the recommendation results for projects that have few
or adequate pre-existing developers.

C. Performance of ConRec in Different Threshold Values of
Expert Selector

Considering about Q3, we perform a contrast experiment
with different threshold values of the expert selector. Figure 8
shows the accuracy of ConRec when recommending 50 de-
velopers, where the x- and y-axes represent the threshold and
accuracy values, respectively. We set the threshold value range
from 2 to 30 with every other number.

Figure 8 shows that when the threshold value is set to 4, the
accuracy performs the best. Hence, when a developer commits

1 2 4 5 10 15 20 25 30
threshold value

0.59

0.60

0.61

0.62

0.63

0.64

a
cc

u
ra

cy

(4,0.63)

Fig. 8: Accuracy Change with Different Threshold Values

over 4 times with the target language, we can regard him/her
as an expert. For threshold values below 4, the accuracy is
not that good because developers who are unfamiliar with the
programming language remain included. For threshold values
over 4, the performance decreases with the increase of the
threshold value. The reason is that ConRec filters accurate
developers and use text matching based algorithm to complete
the recommendation result.

In conclusion, the threshold value of the expert selection
part influences the performance of ConRec. If the value is
considerably small, then developers who are unfamiliar with
the target programming language are not filtered. If the value
is substantially large, then a few related developers are filtered,
and the text matching based algorithm is initiated. However,
the results are not as good as those of the collaborative filtering
algorithm. Therefore, we select the threshold value to 4 in

ConRec.

V. CONCLUSION AND FUTURE WORK

The study aims to develop a general algorithm for recom-
mending suitable committers to open source projects based on
a collaborative network. We derive three research questions
and perform many experiments on 5,995 popular projects in
GitHub. The results indicate the superior performance of Con-
Rec. ConRec somewhat solves the cold start problem by com-
bining the collaborative filtering and text matching algorithms.
ConRec is suitable for different open source communities
because it simply considers the commit information and the
text information of a project, including the name, description
and language. These details are common information in social
coding communities.

However, it still has a few limitations.
Expert selection is relatively simple, that is, the program-

ming skill of a developer is more related to the quantity of
code than to the number of commits.

Many projects involve over one programming language.
Therefore, developers may commit to a project without using
the major programming language.

Many short-term developers engage in open source projects;
hence, they are likely to commit to a project in a short time.
Therefore, the algorithm should also consider the commit time
of pre-existing developers. For example, commits from a long
time ago may not be considered.

Different types of activities of developers like fork, watch
and star may also be considered. Different types of developers
can simultaneously participate in different numbers of projects.

For our future study, we will firstly build up a prototype sys-
tem by implementing our algorithm. Thereafter, we improve
the algorithm by simultaneously considering these limitations
and iterating the system.

ACKNOWLEDGMENT

The research is supported by the National Grand
R&D Plan (Grant No. 2016-YFB1000805) and
National Natural Science Foundation of China (Grant
No.61502512,61432020,61472430,61532004).

REFERENCES

[1] M. Silic, “Dual-use open source security software in organizations–
dilemma: Help or hinder?” Computers & Security, vol. 39, pp. 386–395,
2013.

[2] T. T. Nguyen, T. N. Nguyen, E. Duesterwald, T. Klinger, and P. San-
thanam, “Inferring developer expertise through defect analysis,” in
Software Engineering (ICSE), 2012 34th International Conference on.
IEEE, 2012, pp. 1297–1300.

[3] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recommenda-
tion with usage expertise,” in Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on. IEEE, 2009, pp. 535–538.

[4] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K.-i. Matsumoto, “Who should review my code? a file location-
based code-reviewer recommendation approach for modern code re-
view,” in Software Analysis, Evolution and Reengineering (SANER),
2015 IEEE 22nd International Conference on. IEEE, 2015, pp. 141–
150.

[5] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?” Information and Software Technology, vol. 74, pp. 204–
218, 2016.

[6] M. Gharehyazie, D. Posnett, and V. Filkov, “Social activities rival patch
submission for prediction of developer initiation in oss projects,” in Soft-
ware Maintenance (ICSM), 2013 29th IEEE International Conference
on. IEEE, 2013, pp. 340–349.

[7] R. Robbes and D. Röthlisberger, “Using developer interaction data
to compare expertise metrics,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 2013, pp.
297–300.

[8] D. Schuler and T. Zimmermann, “Mining usage expertise from version
archives,” in Proceedings of the 2008 international working conference
on Mining software repositories. ACM, 2008, pp. 121–124.

[9] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on. IEEE,
2010, pp. 1–10.

[10] P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2275–2292, 2012.

[11] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Mining Software Reposito-
ries (MSR), 2013 10th IEEE Working Conference on. IEEE, 2013, pp.
22–30.

[12] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in Reverse engineering (WCRE), 2013 20th
working conference on. IEEE, 2013, pp. 72–81.

[13] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 2013, pp.
2–11.

[14] Y. Yu, H. Wang, G. Yin, and C. Ling, “Reviewer recommender of pull
requests in GitHub,” in ICSME. IEEE, 2014, pp. 609–612.

[15] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait
for it: Determinants of pull request evaluation latency on github,” in
Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on. IEEE, 2015, pp. 367–371.

[16] V. Balachandran, “Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recom-
mendation,” in Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, 2013, pp. 931–940.

[17] H. Kagdi, M. Hammad, and J. I. Maletic, “Who can help me with this
source code change?” in Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on. IEEE, 2008, pp. 157–166.

[18] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-
opers in open source projects: an internet-based survey of contributors
to the linux kernel,” Research policy, vol. 32, no. 7, pp. 1159–1177,
2003.

[19] R. Grewal, G. L. Lilien, and G. Mallapragada, “Location, location,
location: How network embeddedness affects project success in open
source systems,” Management Science, vol. 52, no. 7, pp. 1043–1056,
2006.

[20] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open source com-
munities,” in IFIP International Conference on Open Source Systems.
Springer, 2006, pp. 21–32.

[21] J. Hahn, J. Y. Moon, and C. Zhang, “Impact of social ties on open
source project team formation,” in IFIP International Conference on
Open Source Systems. Springer, 2006, pp. 307–317.

[22] J. Hahn and Moon, “Emergence of new project teams from open
source software developer networks: Impact of prior collaboration ties,”
Information Systems Research, vol. 19, no. 3, pp. 369–391, 2008.

[23] G. Madey, V. Freeh, and R. Tynan, “The open source software develop-
ment phenomenon: An analysis based on social network theory,” AMCIS
2002 Proceedings, p. 247, 2002.

[24] R. Venkataramani, A. Gupta, A. Asadullah, B. Muddu, and V. Bhat,
“Discovery of technical expertise from open source code repositories,”
in Proceedings of the 22nd International Conference on World Wide
Web. ACM, 2013, pp. 97–98.

[25] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, 2003.

