
LaSaS: an Aggregated Search based Graph Matching
Approach

Ghizlane ECHBARTHI
Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France
Email: ghizlane.echbarthi@univ-lyon1.fr

Hamamache KHEDDOUCI
Université de Lyon, CNRS

Université Lyon 1, LIRIS, UMR5205, F-69622, France
Email: hamamache.kheddouci@univ-lyon1.fr

Abstract—Graph querying is crucial to fully exploit the
knowledge within the widely used graph datasets. However, graph
datasets are usually noisy which makes the approximate graph
matching tools favored to overcome restrictive query answering.
In this paper, we introduce a new framework of approximate
graph matching based on aggregated search called Label and
Structure Similarity Aggregated Search (LaSaS). LaSaS enables
effective and efficient graph querying without considering any
fixed schema of the data graph by (i) using the aggregated search
strategy to increase the number of answers, (ii) using a lightweight
graph similarity metric that takes into account nodes label and
graph structure similarity to enable finding approximate matches
and also by (iii) using a simple graph weight update routine
instead of computing the maximum common subgraph which
reduces the overall computation cost. We evaluated our proposed
approach over the real-life DBpedia graph and results show the
effectiveness and stability of the approach on different parameter
settings. Moreover, results also show that LaSaS yields more
precise matches in a shorter amount of time when compared
to state-of-the-art related approaches.

Keywords—Graph querying, Graph matching, Graph similarity
metric, Aggregated search.

I. INTRODUCTION

Nowadays, a steep increase in data production is witnessed,
which favors the use of graphs as a storage support to fully
exploit the knowledge within the dataset. In fact, graphs are
a popular data model that enables efficient data processing
benefiting from all the graph theory findings and technics.
In considering this matter, graph querying has attracted the
interest of many researchers as it represents an essential task
to exploring the knowledge in these datasets.

In order to query these graph databases, generally, a graph
matching task is performed using either graph isomorphism
to find exact answers to the query, or other technics that
allows approximate graph matching. In the case of graph
isomorphism, seeking exact answers to the query can be very
expensive as well as restrictive since actual datasets are usually
noisy. Moreover, it requires the user to have a complete
knowledge of the data structure which is not always the
case. To bypass these restrictions, approximate graph matching
is widely used in many real life applications such as web
anomaly detection [1], search result classification [2] and spam
detection [3] to name a few.

However, few works on graph querying have addressed the
graph matching problem by building an answer to the query
based on the aggregation of heterogeneous graphs. The idea

DOI reference number: 10.18293/SEKE2017-046

is to find a matching to a given query by combining several
subgraphs that when aggregated, they form an approximate
match for the query. This search paradigm is known as
aggregated search in graphs [4], [5] i.e., given a query graph
q and a set B of graphs, aggregated search aims to find
matches to q by combining or aggregating subgraphs in B.
The aggregated search is different from the classical graph
matching problem where all occurrences of the query are to
be found in one target graph G. In contrast to the graph
context, aggregated search is a popular search paradigm in
Information Retrieval where an answer to a query is given by
combining contents of heterogeneous sources, e.g., text, image,
and video instead of giving the classical list of relevant links.
The concept of aggregation has rarely been tackled in graph
databases, though it represents various advantages compared to
the classical graph matching problem. Furthermore, aggregated
graph matching represents a powerful matching paradigm, as
it brings about significant improvements when considering the
number of findable solutions to a given query, where a simple
graph matching can not find any. A motivating example for the
aggregated search in graph databases is plagiarism detection:
the aggregated graph search can detect a plagiarism even when
the cheater takes several small shards from different documents
and combines them. The aggregated graph search can detect
these plagiarism cases.

Generally, most works on graph querying adhere to costly
operations such as graph isomorphism [6], [7], or maximum
common subgraph search [4], which are too restrictive. Simi-
larly, approximate matching frameworks consist in either strict
label similarity [8], or structural similarity [9] which restricts
the number of findable solutions. Moreover, to the best of our
knowledge, approximate graph matching using the aggregated
search paradigm is novel and has never been tackled.

