
A Publish-Subscribe based Architecture for
Testing Multiagent Systems

Nathalia Moraes do Nascimento? Carlos Juliano Moura Viana† Arndt von Staa?
Carlos José Pereira de Lucena?

(?)Software Engineering Lab (LES),
Pontifical Catholic University of Rio de Janeiro,

Rio de Janeiro, Brazil
nnascimento, arndt, lucena@inf.puc-rio.br

(†)Tecgraf Institute,
PUC-Rio,

Rio de Janeiro, Brazil
cviana@tecgraf.puc-rio.br

Abstract - Multiagent systems (MASs) have been ap-

plied to several application domains, such as e-commerce,
unmanned vehicles, and many others. In addition, a set of
different techniques has been integrated into multiagent ap-
plications. However, few of these applications have been
commercially deployed and few of these techniques have
been fully exploited by industrial applications. One rea-
son is the lack of procedures guaranteeing that multiagent
systems would behave as desired. Most of the existing test
approaches only test agents as single individuals and do
not provide ways of inspecting the behavior of an agent as
part of a group, and the behavior of the whole group of
agents. Accordingly, we modeled and developed a publish-
subscribe-based architecture to facilitate the implementa-
tion of systems to test MASs at the agent and group lev-
els. To illustrate and evaluate the use of the proposed archi-
tecture, we developed an MAS-based application and per-
formed functional and performance ad-hoc tests.

Keywords – group test; agent test; multiagent sys-
tem; test architecture; publish-subscribe; RabbitMQ

1. Introduction
Multiagent systems have been applied to a wide range of

application types, including e-commerce, human-computer
interfaces, network control, air traffic control and diagno-
sis [1] [2]. However, few of them have been commer-
cially deployed [2]. According to Pěchouček and Mařı́k
[2], one reason is the lack of procedures guaranteeing that
the distributed systems would behave as desired. In addi-
tion, agent-based systems involve different characteristics,
such as autonomy, asynchronous and social features, which
makes these systems more difficult to understand. Thus,
more elaborate methods of verification and testing [3] of
multiagent operations should be provided [2].

According to Nguyen et al. (2009) [4], a full testing
process of a multiagent system consists of five levels: unit,
agent, integration (or group), system and acceptance. Agent
test tests the capability of a specific agent to fulfill its goal
and to sense and affect the environment. Integration test

tests the interaction of agents and the interaction of agents
with the environment, ensuring that a group of agents and
environmental resources work correctly together [4].

As discussed by Serrano et al. (2012) [5], several ap-
proaches have been proposed to test multiagent systems at
the unit and single agent levels [6] [7] [8] [9] [10], while
there are few studies that address the issue of testing a MAS
at group level [6] [11] [5] [12]. In addition, to perform
group tests, most approaches have focused on capturing and
visualizing messages exchanged among agents. They do
not provide ways of also tracking the behaviors of two or
more agents in the same view and finding a correlation be-
tween their behaviors. For example, Serrano et al. (2012)
[5], which is one of the most recent papers published about
testing MASs at the group level, uses ACLAnalyser [13], a
tool for debugging MAS through the analysis of ACL [14]
messages. Thus, by using these current test approaches, if
an agent exhibits unexpected behavior (failure), a developer
has to inspect this failed agent or messages exchanged be-
tween agents to find the fault that caused that failure. How-
ever, if an agent fails, its failure may be related to a previous
and an unexpected behavior of another agent in the envi-
ronment. It would be a real problem to some MAS-based
approaches, such as that one proposed by Malkomes et al.
(2017) [15], which promotes the development of coopera-
tive agents without using message communication.

In the general context of distributed systems, Araújo and
Staa (2014) [16] also faced the problem of testing a group
of asynchronous components. They realized that most ap-
proaches to detect error and diagnose a failure in distributed
systems rely on distributed log files over various machines,
which makes the comprehension of the interaction among
the machines more difficult. Thus, Araújo and Staa (2014)
[16] proposed the use of a central architecture to receive,
store and inspect timestamp-based logs from distributed
machines, enabling a developer to further diagnose failures
in a single machine and in the whole system during the soft-
ware development cycle. Further, they presented a diag-
nosing mechanism based on logs of events annotated with
contextual information, allowing a specialized visualization

DOI reference number: 10.18293/SEKE2017-050



tool to filter them according to the maintainer’s needs. How-
ever, the authors discuss some limitations in their approach,
such as the query response time that grows as the database
size grows, which impacts the inspection interface usage,
and the use of an inefficient solution for creating discarding
rules.

