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Abstract—Code cloning is a recurrent operation in everyday
software development. Whether it is a good or bad practice is an
ongoing debate among researchers and developers for the last few
decades. In this paper, we conduct a comparative study on bug-
proneness in clone code and non-clone code by analyzing commit
logs. According to our inspection on thousands of revisions of
seven diverse subject systems, the percentage of changed files
due to bug-fix commits is significantly higher in clone code
compared with non-clone code. We perform a Mann-Whitney-
Wilcoxon (MWW) test to show the statistical significance of our
findings. Finally, the possibility of severe bugs occurring is higher
in clone code than in non-clone code. Bug-fixing changes affecting
clone code should be considered more carefully. According to our
findings, clone code appears to be more bug-prone than non-clone
code.

I. INTRODUCTION

If two or more code fragments in a software system’s code-
base are exactly or nearly similar to one another we call them
code clones [1], [2]. A group of similar code fragments forms
a clone class. Code clones are mainly created because of the
frequent copy/paste activities of programmers during software
development and maintenance [1] [1]

A significant number of studies [3]–[20] have been con-
ducted on discovering the impact of cloning on software
maintenance. While a number of studies [3], [6], [7], [9]–
[12] have revealed some positive sides of code cloning, there
is strong empirical evidence [4], [5], [8], [13]–[16], [18]–
[20] of negative impacts of code clones too. These negative
impacts include higher instability [15], late propagation [4],
and unintentional inconsistencies [5]. Existing studies [4], [21]
show that code clones are related to bugs in the code-base.

Several studies have showed that bugs have a great effect
on code in software systems. Our previous study [22] provides
evidence of bug-replication in clone code. Also, Sajnani et
al. [23] showed that cloned code has less problematic bug
patterns than non-cloned code. They have used bugs reported
by FindBugs from just one snapshot of the last revision of
the system. Whereas we consider bugs reported during the
evolution of a software system through thousands of commits.
In this paper [23], they worked on tool reported bugs whereas
we work on the developer reported bugs. Moreover, they have
considered only Java programming language whereas we work
on two programming languages, C and Java. These issues
motivate us to work on bug reports generated by developers to
see the impact of bug-fix commits on both clone code and non-

clone code. We consider bug-fixing commits reported by the
developers from thousands of commits in open source projects.

To explore the effects of bug-fix changes between clone and
non-clone code, we conduct a comparative study. We consider
thousands of revisions of seven diverse subject systems written
in two different programming languages (Java and C). We
detect code clones from each of the revisions of a subject
system using the NiCad [24] clone detector, analyze the
evolution history of these code clones, and investigate whether
and to what extent they contain bugs. To find non-clone bug-
fix commits we first identify all the commits that are related
to fixing a bug. Among these bug-fix commits we detect
those which have clone code. We consider the remaining bug-
fix commits as non-clone bug-fix commits. We automatically
count the total number of files that contain changes in source
code. Among these files we detect those files which have
changes in clone code. Omitting these files from the total
files we get the changes in non-clone code. Then we calculate
percentages of changes for both clone and non-clone code. We
found that the percentage of changed files containing clone
code is significantly higher than non-clone code. We validate
our findings using the Mann-Whitney-Wilcoxon (MWW) test
for three types of clones with non-clone code.

We investigate the three research questions listed in Table
I. We find that the percentage of files changed due to bug-
fix commits is significantly higher in clone code compared
with non-clone code. Moreover, the percentage of files that
have changes in Type 1 and Type 2 clone code is higher than
changes in Type 3 clone code. This findings can be used for
ranking of clone code. Also, the occurrence of severe bugs is
more in clone code than non-clone code.

The rest of the paper is organized as follows. Section II con-
tains the terminology, Section III discusses the experimental
steps, Section IV answers the research questions by presenting
and analyzing the experimental results, Section V discusses the
related work, Section VI discusses possible threats to validity,
and Section VII concludes the paper and discusses possible
future work.

II. TERMINOLOGY

We conduct our analysis considering both exact (Type 1)
and near-miss clones (Type 2 and Type 3 clones) [1], [2]. The
clone-types are defined below.