Broadly motivated by addressing these shortcomings, we
propose in this paper a new framework for approximate graph
matching called Label and Structure Similarity Aggregated
Search (LaSaS). The proposed framework enables an effective
RDF graph querying without any knowledge of neither the de
facto SPARQL language nor the schema of the data graph.
Our contribution is threefold: First, we use the aggregated
search paradigm to enrich the set of answers. Second, a
lightweight graph similarity metric that takes into account both
the graph label and graph structure similarity to enable finding
approximate matches. Third, we propose a simple graph weight
update that replaces the maximum common subgraph search
task and reduces the complexity cost.

The remaining of the paper is organized as follows: Section

2 presents an overview of the related work about graph
querying. In Section 3, we present preliminaries and necessary
notions for the understanding of our LaSaS method, which is
entirely presented in Section 4. Section 5 reports and discusses
our experimental results. Section 6 concludes with a summary
of our contributions and raises issues for future work.

II. RELATED WORK

Graph querying is a crucial task as most of the actual
datasets are being stored and exploited as graphs. Many graph
querying techniques exist in the literature and the proposed
framework is closely related to aggregated search and ap-
proximate (sub)graph matching, the latter being considered
as an elementary operation in our matching framework. So
in this section, we provide a brief description of the graph
querying methods that are based on (sub)graph matching and
the aggregated search in graphs.

Subgraph matching. Subgraph matching is a well-studied
problem with a rich literature. Two main categories fall under
the subgraph matching problem, the exact and the inexact sub-
graph matching. Exact subgraph matching finds exact answers
to the query via graph isomorphism [7], [6]. Approaches in
this group are criticized for their intractability [10], their cost
prohibitive characteristic and for being restrictive w.r.t. to the
number of answers to the query.

On the other hand, inexact graph matching allows slight
differences between the query and the matches which is
highly suitable for actual needs as graph datasets are usually
noisy, and relevant answers could be found using approximate
matching. Under the category of inexact (sub)graph matching,
we find subgraph matching based on graph simulation [11],
[12], which can be determined in quadratic time and is defined
as a relation between the query nodes and the target nodes.
However, it suffers a considerable loss of structural similarity
which makes it untailored for many applications such as in
bioinformatics.

Another variant of inexact graph matching is the graph
homomorphism [13]. The idea is to find mappings to the query
such that node labels difference falls under a threshold whereas
the query edges are mapped to paths of a given length.

More related to our work, Tian et al. proposed a tool called
SAGA [14]. The approach allows approximate matching by
breaking the query into subgraphs and finding small hits that
are assembled to form a match. Although SAGA method is
based on an efficient indexing to speed up the processing, it
actually reduces to solving the maximum clique problem which
represents a costly operation.

It is also worth mentioning that there are parallel works
related to the approximate graph matching in bioinformatics.
This category of methods includes PathBlast [15], NetAlign
[16] and IsoRank [17] to name but a few. These methods are
found to be efficient in tasks related to the domain application
such protein interaction networks alignment [16], [15].

Besides, a different type of approximate structural match-
ing works has been proposed in [18], [8]. These works are
based on concept propagation [19] and spreading activation
[20] instead of classical matching schemes (graph isomorphism
and similarity metric). Nevertheless, these works consider a
strict label node matching, which is still too restrictive.

Although not pursued here, approximate and inexact
(sub)graph matching encompasses decades of research work.

Hence, we encourage interested readers to [21] as well as
references therein for further details about the problem.

Querying RDF graphs. In the realm of querying RDF
graphs, SPARQL is a widely used query language. It requires
a complete knowledge of the schema of the graph database,
i.e., the structure, node labels and types of entities in the
graph. Moreover, writing queries in SPARQL proves to be a
complicated task that requires users to be familiar with the
language. In order to alleviate this, Zou et al. studied the
problem of answering SPARQL queries via subgraph matching
and proposed gStore [9], which allows approximate node label
matching but adheres to strict structural matching leading the
method to be restrictive.