In this paper, we present an architecture that was im-
plemented1 to make feasible the implementation of agent
and group test activities within the MAS software devel-
opment process. Our approach is based on the architec-
ture to test distributed systems proposed by Araújo and Staa
[16]. Nonetheless, MASs involve some characteristics that
are not addressed by non-agent-based systems, such as au-
tonomy and social behaviors. Thus, our goal is to adapt
the architecture proposed by Araújo and Staa [16] to cre-
ate one for testing MASs at different levels. Therefore, in
order to represent MAS properties, we changed some tags
that are used in their approach to represent logs with meta-
information annotations. In addition, to solve the problems
of data volume and discarding rules presented in their archi-
tecture, we decided to use a publish-subscribe [17] technol-
ogy, instead of a database one. Through a publish-subscribe
based approach, it is possible to develop decoupled and dif-
ferent tests that select logs that are useful for their purposes
and ignore the irrelevant ones.

To illustrate and evaluate the use of the proposed ar-
chitecture for creating systems to test MASs, we used and
tested a simple MAS-based application. This experiment is
presented in section 2. The remainder of this paper is orga-
nized as follows. Section 3 introduces the test architecture.
Section 4 evaluates the test architecture, presenting the ex-
perimental results and evaluation. The paper ends with con-
clusive remarks in Section 5.

2. APPLICATION SCENARIO
In order to evaluate our proposed approach to test mul-

tiagent systems, we developed a simple multiagent appli-
cation. This application is based on a scenario commonly
used in the MAS literature[14] - a marketplace to buy and
sell books on-line. We believe this experiment will assist
one to understand our approach and facilitate further com-
parisons and analysis. We developed this application by us-
ing the JAVA Agent Development Framework (JADE) that
is a Java software framework implemented to facilitate the
development of multiagent systems [14].

2.1. Sellers and Clients

This application implements a simple marketplace where
users create autonomous agents to sell and buy books for
them, as described in the JADE Guide [14]. Therefore, this
scenario contains two kinds of agents: Seller and Client. As

1The source of the test and the MAS application systems are available
at http://www.inf.puc-rio.br/ nnascimento/MAS-tests.html

part of the JADE platform, there is also a Directory Facil-
itator Agent (DF) that provides a Yellow Pages service by
means of which an agent can find other agents providing
the services he requires [14]. This illustrative scenario is
depicted in Figure 1.

SELLER-Agent1

SELLER-Agent2

SELLER-Agent3

CLIENT-Agent1

CLIENT-Agent2

DF-Agent

Yellow	 Page

User1

User2

MAILBOX

Figure 1: Scenario1: Overview of the general system archi-
tecture.

When a user creates a new selling agent, this agent reg-
isters itself in the Yellow Page by offering the service of
book-seller. A selling agent manages a book catalog for a
book store. Each user increments its own catalog at run-
time by adding new books for sale. To add a book for sale,
the user informs the name of the book and the price that he
would like to receive for the book. A client agent is respon-
sible for seeking and buying the book that a buyer user is
looking for. Once created, the client agent is released into
the marketplace, where it investigates which selling agents
have the desired book and it buys the book from the seller
that has the best price.

We also added a mailbox to the application. Our goal
is to simulate interactions between agents that are different
from ACL message communication. In such case, this inter-
action is performed by sharing a common resource among
agents, that is, the mailbox. After selling the book, the seller
agent sends a virtual copy of the book to the mailbox, while
the client agent verifies if the book has been delivered. If
the client agent buys a book and it does not find the book in
the mailbox after a time, the client agent will fail.

3. TEST APPROACH: THE SOLUTION AR-
CHITECTURE

We developed a publish-subscribe based architecture as a
foundation for generating different kinds of test applications
for MASs. Our goal is to provide mechanisms that capture
and process logs generated by agents automatically. As de-
picted in Figure 2, our architecture consists of three layers:
MAS Application (L1), Publish-Subscribe Communication
(L2), and Test Applications (L3). The Publish-Subscribe
Communication layer uses the RabbitMQ platform [18] for
delivering logs from agents (publishers) to be consumed

http://www.inf.puc-rio.br/~nnascimento/MAS-tests.html


by test applications (subscribers). To understand more
about the characteristics of RabbitMQ that we used in our
approach, see https://www.rabbitmq.com/tutorials/

tutorial-five-java.html (Accessed in 03/2017).

