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Abstract—Cross-company defect prediction (CCDP) is a 

practical way that trains a prediction model by exploiting one or 

multiple projects of a source company and then applies the model 

to target company. Unfortunately, larger irrelevant cross-

company (CC) data usually makes it difficult to build a cross-

company defect prediction model with high performance. To 

address such issues, this paper proposes a data filtering method 

based on Agglomerative Clustering (DFAC) for cross-company 

defect prediction. First, DFAC combines within-company 

instances and cross-company instances and uses Agglomerative 

clustering algorithms to group these instances. Second, DFAC 

selects sub-clusters which consist at least one WC instance, and 

collects the CC instances in the selected sub-clusters into a new 

CC data. Compared with existing data filter methods, the 

experimental results on 15 public PROMISE datasets show that 

DFAC increases PD value, reduces PF value and achieves higher 

G-measure and AUC values.1 

Keywords—software defect prediction;cross-company defect 

prediction;data filter; Agglomerative clustering 

I.  INTRODUCTION  

Software defect prediction is one of the most important 
software quality assurance techniques. Based on the 
investigation of historical metrics [1-2], defect prediction aims 
to detect the defect proneness of new software modules. 
Therefore, defect prediction is often used to help to reasonably 
allocate limited development and maintenance resources [3-5]. 
With the advent of big data era and the development of 
machine learning techniques [6], many machine learning 
algorithms are applied to solve the practical problems in life [7-
9].  

 
1 DOI reference number: 10.18293/SEKE2017-043 

In the same way, many efficient software defect prediction 
methods using statistical methods or machine learning 
techniques have been proposed [10-21], but they are usually 
confined to predicting a given software module being faulty or 
non-faulty by means of some binary classification techniques. 
WPDP works well if sufficient data is available to train a defect 
prediction model.  However, it is difficult for a new project to 
perform WPDP if there is limited historical data. Cross-
company defect prediction (CCDP) is a practical approach to 
solve the problem. It trains a prediction model by exploiting 
one or multiple projects of a source company and then applies 
the model to target company [22]. 

In recent years, most existing CCDP approaches have been 
proposed. Unfortunately, larger irrelevant cross-company (CC) 
data usually makes it difficult to build a cross-company defect 
prediction model with high performance. Therefore, how to 
weaken the impact of irrelevant CC data to improve the 
performance of CCDP is a big challenge. The ability to transfer 
knowledge from a source company to a target company 
depends on how they are related. The stronger the relationship, 
the more usable will be CC data. The performance of CCDP is 
generally poor because of larger irrelevant CC data. Previous 
work [23] found that using raw CC data directly would 
increase false alarm rates due to irrelevant instance in CC data, 
so several data filtering works should be done before building 
the prediction model. For example, Turhan et al. [23] and 
Peters et al. [24] proposed the NN filter and the Perters filter to 
select the CC instances which are mostly similar to WC data as 
the training dataset. 

Considering such challenge, this paper proposes a data 
filtering method based on Agglomerative clustering (DFAC) 
for cross-company defect prediction. First, DFAC combines 
within-company instances and cross-company instances and 



 

 

uses Agglomerative clustering algorithms to group these 
instances. Second, DFAC selects sub-clusters which consist at 
least one WC instance, and collects the CC instances in the 
selected sub-clusters into a new CC data. We evaluate our 
proposed method, DFAC, on 15 publicly available project 
datasets. Experimental results show that DFAC can effectively 
filter out the irrelevant CC instances to improve the overall 
prediction performance. On most of project datasets under 
evaluation, DFAC performs the best G-measure values. 

The remainder of this paper is organized as follows. Section 
II presents the related work. Section III describes our proposed 
DFAC method. Section IV demonstrates the experimental 
results. Section V discusses the potential threats to validity. 
Finally, Section VI addresses the conclusion and points out the 
future work. 

 

II. RELATED WORK 

In this section, we first review the existing defect prediction 
methods. Then, we briefly review the cross-company defect 
prediction or cross-project defect prediction. 

A. Defect prediction 

Many researchers have proposed various models for 
predicting the module being faulty or non-faulty in terms of 
within-project defect prediction (WPDP). 

Support vector machine [10], neural networks [11-13], and 
decision trees [14-15] paved the way for classification-based 
methods in the flied of defect prediction. These methods used 
software metrics to properly predict whether a module is 
defect-prone or not.  However, feature irrelevance and 
imbalanced nature of the defect datasets degraded the 
prediction performance. Therefore, some feature selection 
methods [16-17] and class imbalance learning methods [18] 
have been proposed to cope with feature irrelevance and class 
imbalance problem for software defect prediction.  For 
example, Wang et al. [17] leveraged Deep Belief Network to 
automatically learn semantic features from source code. 