Aggregated search in graph databases. Aggregated
search is a familiar search paradigm in Information Retrieval
in the context of documents [22]. However, few works tackled
the problem of aggregated search in graph databases. Elghazel
et al. [4], [5] studied the problem of aggregated search in
labeled graphs and their problem formulation is close to ours.
Nevertheless, their method looks for exact matches which is
restrictive on one hand, and on the other hand very expensive
due to the maximum common subgraph search and the max-
imum clique detection, which are considered as being among
the most expensive operations on graphs.

Most of the aforementioned works altogether lack several
critical points: (i) They present a restrictive tool for query
answering either by imposing a strict node label similarity
or by a strict structural similarity, which does not allow
approximate relevant answers to be discovered, (ii) the graph
matching is usually done by checking the maximum common
subgraph which is a costly computational task. (iii) Methods
querying semi-structured data requires a complete knowledge
of the graph schema and are often complicated. (iv) Few
works considered a query answering by several graphs in
concomitant, and if so, they seek exact matches which is
still restrictive. To address these shortcomings, we propose
a new graph matching framework that aims to answer a
query by allowing approximate label and structural similarity
through a lightweight similarity metric which alleviate the
task of maximum common subgraph search. Moreover, our
proposed framework enables efficient RDF graph querying
without having any knowledge about the schema of the graph.
Last but not least, our proposed framework is based on the
aggregated search to enable a joint query answering by several
heterogeneous graphs in order to benefit from the information
wealth within these graphs.

III. PRELIMINARIES

This section is dedicated to introducing notions used in
our proposed method. First, we give definitions about the usual
data structures used: the query, the target graphs and the answer
set. Then we introduce a new graph similarity metric and the
objective function of the proposed matching scheme, we end
this section by giving the problem formulation of aggregated
grah search.

A. Query, Target graph, Answer
Query. The query q is an undirected labeled graph q =

(Vq, Eq, µq) where Vq represents the vertex set, and Eq the
edge set. µq is a function µq : Vq → LVq

that associates labels
to vertices, with LVq the vertex label set.

Target graphs. Target graphs are represented by the set
B of p graphs which are referred to as fragments fi, i ∈ [p].
Fragments fi = (Vi, Ei, µi) are undirected labeled graphs s.t.
Vi (resp. Ei) is the vertex set (resp. edge set) of fi. µi is a
function Vi → LVi associating labels to vertices, with LVi is
the vertex label set of fi.

Answer set. The expected answer set A is defined as
follows: A = {a1, · · · , ak} where ai are called aggregates.

We have ai =
pi⋃
j=0

fij s.t. pi is the number of fragments in ai

and we have pi ≤ p , i.e., ai is constituted by as few fragments
as possible.

Though our method focuses on undirected labeled graphs,
it is straightforward to extend it to process other kinds of
graphs.
B. Objective function

Graph similarity metric. We first introduce a graph
similarity metric that computes the similarity between two
graphs based on two main features: (i) the node label similarity
and (ii) the structure similarity. The similarity function is
denoted by s(fi, q) where s : B × {q} → [0, 1] is a function
that quantifies the similarity that fi shares with q in terms
of label and structure similarity s.t. the closest s to 1, the
more similar are fi and q. In the following, we present the
components of the similarity metric s: Label similarity and
structure similarity components.

1) Label similarity component: Label similarity of frag-
ment fi and query q is denoted by ∆L(fi, q) and is computed
as follows:

∆L(fi, q) =
1

ni
.
∑

v∈Vfi

J(µ(v), µ(Q(v))) (1)

where ni is the number of vertices in fi, and J is the
jaccard similarity coefficient such that J(l1, l2) =

Wl1
∩Wl2

Wl1
∪Wl2

,
with Wl1 (resp. Wl2) is the words set in label l1 (resp. l2). Q
is an application Q : Vi → Vq that associates vertices from
the fragment to their counterpart in the query and we have:
Q(v) = u iff J(µi(v), µq(u)) > τ where τ is a user fixed
threshold.

2) Structure similarity component: On the other hand,
∆D(fi, q) denotes the structure similarity between fragment
fi and query q as follows:

∆D(fi, q) =
1

ni
.

