
Improving Bug Triage with Relevant Search

Xinyu Peng, Pingyi Zhou, Jin Liu*, Xu Chen
State Key Lab of Software Engineering
Computer School, Wuhan University

Wuhan, China
*Corresponding author

{ pengxinyu, zhou_pinyi, jinliu, xuchen}@whu.edu.cn

Abstract—Bug triage is a process where bugs are assigned to
developers. In large open source projects such as Mozilla and
Eclipse, bug triage is time-consuming because numerous bugs are
submitted everyday. To improve bug triage, many studies have
proposed automatic approaches to recommend proper developers
for resolving bugs. These approaches are based on machine
learning algorithms, which treat bug triage like text classification.
Although they are effective, the accuracy of them can be further
improved. Our goal is to propose a method not only has good
performance but also is simple. We propose a method based on
relevant search technique to recommend developers for the given
bugs. First, we construct an index for bugs to make them
searchable. Then, for a given bug to be assigned, we utilize the
index to search for the bugs related to it. Finally, we analyze these
related bugs and recommend developers based on them. We
conduct experiments on bugs of Mozilla and Eclipse to evaluate
our method. The results indicate that our method has a good
performance and outperforms machine learning algorithms like
Naïve Bayes and SVM.

Keywords—bug triage; bug report assignment; issue tracking;
problem tracking

I. INTRODUCTION

In software maintenance, bug resolution plays an important
role. To effectively manage bugs and coordinate efforts, large
open source projects often incorporate bug tracking systems.
Bugzilla is a typical example of bug tracking systems, which
proposed by Mozilla and adopted by many famous open source
projects like Eclipse. Bugs in bug tracking systems are
represented by bug reports, which are documents with many
fields to record information about the corresponding bugs. The
developers in projects depend on the bug reports to manage bugs
and exchange opinions.

Figure 1 shows an Eclipse bug report. It has freeform text
such as summary and description, which demonstrate what the
bug is about and the steps to reproduce the bug. It has some
category fields such as product and component. This bug
belongs to product JDT and component UI. If a bug has been
assigned to a developer like this one, the field named assigned
to would refer to the developer. In this case, the developer is
Claude Knaus. Besides, status field indicates the stage of the bug
in the life-cycle of bug reports. When a bug report is submitted,
its status is UNCONFIRMED. The status changes to NEW after
a developer verify it. The same developer is often responsible
for finding an appropriate developer to fix the bug. After that,

the status changes to ASSIGNED. If the bug has been fixed and
been verified, its status changes to RESOLVED and VERIFIED
or CLOSED respectively. The resolution of a bug in status field
could be any among FIXED, DUPLICATE, WORKFORME,
WONTFIX, INVALID. For example, the status in Figure 1 is
VERIFIED FIXED.

The process where a developer determine which developer
is most appropriate to a bug and assigned it to the developer is
called bug triage. If a bug is assigned to an improper developer,
it leads to the bug re-assignment. The probability of a bug been
fixed decreases as the number of re-assignment increases [3]. As
the open source projects become more complicated, the number
of bug reports submitted everyday constantly increase. It is
inefficient that all bug reports are manually assigned. The
software development is delayed by the inefficacy. Besides, it
gives users an impression that developers are unresponsive and
disregard the users’ bug reports. This terrible impression will
destroy the project’s community [1]. To improve the efficiency
of bug triage, several studies have proposed automatic methods
to recommend appropriate developers for any given bug [1] [2].
These methods are based on machine learning algorithms. They
treat bug triage as text classification. Although the methods are
effective, the accuracy of them can be further improved.

In this paper, we propose a method utilizing relevant search
technique. Our method essentially builds a search application for
bug reports. With this search application, we can find relevant
bug reports for a given bug then analyze them to get the
corresponding developers. To make the bug reports searchable,
we first construct an index for them. Given a new bug, we build

DOI reference number: 10.18293/SEKE2017-041

Product: JDT Component: UI

Version: 2.0 Platform: PC Windows 2000

Severity: normal Priority: P3

Status: VERIFIED FIXED

Assigned to: Claude Knaus

Summary: Template - pressing new presents an error

Description: go to Preferences->Java->Templates - press
the new button - you get an error saying that the template
name must not be null. This is annoying since I didn't have
the change to specify one.