Type 1 Clones. If two or more code fragments in a
particular code-base are exactly the same disregarding the
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TABLE I
RESEARCH QUESTIONS

SL Research Question
RQ 1 What percentage of files get affected because of clone and

non-clone bug-fix commits?
RQ 2 How often do bug-fix changes occur to the clone and non-

clone code?
RQ 3 Is there any difference between the severity of the bugs

occurring in clone and non-clone code?

TABLE II
SUBJECT SYSTEMS

Systems Lang. Domains LLR Revisions

Ctags C Code Def. Generator 33,270 774
Camellia C Image Processing Library 89,063 170
Brlcad C Solid Modeling CAD 39,309 735
jEdit Java Text Editor 191,804 4000
Freecol Java Game 91,626 1950
Carol Java Game 25,091 1700
Jabref Java Reference Management 45,515 1545
LLR = LOC in the Last Revision

comments and indentations, these code fragments are called
exact clones or Type 1 clones of one another.

Type 2 Clones. Type 2 clones are syntactically similar code
fragments in a code-base. In general, Type 2 clones are created
from Type 1 clones because of renaming of identifiers and/or
changing of data types.

Type 3 Clones. Type 3 clones are mainly created because
of additions, deletions, or modifications of lines in Type 1 or
Type 2 clones. Type 3 clones are also known as gapped clones.

III. EXPERIMENTAL STEPS

We conduct our research on seven subject systems (three
C and four Java systems). We consider these seven subject
systems since these systems have variations in application
domains, sizes, revisions and also used by our other studies.
These subject systems are listed in Table II which were
downloaded from the SourceForge online SVN repository [25].
In this table, the total number of revisions of each subject
system is given along with the lines of code (LOC) in the last
revision.

A. Preliminary Steps

We perform the following steps for detecting fixed bugs: (1)
Extraction of all revisions (as stated in Table II) of each of the
subject systems from the online SVN repository; (2) Detection
and extraction of code clones from each revision by applying
NiCad [24] clone detector; (3) Detection of changes between
every two consecutive revisions using diff; (4) Locating these
changes to the already detected clones of the corresponding
revisions; and (5) Detection of bug-fix commit operations. For
completing the first four steps we use the tool SPCP-Miner
[26]. We will describe the detection of bug-fix commits later
in this section. In Section IV we will describe how we detect
bug-fix changes in clone and non-clone code.

We use NiCad [24] for detecting clones since it can detect
all major types (Type 1, Type 2, and Type 3) of clones with

TABLE III
NICAD SETTINGS FOR THREE TYPES OF CLONES

Clone Types Identifier Renaming Dissimilarity Threshold

Type 1 none 0%
Type 2 blindrename 0%
Type 3 blindrename 20%

high precision and recall [27], [28]. Using NiCad we detect
block clones including both exact (Type 1) and near-miss
(Type 2, Type 3) clones of a minimum size of 10 LOC with
20% dissimilarity threshold and blind renaming of identifiers.
NiCad settings for detecting three clone-types (Type 1, Type
2, and Type 3) are shown in Table III. For different settings of
a clone detector the clone detection results can be different
and thus, the findings on bugs in code clones can also
be different. Hence, selection of appropriate settings (i.e.,
detection parameters) is important. We used the mentioned
settings in our research, because [29] Svajlenko and Roy show
that these settings provide us with better clone detection results
in terms of both precision and recall. Moreover, code clones
with a minimum size of 10 LOC are more appropriate from
maintenance perspectives [1], [30], [31]. Before using the
NiCad outputs of Type 2 and Type 3 cases, we processed
them in the following way.

(1) Every Type 2 clone class that exactly matched any Type
1 clone class was excluded from Type 2 outputs.

(2) Every Type 3 clone class that exactly matched any Type
1 or Type 2 class was excluded from Type 3 outputs.

We processed NiCad clone detection results in the men-
tioned ways because we wanted to investigate bug in three
types of clones separately.