TEST
APPLICATIONS

(SUBSCRIBER	LAYER)

PUBLISH –
SUBSCRIBE

COMMUNICATION

MAS	
APPLICATION

(PUBLISHER	LAYER)
Agent1 Agent2 Agent3

Environment

SERVER

Queues

Subscriber	
App	01–
Agent1	
Testing

Subscriber	
App	02–

Integration	
Testing

Subscriber	
App	03–
System	
Testing

Log	Structure:
agentType.
agentName.
action.
typeLog.
className.
methodName.
codeLine.
resource.
timestamp.
message.

Figure 2: A Publish-Subscribe-based architecture to test
MASs.

Each agent publishes logs with annotations that are com-
posed of the following tags:

• agentType: the type of the agent (e.g CLIENT,
SELLER, VEHICLE). In JADE, it refers to the name
of the container where this agent lives;

• agentName: the name provided for the agent by
the system developer/user (e.g client01, client02,
seller01);

• action: the event that caused the log generation
(e.g connectToSystem, searchBookInCatalogue, be-
Destroyed);

• typeLog: types of logs (e.g error, info, warning);

• className, methodName, codeLine: necessary infor-
mation to identify the part of the code that generated
the event;

• resource: the main resource that has been manipulated
or requested by an agent during an event execution (e.g
book1, book3, memory). It may be used to investigate
all events that are related to a specific resource;

• timestamp: time that the log was created. Used to sort
all events into a single timeline [16];

• message: a description of the event.

Thus, a log message must meet the pattern “(agent-
Type).(agentName).(action).(typeLog).(className).
(methodName).(codeLine).(resource).(timestamp).(message).”

Each agent-based application must specify a set of values
that can be used to fill these tag fields.

As depicted in Figure 3, all agents in the MAS applica-
tion layer are also a TestableAgent type. A Testable agent
uses RabbitMQ properties to send logs with annotations as
messages. These logs can be published from any part of
an agent’s code. Some tags fields are automatically filled
in by the TestableAgent class and JADE properties, such as
agentType, agentName and timestamp.

Figure 3: Simplified class diagram for creating testable
MASs.

Figure 4: Simplified class diagram for creating applications
for testing a MAS application at agent, integration and sys-
tem levels.

The RabbitMQ autonomously delivers log messages to
queues according to their tags’ values. As shown in Fig-
ure 4, each test application defines a binding key in or-
der to subscribe itself to consume messages from a spe-
cific queue. For example, a test application that monitors
only error logs from SELLER agents must have the binding
key “SELLER.*.*.error.#.” Therefore, this application will

https://www.rabbitmq.com/tutorials/tutorial-five-java.html
https://www.rabbitmq.com/tutorials/tutorial-five-java.html


consume any log with the tuples (agentType,SELLER) and
(typeLog,error). It is also possible to create applications
that use multiple bindings. For example, if a performance
test application needs to calculate the number of SELLER
and CLIENT agents that are connected to the system, this
application will have to consume logs with different action
values. Thus, it needs to consume logs with the tuples (ac-
tion,connectToSystem) and (action,beDestroyed).

Test applications do not interfere on the execution of
each other. Each test class extends the class RabbitMQCon-
sumer that starts an independent process to consume mes-
sages from a specific queue. We used the Template Method
Pattern [19] to model the consumeMessage method. Thus,
to consume and process particular log messages, a test class
must overwrite and customize the methods getListBind-
ingKey() and processData().

4. TESTS AND RESULTS
By using our proposed architecture, we created some test

applications to execute functional tests at agent and group
levels. Thus, this section presents part of the test plan that
we created and performed for testing the application pre-
sented in the section 2. We provide the complete list of the
functional and performance tests that we executed in [20].

4.1. Agent and Group Tests
We executed various test cases, taking eight parameters

into account: (i) level (i.e. agent or group); (ii) function (e.g
it is composed of a set of actions, for example, the function
buy book may be composed of askBuy and soldBook ac-
tions); (iii) procedure (e.g a general description of the test);
(iv) input (i.e a resource, a component); (v) expected value
(e.g the result that will be produced when executing the test
if the program satisfies its intended behavior); and (vi) val-
idation method (e.g strategies that a tester performs to eval-
uate the system, comparing the program execution against
expected results). Each test case execution produced several
logs with meta-information annotations, which were con-
sumed by test applications. Then, we used these logs as a
validation method, as shown in table 1.