Figure 1. Bug Report #4353 of Eclipse

a query based on its summary and description and narrow the
search scope with its product and component. Based on the
search results, we use their relevance scores to rank developers
corresponded to the search results of bug reports. The developers
in top rank are recommended for the given bug. Lucene is used
to implement the search application.

This paper makes two contributions:

1.It proposes a new relevant search based method to
recommend developers for bug triage.

2.It conducts experiments to evaluate the approach on two
datasets: Eclipse and Mozilla.

The remainder of the paper is organized as follows. Section
2 demonstrates our approach. Section 3 presents the experiment
results. Section 4 discusses our method. Section 5 describes
related work. Section 6 concludes this paper.

II. APPROACH

Figure 2 shows our overall framework of bug triage. The
framework consists of five steps. It first extracts necessary
information such as summary, description, product and
component from the original bug reports in step 1. Then it
indexes the extracted information in step 2. When we need to
recommend developers for a new bug report, it first executes the
same information extraction and indexing steps like step 1 and
step 2 but just for the given report in step 3 and step 4. Then it
searches for the similar bug reports in step 5. Last it uses the
searching results to rank the developers and generates a list of
them as the recommendation in step 6.

A. Data Preprocessing

The original bug reports have much information that our
method does not need. We extracted the necessary information
for our method: summary, description, product, component,
fixer. Because summary and description are unstructured text, to
eliminate data noise, we remove stop words and pure numbers,
which do not contain useful information representing the bug
reports, then stem them by using Porter stemmer. We join the
summary and the description together as content after all.

B. Indexing

To make the searching process possible, we first indexing
bug reports. In the process of indexing bug reports, they are
treated as documents consisting of fields. Specifically, a bug
report is a document having fields like content, product,
component. Moreover, the original texts of bug reports are
tokenized to terms and transformed to a data structure called
inverted index. An inverted index is a sorted list of terms. Each
term is associated with pointers linked to documents containing
the term. Because the inverted index is sorted and have the
pointers for each term, it is efficient for locating a term in the
inverted index and finding which documents have the term. It
likes the index of books. If we are interested in a subject of a
book, we can directly look for the terms about the subject in the
index, and go to the related pages without scan through the entire
book.

C. Searching

Given a bug to be assigned, we first index it, then construct
a query based on its content. Besides, we use its component and
product to narrow the searching scope for reducing the noise. At
first, we only consider bugs have same component and product
as the current bug. If the bug is the first one in its component and
product, there are no search results. In this situation, we consider
bugs only have the same product. If the bug even is the first one
in its product, there are still no search results. Finally, to ensure
results exist, we search for related bugs no matter what their
component and product are.

The searching results are returned with scores, which
represent the relevance between the current bug and others. For
consistent with the relevant search context, we use query � and
document �� denote the current bug and one bug of the results
respectively. The formula below is used to compute these scores.

�����(�, ��) = �����(�, ��)×���������(�)×

� ���(� �� ��)×���(�)�×�. ��������×����(�, ��)�

� �� �

(1)

In the Equation 1, ��(� �� ��) stands for the term’s
frequency, defined as the number of times term t appears in the
current document �� . ���(�) stands for inverse document
frequency. This value correlates to the inverse of �������(the
number of documents in which the term t appears).

�����(�, ��) is a score factor based on how many of the
query terms are found in the specified document.

���������(�) is computed as Equation 2, which is a
normalizing factor used to make scores between queries
comparable. However, this factor does not affect document
ranking, since all ranked documents returned by one query are
multiplied by the same factor.

���������(�) =
1

���. ���������× ∑ (���(�)×�. ��������)�
� �� � �

(2)

Bug reports

ID, Component,
Product, summary,

description

step 1

Index

step 2

New Bug Report

ID, Component,
Product, summary,

description

step 3

step 4

Relevant Bug
Reports

step 5

Developers
Recommendation

step 6

Figure 2. Framework of Our Method

In the Equation 1 and 2, �. �������� is the weight of term �
which is specified in the query. It can be changed to make some
term more important than others. However, we treat all terms
equal and did not change the weight. �. �������� is the weight
of query �, which is used to control the importance of queries
and we did not change it too.