B. Bug-proneness Detection Technique

For each subject system, we first retrieve the commit
messages by applying the ‘SVN log’ command. A commit
message describes the purpose of the corresponding commit
operation. We automatically infer the commit messages using
the heuristic proposed by Mockus and Votta [32] in order to
identify those commits that occurred for the purpose of fixing
bugs. Then we identify which of these bug-fix commits make
changes to clone fragments. If one or more clone fragments
are modified in a particular bug-fix commit, then it is an
implication that the modification of those clone fragment(s)
was necessary for fixing the corresponding bug. In other
words, the clone fragment(s) are related to the bug. In this
way we examine the commit operations of a candidate system,
analyze the commit messages to retrieve the bug-fix commits,
and identify those clone fragments that are related to the bug-
fix. We also determine the number of changes that occurred
to such a clone fragment in a bug-fix commit using the UNIX
diff command.

The procedure that we follow to detect the bug-fix commits
was also previously followed by Barbour et al. [4]. Barbour
et al. [4] detected bug-fix commits in order to investigate
whether late propagation in clones is related to bugs. They at



first identified the occurrences of late propagations and then
analyzed whether the clone fragments that experienced late
propagations are related to a bug-fix. In our study we detect
bug-fix commits in the same way as they detected, however,
our study is different in the sense that we investigate the bugs
of different types of code clones. Also, Barbour et al. [4]
did not investigate the most important clone type, the Type
3. Generally, the number of Type 3 clones in a system is
the highest among the three clone-types. We consider Type
3 clones in our bug-fix study.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We mention our three research questions in Table I. In this
section we present our experimental results and analyze them
to find the answers to our research questions.

A. Answering the first research question (RQ 1)

RQ 1: What percentage of files get affected because of clone
and non-clone bug-fix commits?

Motivation. It is important to know the percentage of
affected files due to bug-fixing commits and compare between
clone and non-clone code. More affected files means more
changes in the system. More attention is needed when more
changes occur. Knowing the information we can emphasize
on which type of code (clone or non-clone) are affecting the
system more.

Methodology. To answer this research question we auto-
matically count the total number of files that contain clone
code in three different types of clones (Type 1, Type 2 and
Type 3) and total number of files containing non-clone code.
Also, we detect the total number of files that contain changed
clone in three different clone types and the total number of
files containing changed non-clone code. Then we calculate
their percentages for individual clone types.

FC: This is the total number of files that have clone code.
Columns with the heading FC in Table IV represents the value.

FCC: This is the total number of files that contain changed
clone code. This value is given in columns with the heading
FCC in Table IV.

PFCC: To find out the percentage of the number of files
that have changed clone code we use following equation for
all subject systems. In Table IV columns with the heading
PFCC show this value. Equation 1 shows the assessment of
the percentages.

PFCC =
100× FCC

FC
(1)

OPFCC: We also calculate overall percentage of files that
have changed clone code using the following equation.

OPFCCTi =
100×

∑
all systems FCCTi∑

all systems FCTi

(2)

Here, Ti represents different types of clones where i = 1, 2
and 3 in all subject systems.

Figure 1 shows the percentage PFCC and the overall per-
centage OPFCC for seven subject systems individually for

TABLE V
NUMBER OF FILES THAT HAVE CHANGED NON-CLONE CODE IN

BUG-FIXING COMMITS

Subject Systems FNC FCNC PFCNC
Ctags 12318 120 0.97%
Camellia 972 49 5.04%
Brlcad 6978 104 1.49%
jEdit 2801 15 0.53%
Freecol 41442 444 1.07%
Carol 13302 94 0.70%
Jabref 39389 333 0.84%
FNC = Number of Files that have Non-Clone code
FCNC = Number of Files that have Changed Non-Clone code
PFCNC = Percentage of the Number of Files that have

Changed Non-Clone code

each clone type. Here, we can see that Ctags, Camellia and
Brlcad have the higher percentage than the rest of the subject
systems (jEdit, Freecol, Carol and Jabref). jEdit has the lowest
percentage among all. However, in overall percentage we
observe that percentage is decreasing in Type 1, Type 2 and
Type 3 clone respectively. Table IV describes the FC, FCC
and PFCC for all the subject systems individually for each
clone type (1, 2 and 3). We can see from this Table that only
Camellia has no bug-fix commits related to clone Type 2.