To validate a test case, the test application must verify if
logs are appearing in the order described in the Validation
Method column. Therefore, after the developer informs the
logs from the validation column, the test application will
automatically create a state machine, where each state rep-
resents an action. For example, Figure 5 illustrates the state
machine that was created to validate the execution of the
“buy Book” function. As shown, the verification program
defines the transition between states as a log. A transition
will only occur when the expected log appears. Each state
has a maximum wait time for the expected log. Thus, if
the maximum wait time exceeds, an error linked to the cur-
rent state will be generated. This situation indicates that an
agent performed an unexpected behavior and the action was

Table 1: Functional tests at agent and integration (group)
levels (Simplified Table).

Level Func. Procedure Input Expected
Value

Validation Method
(Logs sorted into
a timeline)

create
Selling
Agent

User creates
a new agent

1.Type:
SELLER
2. Name:
seller1

seller1 agent
is registered
as
book-seller

1)SELLER.seller1.
connectToSystem.
info.#
2)SELLER.seller1.
registerService.info.#

Agent add
Book

User adds
a new book
to seller1

1.Book’s
name:
book1
2.Book’s
price:10

book1 is in
seller1’s
catalogue

1)SELLER.seller1.
addBook.info.*.*.
.*.*.’name:book1
and price:10’

Group buy
Book

client1
asks seller1
to buy book1

1.client1
2.seller1
3.book1

client1
receives
book1
after two
seconds

1)CLIENT.client1.
askBuy.info.#
2)SELLER.seller1.
receivedBuy.#
3)SELLER.seller1.
removedBook.#
4)SELLER.seller1.
soldBook.#
5)CLIENT.client1.
receivedSaleConf.#
6)CLIENT.client1.
receivedBook.#

not successful executed.

Figure 5: Simplified state machine for verifying test cases
generated for the function buy book.

In order to force test failure and verify if these test
applications were able to identify faults, we forced cer-
tain classes to act incorrectly during the execution of
the program over some integration tests. For example,
to test the function “buy Book”, we inserted a defect
that makes a Seller agent to die after accepting a book
sale. Therefore, a client agent that bought a book from
this seller, did not find this book in the mailbox and
failed. As the test application did not receive the log
“CLIENT.client1.receivedBook.info.#”, its state machine
indicated a failure in the state “receivedSaleConf.” Figures
6 and 7 depict the logs that were generated by agents while
this situation was executing.



Figure 6: Logs generated by Seller1.

Figure 7: Logs generated by Client1.

As each agent is running separately, to identify and un-
derstand what caused this failure, the tester would have to
inspect the log file from each one of the agents. This work
could be so difficult if the number of agents or the number of
log messages was higher. Thus, by using our proposed so-
lution, a test application can automatically select those logs
from different agents that are probably to be essential for a
specific test case and show them sorted in a single timeline.

In order to specify which characteristics need to be mon-
itored from logs during the execution of a test cases set, the
developer must establish a list of binding keys and override
the method getListBindingKey() from the RabbitMQCon-
sumer class (Figure 4). The list of binding keys will deter-
mine which test cases can be covered by the test application.
For example, to cover the test cases that are listed in Table
1, it is necessary to establish binding keys that will make the
test application able to receive all logs that are described in
their “Validation Method” columns.

The code below shows the method getListBindingKey()
that was used by a test application to cover these three test
cases. If the developer wants this test application covering
more test cases, he needs to add more binding keys to allow
the test application to consume different logs.

@Override
public String [] getListBindingKey () {
BindingKey bd = new BindingKey();
String [] listKey = new String [11];
listKey [1] = bd.createBindingKey(LogValue.Action.connectToSystem);
listKey [2] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.askBuy);
listKey [3] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.receivedSaleConfirmation);
listKey [4] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.receivedBook);
listKey [5] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.registerService) ;
listKey [6] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.addBook);
listKey [7] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.receivedBuy);
listKey [8] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.removedBook);
return listKey ;
}

As a result, the interface depicted in Figure 8 shows all
logs that were consumed by a test application according to
this binding key list. In addition, all logs are organized in a
single timeline. As shown, not all logs depicted in Figures 6
and 7 were presented in this interface, but only the relevant
logs to inspect the execution of these test cases. Thus, we
were able to verify these logs in order to find the fault that

generated the failure indicated by the state machine.