����(�, ��) = �����ℎ����× � �. �����

����� � �� � ����� �� �

(3)

����(�, ��) is computed as Equation 3. �. ����� is the
weight of the field �, which play the same role as the two boost
before. We did not change it neither. �����ℎ���� is a factor
in accordance with the number of tokens in a field, shorter fields
contribute more to the score.

D. Ranking

After searching, a bunch of related bugs ranked by the scores
is returned. Assuming the �����(�, ��) and �������� represent
the score of �th bug and the max score of all results respectively,
we normalize the scores according to the Equation 4, which
results in normalized scores within the range of [0, 1].

���������(�, ��) = �����(�, ��) ÷ �������� (4)

Because each bug in the results corresponds to a developer
who fixed it. After analyzing searching results, we can get a set
of developers. Assuming � denotes the set, ���� denotes the
score of the �th developer in � and �� denotes the set of bugs in
searching results which are assigned to the �th developer, we
computed the ���� as in the Equation 5.

���� = � ���������(�, ��)

�� �� ��

(5)

After computing the scores of the developers in �, we rank
them by their scores. The top developers in the rank are
recommended for the bug to be assigned.

III. EXPERIMENTS AND RESULTS

A. Dataset

We evaluated our methods on two datasets from two open
source software: Eclipse and Mozilla. All data were collected
from the websites of their bug tracking systems. For Eclipse, we
collected bug reports from 2001-10-11 to 2007-12-14. We drop
bug reports before the bug whose id is 4354 because their
descriptions are discussions among developers, which are not
actual descriptions added when the bug reports are created.
Besides, these bug reports were submitted in a very short time,
which indicates they were migrated from other bug tracking
system. For Mozilla, we collected bug reports from 1998-04-07
to 2008-08-11. We retained bug reports with status CLOSED
and FIXED as prior studies did [2], [3], [6], [9].

We extracted bug fixers by checking the “assigned to” fields
in the bug reports following previous studies. However, the
“assigned to” fields in many bug reports are set to generic names
which do not correspond to real people [19]. In Eclipse, bug
reports are assigned to generic names like “JDT-UI-Inbox”,
“JDT-Text-Inbox”, “JDT-Core-Inbox”. In Mozilla, bug reports
are assigned to “nobody”. Because these generic names do not

represent real developers, we do not recommend them and
exclude bug reports whose fixers are among them from the data.
Then to reduce noise, bug reports whose fixers appear less than
ten times are excluded [19].

After above steps, 91251 bug reports, 650 fixers, 72 products
and 450 components are left in Eclipse dataset, while 100964
bug reports, 777 fixers, 59 products and 492 components are left
in Mozilla dataset.

To make our experiments are more like the situation in
practice, we adopt the longitudinal data setup in [9] [19]. We
perform a 10-round incremental analysis on the two project
datasets. The bug reports extracted from the two projects are first
sorted in chronological order of creation time and then divided
into 11 equally-size folds. We form 10 rounds evaluation with
the 11 folds. First, in round 0, we create an index using bug
reports in fold 0, and we update the index and evaluate our
method using the first bug, and then update the index and
evaluate our method using the second bug report, and so on for
all bug reports in fold 1. Then, in round 1, we proceed in a similar
way like fold 1 to test using bug reports in fold 2, and so on.
After round 10, we compute the average evaluation metric
among all rounds.

 To make our results comparable, we choose a metric called
Recall@K used in many prior studies [5] [19]. Recall@K is the
proportion of bugs whose associated developers is ranked in the
top k (k = 1, 3, 5) of the returned results. Given a bug report, if
the top k results contain the developer who fixed the bug, we
consider the developer is located. So Recall@K of all test bugs
equal to the proportion of how many recommendations contain
the actual fixer.

B. Research Questions

In this paper, we are interested in the following research
questions:

RQ1: How is our method effective compared with other
baselines?

 To answer the question, we compare our method with the
existing machine learning based developer recommendation
methods, such as those based on Naïve Bayes and SVM [1], [2],
[12]. We use the scikit-learn package to implementation Naïve
Bayes and SVM respectively.

RQ2: How does the performance of our method change
with the recommendation list increase?

 To answer this question, we evaluated our method varying
different recommendation list size from 1 to 10. We can see the
trends after drawing the evaluated results.