In the process of defect prediction, misclassify different 
software defect classes can be divided into two types, namely, 
“Type I” and “Type II”. “Type I” misclassification cost and 
“Type II” misclassification cost are different.  Therefore, some 
cost-sensitive learning methods [19] have been proposed to 
address this issue by generating a classification model with 
minimum misclassification cost. In addition, several methods 
[20-21] based on ensemble learning have been proposed to 
address the defect prediction problem. However, these methods 
are confined to predicting a given software module being faulty 
or non-faulty. 

B.  Cross-company defect prediction 

In order to solve the problem that the new companies have 
too limited historical data to perform WCDP well, the cross-
project and cross-company defect prediction appeared.  
Zimmermann et al. [25] studied CCDP models on 12 real-
world applications datasets. Their results indicated that CCDP 
is still a serious challenge because of the different distribution 
between the training project data and the target project data. In 

order to narrow the distribution gap, there are three mainstream 
ways.  

The first one is to apply the data filtering method to find the 
best suitable training data (e.g., [23, 24, 26]). For example, 
Turhan et al. [23] proposed a nearest neighbor (NN) filter to 
select cross-company data. Peters et al. [24] introduced the 
Peters filter to select training data via the structure of other 
projects. They compared the filter with two other approaches 
for quality prediction to assess the performance of the Peters 
filter, and found that 1) WCDP are weak for small data sets; 2) 
the Peters filter + CCDP builds better and more useful 
predictors. 

The second mainstream way is to design effective defect 
predictor based on transfer learning techniques (e.g., [22, 27, 
28]). For instance, Ma et al. [27] proposed a novel algorithm 
called Transfer Naive Bayes (TNB) to transfer cross-company 
data information into the weights of the training data and then 
build the predictor based on re-weighted CC data. The results 
indicated that TNB is more accurate in terms of AUC, within 
less runtime than the state of the art methods and can 
effectively achieve the CCDP task. Chen et al. [28] proposed 
double transfer boosting (DTB) model.  Another challenge in 
CCDP is that the set of metrics between the source company 
data and target company data is usually heterogeneous.  The 
heterogeneous CCDP (HCCDP) task is that the source and 
target company data is heterogeneous.  Jing et al. [22] provided 
an effective solution for HCCDP. They proposed a unified 
metric representation (UMR) for the data of source and target 
companies and introduced canonical correlation analysis 
(CCA), an effective transfer learning method, into CCDP to 
make the data distributions of source and target companies 
similar. Results showed that their approach significantly 
outperforms state-of-the-art CCDP methods for HCCDP with 
partially different metrics and for HCCDP with totally different 
metrics, their approach is also effective.  

The third mainstream way is to apply unsupervised 
classifier that does not require any training data to perform 
CCDP (e.g., [29-30]), therefore the distribution gap between 
the training project data and the target project data is no longer 
an issue. For instance, Zhang et.al [30] proposed to apply a 
connectivity-based unsupervised classifier that is based on 
Agglomerative clustering to perform CPDP. 

 

III. METHODOLOGY 

A. DFAC 

 Previous work [23] found that using raw CC data directly 
would increase false alarm rates due to irrelevant instances in 
CC data, so several data filtering works should be done before 
building the prediction model. The main goal of data filter is to 
select the most valuable training data for the CCDP model by 
filtering out irrelevant instances in CC data. In this paper, we 
propose a Data Filtering method based on Agglomerative 
Clustering algorithm (DFAC).  

 DFAC consists of two stages. In the first stage, DFAC 
combines within-company instances and cross-company 
instances and uses Agglomerative clustering algorithms to 



 

 

group these instances. The main goal of agglomerative 
clustering is to partition WC instances and CC instances into k 
clusters such that instances in the same cluster are similar and 
instances in different clusters are dissimilar to each other. 

 Agglomerative clustering is an iterative process, which 
merges current clusters continuously. It is possible that a 
current cluster only contains one instance, e.g., each instance is 
treated as one cluster at the beginning of the iteration. In 
agglomerative clustering, instances are merged into clusters 
according to the distances between current clusters. We employ 
the average linkage method to define the distance of two 
current clusters. The average linkage between two clusters is 
defined as the average of the distance between any instance 
pair between two clusters. Suppose that 𝑈𝑎  and 𝑈𝑏  are two 
current clusters during the clustering process. The distance of 
the two clusters 𝐷𝑎,𝑏  can be calculated by the following 

formula: 

 𝐷𝑎,𝑏 =
1

𝑚𝑎𝑚𝑏
∑ 𝑑𝑖,𝑗𝑥𝑖∈𝑈𝑎,𝑥𝑗∈𝑈𝑏   (1) 

where 𝑚𝑎and 𝑚𝑏  are the number of instances inside clusters 
𝑈𝑎  and 𝑈𝑏  and 𝑑𝑖,𝑗  is the distance between two instances 𝑥𝑖 
and 𝑥𝑗. We define the distance 𝑑𝑖,𝑗 of two instances 𝑥𝑖 and 𝑥𝑗 
with Euclidean distance. 