Figure 8: Application View - Agent and Integration tests.
Fault detection in test case execution.

Test Results
As shown in Table 1, we executed some functional tests at
agent and group levels. By using state machines, the test
applications were able to validate these test cases by com-
paring the logs consumed from the MAS publisher against
the logs listed in the “Validation Method” column. In ad-
dition, we also conducted some tests by inserting software
failures and verifying if our test software could be useful
for detecting faults. As a result, after the state machine had
indicated a failure, the developer could use the interface to
identify the fault and reduce the time of diagnosis.

5. Conclusions and Open Challenges
We believe these results are promising. We presented

a decoupled architecture that allows a developer to exe-
cute tests simultaneously and independently while running
a MAS. In addition, we provided evidence of the usability
of our proposal, using it to test a known MAS application.
We showed that it is possible to develop different tests for a
multiagent system at different levels by using logs contain-
ing meta-information annotations and a publish-subscribe
technology.

5.1. Testing Non-Deterministic Applications
However, MASs usually are much more complex than

the experiment that was used in this work. Current ap-
proaches modeled by using a MAS may involve non-
deterministic characteristics that were not addressed by
this paper, such as learning [21], self-adaptation and self-
organization (SASO) [22]. In fact, there is a gap in the
literature regarding the test of systems with these features.
There are few approaches to inspect the emergence process
in a self-organizing MAS system [23] [24], and all of them
do MAS design based only on simulation techniques. One
reason is the difficulty of specifying expected results for
non-deterministic applications, especially in actual environ-
ments. Nonetheless, we believe our approach opens the way
for more experiments in testing Multiagent Systems, since it
provides ways for testing a MAS at different levels. For ex-
ample, as a self-organizing MAS system enables the emer-
gence of social features based on the behavior of individual



agents, to test this kind of system it is necessary to perform
tests at single and group levels.

5.2. Deploying Agents in a Distributed Environment

For instance, all agents are running on a single machine
and the proposed approach assumes that there is a central
clock so that the timestamp in each message can be used to
sort events and measure throughput. If the tester needs to
evaluate the MAS application in a distributed environment,
he can use RabbitMQ to create a common publisher that
publishes logs from agents localized on different machines.
However, new challenges will arise. In the general case of
distributed agents, possibly running on machines in differ-
ent continents, a synchronization mechanism is required.

5.3. Predictive Analysis

For each application, there is a set of predetermined val-
ues that can be used in tags. Thus, we can codify and nor-
malize these values to use them as inputs of a temporal neu-
ral network, which is a known structure of predictive anal-
ysis. By consuming temporal logs, a test application may
use a temporal neural network to process log information in
order to predict errors.

Acknowledgements This work has been supported by the
Laboratory of Software Engineering (LES) at PUC-Rio.
Our thanks to CNPq, CAPES, FAPERJ and PUC-Rio for
their support through scholarships and fellowships.

References
[1] C. Lucena, Software engineering for multi-agent systems II: research

issues and practical applications. Springer Science & Business
Media, 2004, vol. 2.

[2] M. Pěchouček and V. Mařı́k, “Industrial deployment of multi-agent
technologies: review and selected case studies,” Autonomous Agents
and Multi-Agent Systems, vol. 17, no. 3, pp. 397–431, 2008.

[3] P. Ammann and J. Offutt, Introduction to software testing. Cam-
bridge University Press, 2008.

[4] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, and J. Thangara-
jah, “Testing in multi-agent systems,” in International Workshop on
Agent-Oriented Software Engineering. Springer, 2009, pp. 180–
190.

[5] E. Serrano, A. Muñoz, and J. Botia, “An approach to debug inter-
actions in multi-agent system software tests,” Information Sciences,
vol. 205, pp. 38–57, 2012.

[6] D. T. Ndumu, H. S. Nwana, L. C. Lee, and J. C. Collis, “Visualising
and debugging distributed multi-agent systems,” in Proceedings of
the third annual conference on Autonomous Agents. ACM, 1999,
pp. 326–333.

[7] R. Coelho, E. Cirilo, U. Kulesza, A. von Staa, A. Rashid, and C. Lu-
cena, “Jat: A test automation framework for multi-agent systems,”
in 2007 IEEE International Conference on Software Maintenance.
IEEE, 2007, pp. 425–434.