 Meanwhile, we used coverage rate to measure the best
score our method can reach. The coverage rate is computed like
Recall@K, but it considers all developers instead of Top K
developers. So it gives the upper bound for our method. Because
only if there exist the actual fixers in the search results, our
method has the chance to pick them out, which means Recall@K
is always smaller than or equal to the coverage rate.

RQ3: How does product and component information
influence the effectiveness of our method?

 To figure out the influence of the product and component
combinations over our method, we compare the results between
our method with and without narrowing the search scope using
the product and component information.

C. Results

RQ1: How is our method effective compared with other
baselines?

 Table I compares the performance of our method with
baselines in terms of Recall@1, Recall@3, and Recall@5. For
Eclipse, our method achieves average Recall@1 value 0.438,
which means that for 43.8% bugs, it successfully recommends
their associated developers as top 1. The Recall@5 value is
0.841, which means that for 73.85% bugs, their developers can

be found in the top 5 return results. For Mozilla, our method
achieves Recall@1 and Recall@5 values 0.333 and 0.634,
respectively. It obtains better results than the conventional
machine learning based recommendation methods. Comparing
with Naïve Bayes, the results of our method are 116% ~ 194%
better. Comparing with SVM, the results of our method are 22%
~ 49% better.

RQ2: How does the performance of our method change
with the recommendation list increase?

 Figures 3, 4 present the values from Recall@1 to
Recall@10 of our method with coverage rate for Eclipse and
Mozilla respectively. We notice that Recall@K values increase
along with K values increasing and tend to be stable finally. The
Recall@K values are close to the coverage rate from Recall@8,
which means the actual fixers are in the Top 8 list already and
increasing size of recommendation list is almost useless.

RQ3: How does product and component information
influence the effectiveness of our method?

TABLE I. EVALUATION RESULTS OF TWO PROJECTS

Project Rank SVM Naïve Bayes Our Method

Eclipse
Top1 0.307 0.186 0.438
Top3 0.518 0.258 0.725
Top5 0.613 0.286 0.841

Mozilla
Top1 0.223 0.147 0.333
Top3 0.426 0.227 0.551
Top5 0.518 0.293 0.634

Figure 3. Recall@K and Coverage Rate of Mozilla

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

R
ec

al
l@

K

K

Recall@K Coverage Rate

Figure 4. Recall@K and Coverage Rate of Eclipse

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

R
ec

al
l@

K

K

Recall@K Coverage Rate

Figure 5. Recall@K with and without Feature of Mozilla

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

R
ec

al
l@

K

K

with feature without feature

Figure 6. Recall@K with and without Feature of Eclipse

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10

R
ec

al
l@

K

K

with feature without feature

TABLE II. COVERAGE RATE OF TWO PROJECTS

Project metric without feature with feature
Eclipse Coverage rate 0.907 0.953
Mozilla Coverage rate 0.821 0.795

 Table Ⅱ presents the coverage rate of our method with and
without product and component information for Eclipse and
Mozilla. Note that the coverage rates are similar for both projects,
which indicates our method has similar chance to pick out the
actual fixer despite with or without narrowing the search scope.

 Figures 5, 6 presents the values of Recall@1 to Recall@10
of our method with and without features. By narrowing the
search scope with product and component information, the
Recall@K values increase for both Eclipse and Mozilla. The
relative improvements range from 41% to 80% for Mozilla and
from 38% to 84% for Eclipse.

IV. DISCUSSION

A. Advantages

In essence, our method is based on relevant search technique,
while the machine learning based methods treat bug triage like a
text classification task.

Machine learning based methods regard each developer as a
class and each bug report as a document. If the number of classes
is small, these methods are effective enough. However, when the
number of classes increases to hundreds or even thousands, it is
hard to design an accurate and efficient classifier [5].

Our method adopts relevant search technique to construct a
search engine for bug reports. It utilizes the search results with
the relevance scores to get a ranked recommendation list.
Besides, to reduce the noise, it uses the component and product
information of bug reports to narrow the search scope, which
significantly improves the performance. Because our method
only need add new bug reports to index for updating, and
searching in the index is fast. It is easily extensible and able to
deal with large-scale data using our method.