DFAC assumes that CC instances which are in the same 
cluster as WC instances are the most valuable instances in CC 
data. Therefore, in the second stage, DFAC selects sub-clusters 
which consist at least one WC instance, and collects the CC 
instances in the selected sub-clusters into a new CC data.    

B. Example 

Fig.1 shows the resulting clusters of a set of instances using 
the Agglomerative clustering algorithm, where “ ” represents 
the CC instance and “ ”represents the WC instance.  
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Fig. 1. Resulting clusters of a set of instances using Agglomerative clustering 
algorithm 

 These instances are partitioned into three clusters by using 

the Agglomerative clustering algorithm, namely, C1={x1, x4, x5, 

x6, x17, x21}, C2={x2, x3, x9, x15, x22}, and C3={x7, x8, x12, x13, x14, 

x16, x18, x20}. Take the cluster C1 for example, since the CC 

instances x1, x4, x5 and x6 are in the same cluster as the WC 

instance x17 and x21, these CC instances are selected to form 

the final CC training data.  Take the cluster C2 for example, 

since the cluster do not consist any WC instance, the CC 

instances in this cluster are discarded. The CC instances in the 

cluster C3 are selected in the same manner. Therefore, the final 

CC training instances consist of x1, x4, x5, x6, x7, x8, x12, x13 and 

x14. 

 

IV. EXPERIMENTS 

In this section, we evaluate our DFAC method to perform 
CCDP empirically. We first introduce the experiment dataset, 
the performance measures and the experimental procedure. 

A. Data set 

In this experiment, we employ 15 available and commonly 
used datasets which can be obtained from PROMISE [31]. The 
15 datasets have the same 20 attributes, so we can apply all 
attribute information directly. Table I tabulates the details 
about the datasets, and Table II shows a more detailed 
description of the 20 independent code attributes. 

TABLE I.  DETAILS OF EXPERIMENT DATASET 

Project Examples %Defective Description 

ant 125 16 Open-source 

arc 234 11.5 Academic 

camel 339 3.8 Open-source 

elearn 64 7.8 Academic 

jedit 272 33.1 Open-source 

log4j 135 25.2 Open-source 

lucene 195 46.7 Open-source 

poi 237 59.5 Open-source 

prop 660 10 Proprietary 

redaktor 176 15.3 Academic 

synapse 157 10.2 Open-source 

system 65 13.8 Open-source 

tomcat 858 9 Open-source 

xalan 723 15.2 Open-source 

xerces 162 47.5 Open-source 

TABLE II.  CODE ATTRIBUTES OF THE DATASETS 

No. Attribute Description 

1 wmc Weighted methods per class 

2 dit Depth of inheritance tree 

3 noc Number of children 

4 cbo Coupling between object classes 

5 rfc Response for a class 

6 lcom Lack of cohesion in methods 

7 ca Afferent couplings 

8 ce Efferent couplings 

9 npm Number of public methods 

10 lcom3 Lack of cohesion in methods 

11 loc Lines of code 

12 dam Data access metric 

13 moa Measure of aggregation 

14 mfa Measure of functional abstraction 

15 cam Cohesion among methods of class 

16 ic Inheritance coupling 

17 cbm Coupling between methods 

18 amc Average method complexity 

19 max_cc 
Maximum McCabe’s cyclomatic 

complexity 

20 avg_cc Average McCabe’s cyclomatic complexity 



 

 

B. Performance measures 

In the experiment, we employ three commonly used 
performance measures including pd, pf and g-measure. They 
are defined in Table 2 and summarized as follows. 

TABLE III.  PERFORMANCE MEASURES 

 Actual 

yes no 

Predicted yes TP FP 

no FN TN 

pd 𝑻𝑷

𝑻𝑷+ 𝑭𝑵
 

pf 𝑭𝑷

𝑭𝑷+ 𝑻𝑵
 

G-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)
 

 

● Probability of detection or pd is the measure of defective 
modules that are correctly predicted within the defective class. 
The higher the pd, the fewer the false negative results. 

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the 
results. 

●  G-measure is a trade-off measure that balances the 
performance between pd and pf. A good prediction model 
should have high pd and low pf, and thus leading to a high g-
measure.  

C. Experimental Procedure 

In order to confirm whether DFAC can perform better than 
other data filtering methods, we compare DFAC with four 
state-of-the-art CCDP approaches. More details are provided 
below: 

 ● NN filter [23] is based on the widely used classification 
method K-Nearest Neighbors (KNN) algorithm to filter 
irrelevant CC data. It can find out the most similar K×N 
instances from CC data while N is the number of instances in 
WC data and K is the parameter of the KNN method. In our 
experiment, we choose K as 10. 