Docking the total number of files containing clone code
in bug-fix commits from the total number of files in bug-fix
commits we get the total number of files that have non-clone
code. For answering RQ 1, we identify the total number of
files that have changes in source code. From these files we
identify the total number of files that have changes in clone
code. The rest of the files made changes to non-clone code
due to bug-fix commits.

FNC: This is the number of total files that have non-clone
code. Columns with the heading FNC in Table V show the
values.

FCNC: This is the number of total files which contain
changes in non-clone code. To find out this file number we
consider those files which contain changed non-clone code.
We also check those files which have changed clone code in
addition with non-clone code. All the columns of Table V with
the heading FCNC show this value.

PFCNC: To calculate percentage of the number of files
containing changed non-clone code we use following equation.
All the columns with the heading PFCNC in Table V represent
this value. This is shown in equation 3.

PFCNC =
100× FCNC

FNC
(3)

OPFCNC: We calculate the overall percentage of files
containing changed non-clone code using following equation.

OPFCNC =
100×

∑
all systems FCNC∑

all systems FNC
(4)

PFCNCs of different clone types for each subject system
are shown in Figure 1. Here, we can see that Camellia has



TABLE IV
NUMBER OF FILES THAT HAVE CHANGED CLONE CODE FOUND IN BUG-FIXING COMMITS

Type 1 Type 2 Type 3
Subject Systems FC FCC PFCC FC FCC PFCC FC FCC PFCC
Ctags 12 4 33.33% 25 4 16% 117 12 10.25%
Camellia 11 2 18.18% 0 0 0% 56 6 10.71%
Brlcad 33 3 9.09% 5 1 20% 66 5 7.57%
jEdit 21338 117 0.54% 695 14 2.01% 12655 137 1.08%
Freecol 259 13 5.01% 178 11 6.17% 3425 83 2.42%
Carol 121 14 11.57% 138 14 10.14% 991 51 5.14%
Jabref 97 8 8.24% 81 7 8.64% 1143 26 2.27%
FC = Number of Files that have Clone code
FCC = Number of Files that have Changed Clone code
PFCC = Percentage of the Number of Files that have Changed Clone code

Ctags Camellia Brlcad jEdit Freecol Carol Jabref Overall
0

10

20

30

Percentage of files that have changed clone fragments (Type 1) Percentage of files that have changed clone fragments (Type 2)

Percentage of files that have changed clone fragments (Type 3) Percentage of files that have changed non-clone fragments

Fig. 1. Percentage of the number of files that have changed clone and non-clone fragments.

the highest percentage than rest of the subject systems. On
the other hand, jEdit has the lowest percentage among all
subject systems. Table V shows FNC, FCNC and PFCNC for
all subject systems. We observe that percentage of changes
due to bug-fix commits is higher in clone code than non-clone
code. This result was expected because total number of files
containing non-clone code is much higher (almost three times)
than clone code in every subject system.

The overall percentages (OPFCC) of files that have changes
in Type 1 (12.28%) and Type 2 (8.99%) clones have more
changes in files than Type 3 (5.63%) clones for bug-fix
commits. Moreover, the percentage of files that have changes
in clone code is higher than the percentage (OPFCNC) of files
that have changes in non-clone code (1.52%).

Mann-Whitney-Wilcoxon (MWW) tests for RQ 1. We
are interested to know whether the percentages of three
clone types is significantly higher than non-clone code. First,
we perform Mann-Whitney-Wilcoxon (MWW) test [33] with
percentages of Type 1 clone and non-clone code. We consider
the significance level is 5% for this test. According to the
data critical U is 13. If the p-value is less than 0.05 and U
value is less than 13 then the result is significant. Our result
shows that percentage of Type 1 clone code is significantly
higher than non-clone code. For two-tailed test we find the
p-value of 0.011719 which is much lower than 0.05. In the
same way we perform the test for percentages of Type 2 clone

TABLE VI
MANN-WHITNEY-WILCOXON TEST RESULT FOR RQ1

Clone Types p-value U value

Type 1 0.011719 8
Type 2 0.015714 9
Type 3 0.004574 5

Considering level of significance is 5%.
For 5% two-tailed level, Critical value of U is 13

code and Type 3 clone code with the non-clone code. We find
the p-value of 0.015714 and 0.004574 for Type 2 clone and
Type 3 clone respectively. Both percentages of Type 2 clone
and Type 3 clone code are significantly higher than non-clone
code. Thus, we can say that percentages of all three types of
clones are significantly higher than non-clone code. We list
our MWW test results in Table VI.