B. Limitations

Our method essentially has some limitations. In some cases,
it will fail to recommend the actual developer due to the practice
in bug triage.

First, if a bug is fixed by a new developer within its search
scope, our method cannot recommend the right developer.
Because the fixer does not correspond to any bug in the search
scope, our method only recommends developers who have fixed
at least one bug before. Besides, some developers may have
fixed many bugs relevant to a bug. However, at the time of bug
triage, they are not free for some reasons, so the bug is assigned
to another less relevant developer [5].

C. Threats to Validity

Internal validity is an estimate of the degree to which a causal
conclusion based on a study can be made. To improve the
internal validity, we preprocess our datasets following previous
studies [9] [19]. We only collected bug reports with status
CLOSED and FIXED to ensure the bug reports are related to
bugs and have been fixed. To determine the fixer of a bug, we
examine the “assigned to” field of the bug report. However,
other studies chose another way to determine fixers. They
proposed a heuristic approach to extracted the fixers [1] [2]. We
do not adopt their heuristics because recent studies do not follow

them. Besides, we exclude the bug reports whose “assigned to”
fields are generic names or appear less than 10 times to reduce
the noise.

 External validity is an estimate of the degree to which our
experiment results can be generalized. Although we have
analyzed 91251 and 100964 bug reports from Eclipse and
Mozilla, our method may not appropriate to other projects. To
improve external validity, we plan to experiment our method on
more new bug reports from more projects in the future.

 Construct validity is an estimate of the degree to which
metrics can be trusted. To determine the effectiveness of our
method, we need check the actual fixer is whether in the
recommendation list or not. Recall@K is a proper metric for this
purpose. It also has been adopted by many prior bug triage
studies [5] [19].

V. RELATED WORK

According to the different techniques used to automatic bug
triage, Tao Zhang et al. [4] classify the prior studies into five
categories: machine learning-based approach, expertise model-
based approach, tossing graph-based approach, social network-
based approach and topic model-based approach.

 As a pioneering study, Cubranic et al. [1] regard bug triage
as a text categorization problem. In their work, each assignee
was considered to be a single class, and each bug report was
assigned to only one class. Anvik et al. [2][12] experimented
several different machine-learning algorithms including Naïve
Bayes, SVM, C4.5 to recommend a list of appropriate
developers for fixing a new bug. The experiment results show
SVM performed better than others on their datasets. Ahsan et al.
[15] use feature selection and Latent Sematic Indexing [16] to
reduce the dimensionality of the term-to-document matrix. Their
results showed the bug triage system combined LSI and SVM
has the best performance. Xuan et al. [13] proposed a semi-
supervised text classification method, which utilizing
expectation-maximization based on both labeled and unlabeled
data to enhance Naïve Bayes classifier. To remove the noisy data,
Zou et al. [18] adopted feature selection. Their results showed
that feature selection could improve the performance using
Naïve Bayes by up to 5%. Xia et al. [14] proposed a method
using a composite model called DevRec, which combined bug
reports-based and developers-based analysis.

 Jeong et al. [3] proposed a tossing graph model to capture
bug tossing history and use this model to improve bug triaging
prediction accuracy. Their experiments demonstrated the tossing
graph model could improve the accuracy of automatic bug triage
using machine-learning algorithms such as Naïve Bayes and
Bayesian Network [17] only. Bhattacharya et al. [6][7] improved
the accuracy of bug triage by utilizing a multi-feature tossing
graph and increment learning.

Matter et al.[8] modeled developers’ expertise using the
vocabularies found in their source code files and compare them
to the terms appearing in corresponding bug reports. Tamrawi et
al. [9] proposed Bugzie, an automatic bug triaging tool based on
fuzzy set and cache-based modeling of the bug-fixing expertise
of developers. Xuan et al. [10] achieved developer prioritization
via social network analysis to improve the performance of

automatic bug triage using SVM or Naïve Bayes only. Hao Hu
et al. [5] utilized the historical bug-fix information to constructed
a network to captures the knowledge of “who fixed what, where”.
They use the network to recommend suitable developers.