● DBSCAN filter [26] is based on the DBSCAN algorithm. 
DBSCAN defines the high density with two parameters: the 
distance which determines whether two records are close to 
and the number of records which determines whether a core 
sample is in a dense area. In our experiment, we choose the two 
parameters as 10 and 10, respectively. 

 In every experiment, one dataset is selected as WC data and 
the rest are regarded as CC data to conduct the experiment. The 
CC data is considered as basic training data which will be 
adjusted in every experiment. All data filtering methods are 
done on CC data. Then processed CC data are used to build the 
CCDP model. Finally, the resulting model is evaluated on the 
WC data. The procedure will be repeated 30 times in every 
experiment to avoid sample bias. Then, the mean values of 
performance are calculated. In this experiment, we choose 
Naive Bayes (NB) [32] as the CCDP model due to its 
effectiveness in defects prediction. 

D. Experiment results 

The comparison results of 15 projects with NB classifier on 
pd, pf and G-measure are summarized in Table IV. Table IV 
shows that DFAC performs better average pd and pf values 
than all the other data filtering methods. It shows that the NN 
filter often achieves good pd but the worst pf so that it usually 
ends up with low g-measure value. The performance of 
DBSCAN filter seems sometimes have lower pf value than the 
NN filter but it has lower pd value.  It’s very clear that DFAC 
has lower pf value and higher pd value than the other two data 
filtering methods. In the aspect of pd value, the DFAC 
approach increases the pd value to an extent on most data sets. 
The pd values of 8 projects are better than others. On most tests, 
DFAC achieves higher G-measure than the other data filtering 
methods. In total, DFAC has acceptable pf value and can 
obtain better pd values in most experiments we conducted, and 
it almost always achieve the higher G-measure value than other 
data filtering methods. In other words, the DFAC approach 
outperforms other methods, therefore it can be an effective data 
filtering methods. 

 Fig. 2 shows the box-plots of G-measure values, for NN 
filter, DBSCAN filter and DFAC, with NB classifier on 15 
projects. It seems that NN filter approach always has low G-
measure comparing to DBSACN filter and DFAC. Although 
DFAC has the same minimum with DBSCAN filter, the 
median values of both metrics of DFAC are higher than those 
of NN filter and DBSCAN filter. Meanwhile, the maximum by 
DFAC is higher than that by DBSCAN filter, but a litter lower 
than that by NN filter.  

 

Fig. 2. Box-plots for G-measure on 15 projects. 

 In total, DFAC has acceptable pd value and can obtain 
better pf values in most experiments we conducted, and it 
almost always achieve the higher G-measure than other data 
filtering methods. In other words, DFAC outperforms other 
data filtering methods.  

 

 



 

 

 

V. THREATS TO VALIDITY 

In this section, we discuss several validity threats that may 
have an impact on the results of our studies. 

External validity. Threats to external validity occur when 
the results of our experiments cannot be generalized. As a 
preliminary result, we performed our experiments on the 15 
datasets to explore the generality of our method. Although 
these datasets have been widely used in many software defect 
prediction studies, we still cannot claim that our method can be 
generalized to other datasets. Nevertheless, this work provides 
a detail experimental description, including parameter settings 
(default parameter settings specified by sklearn), thus other 
researchers can easily replicate our method on new datasets. 

Internal validity.  In our study, we repeat 30 times to 
avoid sample bias, and calculate average results to verify the 
performance of all test methods. We compared our method 
with NN filter and DBSCAN filter. To avoid the potential 
faults during the implementation process of the experiment, we 
implement these models based on the python machine learning 
library sklearn. 

Construct validity. Threats to construct validity focus on 
the bias of the measures used to evaluate the performance of 
CCDP. In our experiments, we mainly use pd, pf, G-measure to 
measure the effectiveness of the four approaches. Nonetheless, 
other evaluation measures such as AUC measure can also be 
considered. 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a data filtering method based on 
Agglomerative clustering for CCDP. The method consists of 
two stages. In the first stage, DFAC combines WC instances 
and CC instances and uses Agglomerative clustering 
algorithms to group these instance. In the second stage, DFAC 
selects sub-clusters which consist at least one WC instance, and 
collects the CC instances in the selected sub-clusters into a new 
CC data. We conduct experiments on the 15 datasets to 

evaluate the performance of the proposed DFAC method. The 
experimental results indicate that the proposed method can 
effectively filter out and weaken the impact of irrelevant data 
to improve the performance of CCDP. The proposed DFAC 
method is an effective data filtering method for CCDP. 

In the future, we would like to employ more project 
datasets to validate the generalization of our proposed method. 
In addition, we plan to apply our method to a real-life 
application [33-34]. 
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