Answer to RQ 1. According to our experimental
results percentage of number of file changes in bug-fix
commits is higher in clone code than non-clone code.
Also, in terms of overall percentage of files Type 1 and
Type 2 code clones (12.28% and 8.99%) have higher
percentage than Type 3 code clone (5.63%).

We observe that percentages of files containing changes



due to bug-fix commits is high in clone code than non-clone
code. However, we still do not know what percentage of
clone and non-clone code get changed during bug-fix commits.
Intuitively, percentages of bug-fix changes should be higher
in clone code than non-clone code. To understand this we
investigate our next research question.

B. Answering the second research question (RQ 2)

RQ 2: How often do bug-fix changes occur to the clone and
non-clone code?

Motivation. Though we have the answer of RQ 1 and
hence we know the percentage of files changes in clone and
non-clone code but still we are not sure how much these
changes are influencing the system. It is important to know the
frequency of the bug-fix changes in both clone and non-clone
code. From comparison between them we can understand the
impact of bug-fix changes. Intuitively, more importance should
be given to the more frequent one. This will help us to manage
clone code.

Methodology. We know the total number of commits of
each subject system. As discussed in Section III-A, we report
the total number of commits that have changes in clone
fragments. To answer the RQ 2 we automatically count the
total number of bug-fix commits that contain changes in clone
code. First, we find out the total number of bug-fix commits as
described in Section III-B. We automatically count the number
of total bug-fix commits which have changed clone code. We
deduct this number from the total number of bug-fix commits
and found the total number of bug-fix commits which have
changed non-clone code. In the following way we calculate
the occurrences of bug-fix changes in clone and non-clone
code.

CC: This is the total Number of Commits that made changes
to Clone code. All the columns of Table VII with the heading
CC show this value.

BCC: This is the total Number of Bug-fix Commits that
made changes to Clone code. Columns with the heading BCC
in Table VII show the values.

PBCC: Percentage of the Bug-fix Commits that made
changes to Clone code. We calculate this for each subject
systems and for three different types of clone i.e. Type 1, Type
2 and Type 3 clone code. All the columns with the heading
PBCC in Table VII represent this value.

We use the following equation for calculating the percent-
age.

PBCC =
100×BCC

CC
(5)

We calculate the overall percentage of the bug-fix commits
containing clone code using the following equation.

OPBCCTi
=

100×
∑

all systems BCCTi∑
all systems CCTi

(6)

Here, OPBCCTi
is the overall percentage of the clone

code found in the bug-fix commits with respect to Ti type
of clones (i=1, 2, 3). Table VII shows the value of CC, BCC

TABLE VIII
NUMBER OF BUG-FIX COMMITS AFFECTING NON-CLONE CODE

Subject Systems CNC BCNC PBCNC
Ctags 383 137 35.77%
Camellia 133 24 18.04%
Brlcad 589 88 14.94%
jEdit 31 9 29.03%
Freecol 672 326 48.51%
Carol 323 65 20.12%
Jabref 685 161 23.50%
CNC = Number of Commits affecting Non-Clone code
BCNC = Number of Bug-fix Commits affecting Non-Clone code
PBCNC = Percentage of Commits that were applied for fixing Bugs in

Non-Clone code

and PBCC for seven subject systems and each type of clone
individually. Figure 2 describes the percentage PBCCs of all
subject systems along with the overall percentage OPBCC. We
can see that jEdit has the highest percentage (over 40%) and
Brlcad has the lowest percentage (less than 15%). However, in
overall percentage Type 3 code clone has the higher percentage
than Type 1 and Type 2 code clone.