∑
u,v∈Vfi

,u<v

δt(d(u, v), d(Q(u), Q(v))) (2)

where
δt(x, y)

{
1 if |x− y| < t
0 otherwise.

d(u, v) denotes the distance between vertices u and v. ∆D

computes the structure similarity in terms of distances in fi
and q. ∆D increases each time the distance between two nodes
in the target graph is equal or near to the distance between their
corresponding nodes in the query graph. More precisely, ∆D

increases when the distance difference is under a threshold t
called the structure disparity threshold. The value assigned to
threshold t should be small in order to avoid disparate matches
and to preserve the structure similarity. Besides, t should not

neither be equal to zero otherwise it would be very restrictive
as only strikingly similar matches will be favored.

Taking these both components into account, we define the
similarity function s as follows:

s(fi, q) = λ.∆L(fi, q) + (1− λ).∆D(fi, q) (3)

where λ is a tunable parameter in [0, 1].
Objective function. Let η denote the matching that as-

sociates the aggregates ai in the answer set A to the query q
(matching query nodes to target nodes). We define the objective
function of the matching η as follows:

Ψ(η) =
1

k
.

k∑
i=0

s(ai, q) (4)

C. Problem Formulation
Given a set of fragments B, a query q. The aggregated

graph search problem consists in finding the matching η that
associates the answer set A of k aggregates to q s.t. Ψ(η) = 1.

Proposition 1. Aggregated graph search problem is NP-Hard.

Proof: Let us consider the simple case of k = 1. That is
to say, the expected answer set consists of one aggregate a1
s.t. a1 =

p1⋃
j=0

fj , where Ψ(η) = 1, i.e., s(a1, q) = 1, with η is

the matching that associates aggregate a1 to q. By definition,
the similarity function s(a1, q) = 1 means that we are looking
for minimum elements from B (see section III-A) s.t. their
union covers q: label similarity component equals one means
that all nodes are matched and their labels are exactly similar,
on the other hand, structure similarity component should be
one, meaning that the query and the aggregate have similar
structure. This reduces to resolving the NP-Hard set cover
problem where the universe is the query q that we aim to
cover with minimum elements from B. This ends the proof.

IV. QUERY PROCESSING ALGORITHM

In this section, we present our query processing algorithm
named LaSaS, which is a heuristic solution intended to solve
the problem of aggregated graph search. We expose in details
the proposed algorithm and its different steps.

LaSaS algorithm (described in algorithm 1) works in three
distinct steps: first, the Selection step aims to select the most
relevant fragments from the fragment set B based on the simi-
larity metric s (see section III-B). Second, the Aggregation step
combines the relevant fragments found by the Selection step
to form the aggregate a. Third, the Refinement step enhances
the quality of the aggregate by pruning irrelevant nodes and by
mapping paths of a thresholded length to unmapped edges if
any. Note that this threefold process is necessary for obtaining
one aggregate, whereas in the general case of k aggregates,
this process will repeat k times. In the following, we present
each step in details.

1) Selection step: The first step consists in selecting the
most relevant fragments, as many as necessary to cover the
whole query q. The selection is based on successive iterations
of two main substeps: (i) similarity checking and (ii) query
updating until a stopping condition is verified. In the similarity
checking, a rank is associated to each fragment fi in B
which is given by the similarity metric s(fi, q) (see section

Algorithm 1 Label and Structure Similarity Aggregated Search
Input: Fragments set B, Query graph q, number of expected
aggregates k.
Output: Answer set A.
1. i = 0;
2. while i < k
3. Select potential fragment from B that are similar to q;
4. Add the selected fragments to set S;
5. Aggregate all fragments in S to form an aggregate ai;
6. Refine ai;
7. Prune irrelevant nodes;
8. If there are unmapped edges in ai:
9. Map paths to missing edges;
10. A = A ∪ {ai};
11. i = i+ 1;
12. S = ∅;
13. end while
14. return A;

III-B), then the fragment fmax having the maximal similarity
is selected and we have fmax =argmax

fi

s(fi, q) where

fi ∈ B. The query is then updated according to the best-ranked
fragment fmax such that the query part that has been covered
by fmax is withdrawn according to several conditions which
will be detailed in the following. When the query is updated,
the selection process repeats: similarity checking and query
update substeps are performed until one of these stopping
conditions are verified: (i) |Vq| < ε, meaning that almost all
query nodes have been matched and/or (ii) the fragment set
B is empty, given that a fragment is removed from B once
chosen during the selection step.