[8] Y. Abushark, J. Thangarajah, T. Miller, J. Harland, and M. Winikoff,
“Early detection of design faults relative to requirement specifica-
tions in agent-based models,” in Proceedings of the 2015 Interna-

tional Conference on Autonomous Agents and Multiagent Systems,
2015, pp. 1071–1079.

[9] F. Cunha, A. D. da Costa, M. Viana, and C. J. P. de Lucena, “Jat4bdi:
An aspect-based approach for testing bdi agents,” in Web Intelligence
and Intelligent Agent Technology (WI-IAT), 2015 IEEE/WIC/ACM
International Conference on, vol. 2. IEEE, 2015, pp. 186–189.

[10] V. J. Koeman, K. V. Hindriks, and C. M. Jonker, “Automating failure
detection in cognitive agent programs,” in Proceedings of the 2016
International Conference on Autonomous Agents & Multiagent Sys-
tems, 2016, pp. 1237–1246.

[11] J. J. Gomez-Sanz, J. Botı́a, E. Serrano, and J. Pavón, “Testing and
debugging of mas interactions with ingenias,” in International Work-
shop on Agent-Oriented Software Engineering. Springer, 2008, pp.
199–212.

[12] A. Ferrando, D. Ancona, and V. Mascardi, “Decentralizing mas mon-
itoring with decamon,” Autonomous Agents and Multi-Agent Sys-
tems, vol. 16, 2017.

[13] J. Botı́a, A. Lopez-Acosta, and A. Skarmeta, “Aclanalyser: A tool
for debugging multi-agent systems,” 2004.

[14] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, and R. Mungenast,
“Jade administrator’s guide,” TILab (February 2006), 2003.

[15] G. Malkomes, K. Lu, B. Hoffman, R. Garnett, B. Moseley, and
R. Mann, “Cooperative set function optimization without commu-
nication or coordination,” in Proceedings of the 16th International
Conference on Autonomous Agents and Multiagent Systems, 2017.

[16] T. P. de Araújo and A. von Staa, “Supporting failure diagnosis with
logs containing meta-information annotations,” Technical Reports in
Computer Science. PUC-Rio. ISSN 0103-9741, vol. 14, p. 21, 2014.

[17] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot:
content-based publish/subscribe over p2p networks,” in Proceedings
of the 5th ACM/IFIP/USENIX international conference on Middle-
ware. Springer-Verlag New York, Inc., 2004, pp. 254–273.

[18] RabbitMQ, “Rabbitmq,” Available in https://www.rabbitmq.com/, 10
2016.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns:
Abstraction and reuse of object-oriented design,” in European Con-
ference on Object-Oriented Programming. Springer, 1993, pp. 406–
431.

[20] N. M. do Nascimento, C. J. M. Viana, A. v. Staa, and C. J. P. de Lu-
cena, “A publish-subscribe based approach for testing multi-agent
systems,” Technical Reports in Computer Science. PUC-Rio. ISSN
0103-9741, vol. 2016, p. 21, 2016.

[21] J.-P. Briot, N. M. de Nascimento, and C. J. P. de Lucena, “A multi-
agent architecture for quantified fruits: Design and experience,” in
28th International Conference on Software Engineering & Knowl-
edge Engineering (SEKE’2016). SEKE/Knowledge Systems Insti-
tute, PA, USA, 2016.

[22] N. M. do Nascimento and C. J. P. de Lucena, “Fiot: An agent-based
framework for self-adaptive and self-organizing applications based
on the internet of things,” Information Sciences, vol. 378, pp. 161–
176, 2017.

[23] L. Gardelli, M. Viroli, and A. Omicini, “On the role of simulation
in the engineering of self-organising systems: Detecting abnormal
behaviour in mas,” 2005.

[24] C. Bernon, M.-P. Gleizes, and G. Picard, “Enhancing self-organising
emergent systems design with simulation,” in International Work-
shop on Engineering Societies in the Agents World. Springer, 2006,
pp. 284–299.


	. Introduction
	. APPLICATION SCENARIO
	. Sellers and Clients

	. TEST APPROACH: THE SOLUTION ARCHITECTURE
	. TESTS AND RESULTS
	. Agent and Group Tests

	. Conclusions and Open Challenges
	. Testing Non-Deterministic Applications
	. Deploying Agents in a Distributed Environment
	. Predictive Analysis