We first identify the list of commits that made changes to the
source code. From these commits we detect which commits
made changes to clone code. The remaining commits in the list
made changes to non-clone code. In the same way we deduct
the total number of bug-fix commits containing changes in
clone code from the total number of bug-fix commits to find
the number of changes in non-clone code bug-fix commits.
Applying these findings we answer RQ 2.

CNC: This is the total Number of Commits that made
changes to Non-clone code. This value is given in columns
with the heading CNC in Table VIII.

BCNC: This is the total Number of Bug-fix Commits that
made changes to Non-clone code. Columns with the heading
BCNC in Table VIII represent the value.

PBCNC: Percentage of the Bug-fix Commits that made
changes to Non-clone code. In Table VIII columns with the
heading PBCNC show this value.

Likewise equation 5 to compute the percentages we use
equation 7.

PBCNC =
100×BCNC

CNC
(7)

To see the overall percentage of the number of bug-fix
commits that is related to non-clone code we use following
equation which is similar to the equation 6.

OPBCNC =
100×

∑
all systems BCNC∑

all systems CNC
(8)

Here, OPBCNC is the overall percentage of the bug-fix
commits that contain non-clone code. The CNC, BCNC and
PBCNC for all subject systems are shown in Table VIII. Here,
most of the percentage ranges from 15% to 35% (only the
percentage of Freecol has more than 45%). Figure 2 depicts
the percentage PBCNCs and overall percentage OPBCNC of



TABLE VII
NUMBER OF BUG-FIX COMMITS AFFECTING CLONE CODE

Type 1 Type 2 Type 3
Subject Systems CC BCC PBCC CC BCC PBCC CC BCC PBCC
Ctags 14 3 21.42% 25 4 16% 59 11 18.64%
Camellia 8 1 12.5% 5 1 20% 26 5 19.23%
Brlcad 32 2 6.25% 7 1 14.28% 47 5 10.63%
jEdit 92 37 40.21% 24 10 41.66% 99 42 42.42%
Freecol 35 7 20% 36 10 27.77% 152 46 30.26%
Carol 41 8 19.51% 44 8 18.18% 112 22 19.64%
Jabref 48 6 12.5% 46 6 13.04% 149 23 15.43%
CC = Number of Commits affecting Clone code
BCC = Number of Bug-fix Commits affecting Clone code
PBCC = Percentage of Commits that were applied for fixing Bugs in Clone code

Ctags Camellia Brlcad jEdit Freecol Carol Jabref Overall
0

20

40

Percentage of bug-fix commits that have changed clone fragments (Type 1) Percentage of bug-fix commits that have changed clone fragments (Type 2)

Percentage bug-fix commits that have changed clone fragments (Type 3) Percentage bug-fix commits that have changed non-clone fragments

Fig. 2. Percentage of bug-fix commits that have changed clone and non-clone fragments.

seven subject systems. Here, we observe that percentage of the
bug-fix commits containing changed non-clone code is highest
in Freecol system and lowest in Brlcad. Overall percentage is
near 30% which is higher than clone code. Though the bug-fix
changes occur more in non-clone code than clone code it is
not noteworthy since the difference is not that much high.

The overall percentage (OPBCC) of Type 3 (22.32%) clone
is higher than Type 1 (18.91%) and Type 2 (21.56%) clone.
Obviously, Type 1 clone (has exact same code) and Type2
clone (has renaming of identifiers or changing data type of
identifiers) have less changes than Type 3 clone code (has
addition, deletion or modification of code). We believe for this
reason Type 3 clone code is affected more than Type 1 and
Type 2 clone code. Also, the overall percentage (OPBCNC)
for non-clone code (27.13%) is higher than clone code.