Query Update. The foremost role of query update step
is to ensure complementarity among selected fragments. This
step updates the query by removing nodes that are covered
by the selected fragment, thus enabling subsequent selections
to choose fragments covering complementary parts of the
query. The query update can be done in two distinct ways:
using Maximum Common Subgraph (MCS), and using Weight
Update (WU).

Query update using MCS. As aforementioned, the query
is updated given the best fragment fmax. First, the maximum
common subgraph (MCS) of q and fmax is computed, then the
MCS is withdrawn from q while keeping the boundary nodes
that belongs to the MCS as explained in the following.

Let q′ denote the updated query q. We have:

• V1(q′) = {v|v ∈ Vq & v /∈MCS(q, fmax)}
• V2(q′) = {u|(u, v) ∈ Eq & v /∈MCS(q, fmax)}

The vertex set of q′ is Vq′ = V1(q′)∪V2(q′), and the edge set
is Eq′ = {(u, v) ∈ V 2

q′ | (u, v) ∈ Eq}.
Query Update using Weight Update (QUWU). Com-

puting the maximum common subgraph is known to be NP-
complete by reduction from the maximum clique problem.
Hence, it is cost prohibitive to use it in our method in such
a repetitive operation as the query update. Alternatively, we
perform a weight update on the query s.t. removable nodes
on the query will be weighted by 0 and by 1 otherwise. In a
nutshell, QUWU works in 2 steps: First, covered nodes will
have their weights set to 0.5 as follows: ∀(u, v) ∈ Efmax

: if

(Q(u), Q(v)) ∈ Eq then w(u) = w(v) = 0.5, where w(u)
is the weight of vertex u. Figure 1 depicts the equivalent
result to computing the MCS. Second, weight binarization is
performed, i.e., among covered nodes, removable nodes will
be weighted by 0, otherwise by 1. QUWU process will not
be further detailed due to lack of space, however, it is worth
mentioning that it has a polynomial time complexity w.r.t. the
number of query nodes.

Consequently, the stopping condition of the selection step
would be that all vertices of q are weighted by 0, i.e. W ≤ ε,
where W =

∑
v∈Vq

w(v).

Fig. 1. Vertex weight update vs. Maximum Common Subgraph.

C B

D E

C E

B

A A

C B

D E

A

q f

MCS Vertex weight Update

(pre-weight binarization)

0.5

10.5

11

q

C

A

Since QUWU does not reduce the query size as it does
not withdraw vertices but update their weights, it is necessary
to tweak the similarity function s (see equations 5 and 6) in
order to consider only vertices that are weighted by 1, i.e., not
previously covered.

∆L(fi, q) =
1

ni
.

∑
v∈Vfi

w(Q(v))6=0

J(µ(v), µ(Q(v))) (5)

∆D(fi, q) =
1

ni
.

∑
u,v∈Vfi

,u<v

w(Q(v))6=0

δt(d(u, v), d(Q(u), Q(v))) (6)

2) Aggregation step: The fragments obtained upon success-
ful completion of the selection step are stored in the solution
set denoted by S. The aggregation step constructs an aggregate
ai from the solution set S as follows:

Vai
=
⋃
fi∈S

Vi and Eai
=
⋃
fi∈S

Ei

3) Refinement step: Refinement of aggregate ai is achieved
by (i) connecting the aggregate whenever it is disconnected,
and (ii) by pruning irrelevant nodes from ai.

Connecting the aggregate. Cases when ai is disconnected
may occur when selected fragments cover disjoint areas of
query q leaving some query edges unmapped. Our algorithm
maps these edges to paths by performing a path search in
B in order to interconnect the connected components (ccs)
in ai. To this end, we search for a path between any two
nodes belonging to different ccs of ai in the graph G, where

G =
p⋃

i=0

fi. For an optimal path finding task, we customized

the Dijkstra algorithm by adding a constraint thresholding the
path length, where only paths having a relatively small length
are considered in order to speed up the search time, as long
paths search will be abandoned once the threshold exceeded
and, on the other hand, to preserve semantic relevance within
ai. Finally, the path search stops once ai becomes connected.

Pruning. The aggregate ai is further refined by withdraw-
ing irrelevant nodes. To do so, we iteratively prune irrelevant
leaves from ai until no irrelevant leaf is left, where a leaf

is a vertex of degree 1. As depicted in figure 2, not all
irrelevant nodes are pruned from A by the end of the pruning
process, however, by limiting the pruning to irrelevant leaves,
the connectivity of the aggregate is preserved as the removal
of an irrelevant node with a degree>1 may disconnect the
aggregate.
Fig. 2. Pruning process of the aggregate.

r

nr r

r nr

nr

First pruning

r

nr r

r nr

Second pruning

r

nr r

r

End of pruning

A AA

V. EXPERIMENTAL EVALUATION

This section shows the empirical evaluation of the proposed
approach. We first describe the experimental set up along with
the graph dataset and the evaluation methodology. Then we
present the evaluation metrics. Finally, we present and discuss
the obtained results.
A. Experimental set up

Graph Dataset. In order to evaluate our method, we
used the real life dataset DBpedia Knowledge Base [23]
that consists of RDF triples extracted from Wikipedia. We
considered a total of 666043 triples from ten different entities.

Fragments generation. In order to constitute the set of
fragments B, we partition the dataset used in such a way that
no fragment is isomorphic to the query q. To avoid crossing
edges between fragments, nodes belonging to the crossing
edges are duplicated in the fragments involved.

Query generation. Two parameters are necessary to gen-
erate a query: the number of nodes denoted by n and the query
diameter d which represents the largest distance between any
two nodes. A query is generated by extracting a subgraph from
the dataset and introducing some label and structure noise to
it. The label noise is generated by randomly modifying some
words in the original label while the structure noise is provided
by randomly removing or adding some edges.

Evaluation metrics. The F1-measure is used as the main
evaluation metric to show the effectiveness of our method.
It combines the recall (R) and precision (P) where the recall
shows the ratio of the correctly found node matches overall
correct matches, and the precision is the ratio of correctly
found matches overall found matches. F1-measure is as fol-
lows:

F1 =
2

(1/R+ 1/P)

In addition to he F1-measure, the runtime is also reported.
Methodology. Our experiments are based on the following

guidelines: We create 4 query sets, and we generate 100 query
under each set. First, we assess the influence of the structural
noise on our method by fixing the label noise and varying the
structural noise for all the 4 query sets. Similarly, to assess
the label noise influence on our method, we fix the structural
noise and vary the label noise on all the 4 query sets. We vary
the ratio of the matching nodes in the query, i.e., the query
nodes that are surely present in the fragments set B, and see
the repercussion on the performances of our method. Last but
not least, we compare LaSaS to state-of-the-art tools: SAGA
and BLINKS [24], a keyword graph search method.

All algorithms have been implemented in C++, and all
experiments were performed on a single machine, with Intel
Xeon(R) CPU at 1.9GHz, and 16GB of main memory.
B. Experimental results

Label noise influence. We vary the label noise and report
the F1-measure in figure 3. Having the structural noise fixed to
10%, F1-measure does not reach 1 when label noise equals 0%.
Results show that LaSaS maintains the same performances for
0% to 10% of label noise, meaning that it efficiently discovers
the correct matches despite the noise. However, when the label
noise goes up to 30%, F1-measure drops considerably, which
shows that LaSaS is label noise sensitive.