Mann-Whitney-Wilcoxon (MWW) tests for RQ 2. We
perform MWW test [33] to understand whether the difference
between the percentages of clone and non-clone code is
significant. Percentage of each type of clone is individually
tested with non-clone code. We found the p-value of 0.092892,
0.207578 and 0.344562 for Type 1, Type 2 and Type 3 clone
respectively. Calculated U value for Type 1, Type 2 and Type 3
clone code is 16, 20 and 23 respectively. Here, every p-value is
greater than 0.05 (significance level is 5%) and every U value
is greater than 13 (critical U value is 13). This indicates the
result is insignificant. Insignificant result denotes percentage

TABLE IX
MANN-WHITNEY-WILCOXON TEST RESULT FOR RQ2

Clone Types p-value U value

Type 1 0.092892 16
Type 2 0.207578 20
Type 3 0.344562 23

Considering level of significance is 5%.
For 5% two-tailed level, Critical value of U is 13

of bug-fix commits having changed non-clone code is slightly
higher than clone code. Table IX describes the p-value and U
value for all three types of clone code.

Answer to RQ 2. Comparing the overall percentage of
bug-fix commits containing clone and non-clone code we
found that frequency of bug-fix commits is slightly higher
in non-clone code (27.13%) than clone code (20.93%).
Also, Type 3 clone code (22.32%) has the higher percent-
age of changes than Type 1 and 2 clone code (18.91% and
21.56%) due to bug-fix commits.

We observe that bug-fix commits occur in non-clone code
more often than clone code by 6.2%. From MWW test we find
that the difference between percentages of clone and non-clone
code is insignificant.



C. Answering the third research question (RQ 3)

RQ 3: Is there any difference between the severity of the
bugs occurring in clone and non-clone code?

Motivation. In every single commit there is a message or
comment written by the programmer which describes about
the changes that they made from the previous commit. In
case of bug-fix commits these messages describe about the
bug that occur in the code base of the system. By reading
a bug-fix commit message we can understand whether a bug
is sever or not. This message is helpful for debugging and
understanding the scenario of the situation. To understand the
severity of bugs and compare between clone and non-clone
code we automatically process the bug-fix commit massages
followed by a manually inspection. It is important to give
priority to more severe bugs while fixing them.

Methodology. We automatically perform a heuristic search
proposed by Lamkanfi et al. [34] in the bug-fix commit mas-
sages to identify severe bugs. Then we manually investigate
the results for validation. We consider five subject systems
(Ctags, Camellia, Brlcad, jEdit, Freecol) for this experiment.
For the non-clone bug-fix commits we choose some random
bug-fix commits which does not contain clone code. It is not
feasible to check all the non-clone bug-fix commits by manual
inspection. Hence, we keep the total number of non-clone bug-
fix commits equal to the total number of clone bug-fix commits
to maintain the data impartiality.

Lamkanfi et al. [34] suggested most significant terms for
different components indicating severe and non-severe bugs.
For example, ‘fault’, ‘hang’, ‘freez’, ‘deadlock’ etc. represent
severe problems of the system. The words ‘favicon’, ‘deprec’,
‘mnemon’, ‘outbox’ etc. represent non-severe problems of the
system. We take these terms as keywords to decide the severity
of the bug. Though there are different levels of bug severity
we consider only two categories for the simplicity. That is
whether the bug is severe or not i. e. ‘TRUE’ or ‘FALSE’.
Here, ‘TRUE’ means the bug is sever (i.e. bug-fix commit
messages containing the terms which represent severity) and
‘FALSE’ means the bug is non-sever (i.e. bug-fix commit
messages containing the terms which represent non-severity).
This is important for bug triaging process since severe bugs
need more care and prompt fixing.

We calculate the percentage of severe bugs in bug-fix
commits for both clone and non-clone code. We observe that
the existence of severe bugs in Camellia (both clone and non-
clone), Brlcad (clone) and jEdit (non-clone) systems is zero
(0%). We also observe that Freecol has highest percentage
(85.71% for clone and 62.5% for non-clone code) of severe
bugs in both clone and non-clone bug-fix commits compared to
other subject systems. Percentages of severe bugs in rest of the
subject systems are range from 50% to 67%. Ctags (non-clone)
and Brlcad (non-clone) have the lowest percentage (50%) of
severe bugs. Overall, clone code has higher tendency of having
severe bugs than non-clone code. The difference between the
overall percentages of severe bugs of clone and non-clone code
bug-fix commits is 17.46% which is highly significant. This

findings imply that more importance should be given on clone
code while fixing bugs for better software maintenance.