In figure 3, we show the runtime for all query sets while
varying the label noise. Results show that for each query set,
the runtime is even for different values of label noise, however,
a slight increase of the runtime is noticed when the label noise
reaches 30%, which is normal as the method spends additional
time to look for other candidate matches. Altogether, increas-
ing the label noise does not incur a considerable computational
cost.
Fig. 3. F1-measure and Runtime (in seconds) reported upon four different
query sets with 100 query within each set while varying the label noise, and
the structural noise was set to 10%.

0% 10% 20% 30%

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n=3, d=1
n=5, d=2
n=7, d=3
n=10, d=4

Label Noise

F
1

0% 10% 20% 30%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
n=3, d=1
n=5, d=2
n=7, d=3
n=10, d=4

Label Noise

R
un

tim
e

(s
ec

)

Structural noise influence. Figure 4 reports results for
different values of structural noise while label noise was set to
10%. When no structural noise is added, the F1-measure does
not attain 1 due to the label noise being set to 10%. Moreover,
the F1-measure does not have an abrupt variation for all query
sets (with the lower bound being 0.8 and the upper bound
being 0.86), which translates the capacity of LaSaS to find the
correct matches despite the added noise on the structure.

Figure 4 reports the runtime while we vary the structural
noise, and results show that the runtime is almost steady for
all query sets, that is to mention that the computational cost
incurred by the added structural noise is negligible.

Ratio of query matching nodes. We refer to the ratio
of matching nodes that are already in the fragments set B
by Φ, and we investigate its influence on the performances
of LaSaS. Figure 5 reports the F1-measure and shows that
performances are optimal when the ratio of the matching nodes
is equal to 100%, and it decreases gradually when the ratio of
the matching nodes decreases. This shows the effectiveness of
our method, as it finds the best results when they are available.

The reported runtime as shown in figure 5 increases with
the ratio Φ, which means that the method takes more time to
process as there are additional relevant answers in the B set.

LaSaS vs. SAGA and BLINKS. In Table I, we compare
our method LaSaS to two state-of-the-art tools SAGA and
BLINKS. Results in table I show that LaSaS outperforms both
SAGA and BLINKS in effectiveness by achieving a greater
F1-measure and in efficiency by finding results faster.

Fig. 4. F1-measure and Runtime (in seconds) reported upon four different
query sets with 100 query within each set while varying the structural noise,
and the label noise was set to 10%.

0% 10% 20% 40%

0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89 n=3, d=1

n=5, d=2
n=7, d=3
n=10, d=4

Structural Noise

F
1

0% 10% 20% 40%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
n=3, d=1
n=5, d=2
n=7, d=3
n=10, d=4

Structural Noise

R
un

tim
e

(s
ec

)

Fig. 5. F1-measure and Runtime (in seconds) reported upon four different
query sets with 100 query within each set while varying the matching nodes
ratio in the B set.

10% 20% 40% 60% 80% 100%

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n=3, d=1
n=5, d=2
n=7, d=3
n=10, d=4

Φ

F
1

10% 20% 40% 60% 80% 100%

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
n=3, d=1
n=5, d=2
n=7, d=3
n=10, d=4

Φ

R
un

tim
e

(s
ec

)

VI. CONCLUSION

In this paper, we discussed a novel framework for approxi-
mate graph matching based on aggregated search called Label
and Structure Similarity Aggregated Search (LaSaS). The
proposed approach enables an effective graph querying without
any knowledge of the schema of the data graph. The framework
joins ideas from aggregated search and graph matching to
effectively find approximate matches for a query from a set
of heterogeneous graphs. LaSaS is based on three key ideas:
(i) aggregated search strategy in order to enrich the set of
answers (ii) a lightweight graph similarity metric that takes into
account both the nodes label and graph structure similarity to
enable finding approximate matches (iii) a graph weight update
that replaces the maximum common subgraph search task and
reduces the complexity cost. Our method allows approximate
matching by allowing slight label difference and by mapping
edges to paths with a thresholded length. This feature makes
our method unrestrictive and hence enable it to find more
answer results compared to existing strict matching schemes
like graph isomorphism. Empirical evaluation over the real life
DBpedia graph [23] illustrates the effectiveness of our method
over different parameter settings and corporates the stability
of LaSaS. Moreover, the experimental results indicate that
the proposed method outperforms the state-of-the-art related
approaches by finding more precise matches. Future works will
be conducted to build an index on the query and fragments to
further accelerate the process of the selection step. We also
plan to extend the empirical study to compare our method to
additional matching tools on supplementary graph datasets.