Answer to RQ 3. After careful inspection of each
commit messages of the bug-fix commits for both clone
and non-clone code we found that clone code bug-fix
commits has higher percentage of severe bugs (overall
percentage 71.63%) than the non-clone code (overall
percentage 54.17%). This proves that occurrence of severe
bugs is higher in clone code compared with non-clone
code.

We observe that severity of bugs is higher in clone code
than non-clone code. Though, we find that some of the bug-
fix commit messages are very short and it is not enough to
describe the severity of the bug. Considering this constraint
of the messages in bug-fixing commits the result may vary in
different cases. However, severe bugs should have the highest
priority in software maintenance.

V. RELATED WORK

Shajnani et al. [23] performed a comparative study between
clone and non-clone code for different bug patterns. They used
bug reports generated by a tool, i.e., FindBugs whereas we
worked on real bug reports that were reported by developers.
In our previous study [22] it has been shown that cloning is
responsible for replicating bugs. However, it does not show
any comparison with non-clone code in that study.

Bug-proneness of code clones has been investigated by a
number of existing studies. Li and Ernst [18] performed an
empirical study on the bug-proneness of clones by investigat-
ing four software systems and developed a tool called CBCD
on the basis of their findings. CBCD can detect clones of a
given piece of buggy code. Li et al. [35] developed a tool
called CP-Miner which is capable of detecting bugs related
to inconsistencies in copy-paste activities. Steidl and Göde
[19] investigated finding instances of incompletely fixed bugs
in near-miss code clones by investigating a broad range of
features of such clones involving machine learning. Göde
and Koschke [5] investigated the occurrences of unintentional
inconsistencies to the code clones of three mature software
systems and found that around 14.8% of all changes that
occurred to the code clones were unintentionally inconsistent.

None of the studies discussed above investigated bug-fix
commits in code clones and non-clone code simultaneously.
Mondal et al. [21] investigated bug-proneness of code clones.
While the primary target of that study was to compare the
bug-proneness of three clone-types, our target is to compare
the bug-proneness of clone and non-clone code. Mondal et
al. [21] did not investigate the bug-proneness of non-clone
code in their study. Focusing on this we perform an in-depth
investigation on bug’s impacts in code clones and non-clones
in this research. Our experimental results are promising and
provide useful implications for better understanding of the
bug-proneness of clone and non-clone code.



VI. THREATS TO VALIDITY

We used the NiCad clone detector [24] for detecting clones.
While all clone detection tools suffer from the confounding
configuration choice problem [36] and might give different
results for different settings of the tools, the setting that we
used for NiCad for this experiment are considered standard
[37] and with these settings NiCad can detect clones with
high precision and recall [27]–[29]. Thus, we believe that our
findings on the bug-proneness of code clones are of significant
importance.

Our research involves the detection of bug-fix commits.
The way we detect such commits is similar to the technique
proposed by Mocus and Votta [32] and also used by Barbour
et al. [38]. The technique proposed by Mocus and Votta
[32] can sometimes select a non-bug-fix commit as a bug-fix
commit mistakenly. However, Barbour et al. [38] showed that
this probability is very low. According to their investigation,
the technique has an accuracy of 87% in detecting bug-fix
commits.

VII. CONCLUSION

In this paper we conduct an in-depth comparative study of
software bugs in both clone and non-clone code. For clone
code we also consider three major types of clones, Type 1,
Type 2 and Type 3. We investigated thousands of revisions
of seven diverse subject systems. We also investigated bug-fix
commit messages to measure the frequency of severe bugs in
clone and non-clone code. From our examination, changes to
files due to bug-fix commits is higher for clone code than for
non-clone code. Additionally, changes to files due to bug-fix
commits happens more in Type 1 and Type 2 code clones than
in Type 3 code clones. In addition, percentage of severe bugs
is higher in clone code than non-clone code bug-fix commits.
We believe that our findings on bug-fix commits are valuable
for better understanding of clone management such as ranking
of clone codes and software maintenance.
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