ACKNOWLEDGEMENTS.
This work is partially funded by the French National

Agency of Research project: Contextual and Aggregated In-
formation Retrieval (ANR-14-CE23-0006).

TABLE I. COMPARISON RESULTS OF LASAS, SAGA AND BLINKS:
F1-MEASURE IN TERMS OF NODES AND GRAPHS AND RUNTIME FOR

FINDING THE BEST MATCH (TOP-1) OVER 100 QUERIES OF SET 2 (N=5,
D=2). LABEL NOISE AND STRUCTURE NOISE WHERE BOTH SET TO 10%.

LaSaS SAGA BLINKS
F1-measure (nodes) 0.93 0.74 0.62
F1-measure (graphs) 0.9 0.7 0.58

Runtime (sec) 0.15 10.83 1.81

REFERENCES

[1] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph
similarity for anomaly detection (poster),” ser. WWW ’08.

[2] A. Schenker, M. Last, H. Bunke, and A. Kandel, “Classification of web
documents using graph matching,” IJPRAI, 2004.

[3] M. Aery and S. Chakravarthy, “emailsift: Email classification based on
structure and content,” ser. ICDM ’05.

[4] H. Elghazel and M.-S. Hacid, “Aggregated search in graph databases:
preliminary results,” in International Workshop on Graph-Based Rep-
resentations in Pattern Recognition, 2011.

[5] T.-H. Le, H. Elghazel, and M.-S. Hacid, “A relational-based approach
for aggregated search in graph databases,” in DASFAA, 2012.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 26, 2004.

[7] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness:
An efficient algorithm for testing subgraph isomorphism,” VLDB, 2008.

[8] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao,
“Neighborhood based fast graph search in large networks,” in Proc.
of the 2011 ACM SIGMOD.

[9] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao, “gstore: Answering
sparql queries via subgraph matching,” Proc. VLDB Endow., 2011.

[10] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
1976.

[11] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph pattern
matching: From intractable to polynomial time,” VLDB, 2010.

[12] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing topology in
graph pattern matching,” Proc. VLDB Endow., 2011.

[13] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu, “Graph homomorphism
revisited for graph matching,” Proc. VLDB Endow., vol. 3.

[14] Y. Tian, R. C. Mceachin, C. Santos, J. M. Patel et al., “Saga: a subgraph
matching tool for biological graphs,” Bioinformatics, 2007.

[15] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell,
and T. Ideker, “Pathblast: a tool for alignment of protein interaction
networks,” Nucleic Acids Res, 2004.

[16] Z. Liang, M. Xu, M. Teng, and L. Niu, “Netalign: A web-based tool
for comparison of protein interaction networks,” Bioinformatics, 2006.

[17] R. Singh, J. Xu, and B. Berger, “Pairwise global alignment of protein
interaction networks by matching neighborhood topology,” in Proc. of
RECOMB’11.

[18] V. S. Cherukuri and K. S. Candan, “Propagation-vectors for trees (pvt):
Concise yet effective summaries for hierarchical data and trees,” in
Proc. of the LSDS-IR’08 ACM Workshop.

[19] J. W. Kim and K. S. Candan, “Cp/cv: Concept similarity mining without
frequency information from domain describing taxonomies,” in Proc. of
CIKM’15.

[20] J. R. Anderson, “A spreading activation theory of memory,” Journal of
verbal learning and verbal behavior, 1983.

[21] B. Gallagher, “Matching structure and semantics: A survey on graph-
based pattern matching,” AAAI FS, 2006.

[22] A. Kopliku, K. Pinel-Sauvagnat, and M. Boughanem, “Aggregated
search: A new information retrieval paradigm,” ACM Comput. Surv.,
2014.

[23] “http://dbpedia.org.”
[24] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: Ranked keyword

searches on graphs,” in Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’07.