 Naguib et al. [11] adopted LDA to cluster the bug reports
into topics. Then they created the activity profile for each
developer of the bug tracking repository by mining history logs
and bug report topic models. An activity profile consists of two
parts, including developer’s role and developer’s topic
associations. By utilizing activity profile and a new bug’s topic
model., they proposed a ranking algorithm to find the most
appropriate developer to fix the given bug. Xin Xia et al. [19]
proposed a specialized topic modeling named MTM which
extends LDA by considering product and component of
information of bug reports. They used MTM to get the topic
distribution of a new bug report to assign an appropriate fixer
based on the affinity of the fixer to the topics.

Regarding relevant search, Zhou et al. [20] utilized indexing
and searching to recommend tags for software information sites.

VI. CONCLUSION

Bug triage is a time-consuming process if all bugs are
manually assigned to developers in large open source projects.
In this paper, we proposed a method based on relevant search
technique. To improve efficiency and effectiveness of bug triage,
our method recommends developers for bugs to be assigned.
Besides, we utilized component and product information of bug
reports to improve the performance of our method further. We
have evaluated our method on bug reports of Eclipse and Mozilla.
For Eclipse, our method achieved 43.8% and 84.1% accuracies
when recommending 1 and 5 developers. For Mozilla, the
accuracies are 33.3% and 63.4% for recommending 1 and 5
developers. All of the results of our method outperforms the
SVM and Naïve Bayes method.

With the advent of big data era [21][22], in future work, we
plan to incorporate bug tossing graphs into our method to
introduce more relevant developers in the top of
recommendation. Also, we plan to utilize more features of bug
reports to improve the performance further.

ACKNOWLEDGEMENT

This work is partly supported by National Natural Science
Foundation of China (NSFC) (grant No. 61572374,
U163620068, U1135005), the Academic Team Building Plan
from Wuhan University and National Science Foundation (NSF)
(grant No. DGE-1522883).

REFERENCES

[1] Murphy G, Cubranic D. Automatic bug triage using text categorization.
InProceedings of the Sixteenth International Conference on Software
Engineering & Knowledge Engineering 2004.

[2] Anvik J, Hiew L, Murphy GC. Who should fix this bug?. InProceedings
of the 28th international conference on Software engineering 2006 May
28 (pp. 361-370). ACM.

[3] Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing
graphs. InProceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on

The foundations of software engineering 2009 Aug 24 (pp. 111-120).
ACM.

[4] Zhang T, Jiang H, Luo X, Chan AT. A Literature Review of Research in
Bug Resolution: Tasks, Challenges and Future Directions. The Computer
Journal. 2016 May 1;59(5):741-73.

[5] Hu H, Zhang H, Xuan J, Sun W. Effective bug triage based on historical
bug-fix information. InSoftware Reliability Engineering (ISSRE), 2014
IEEE 25th International Symposium on 2014 Nov 3 (pp. 122-132). IEEE.

[6] Bhattacharya P, Neamtiu I. Fine-grained incremental learning and multi-
feature tossing graphs to improve bug triaging. InSoftware Maintenance
(ICSM), 2010 IEEE International Conference on 2010 Sep 12 (pp. 1-10).
IEEE.

[7] Bhattacharya P, Neamtiu I, Shelton CR. Automated, highly-accurate, bug
assignment using machine learning and tossing graphs. Journal of
Systems and Software. 2012 Oct 31;85(10):2275-92.

[8] Matter D, Kuhn A, Nierstrasz O. Assigning bug reports using a
vocabulary-based expertise model of developers. InMining Software
Repositories, 2009. MSR'09. 6th IEEE International Working Conference
on 2009 May 16 (pp. 131-140). IEEE.

[9] Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN. Fuzzy set and cache-
based approach for bug triaging. InProceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering 2011 Sep 5 (pp. 365-375). ACM.

[10] Xuan J, Jiang H, Ren Z, Zou W. Developer prioritization in bug
repositories. InSoftware Engineering (ICSE), 2012 34th International
Conference on 2012 Jun 2 (pp. 25-35). IEEE.

[11] Naguib H, Narayan N, Brügge B, Helal D. Bug report assignee
recommendation using activity profiles. InMining Software Repositories
(MSR), 2013 10th IEEE Working Conference on 2013 May 18 (pp. 22-
30). IEEE.

[12] Anvik J, Murphy GC. Reducing the effort of bug report triage:
Recommenders for development-oriented decisions. ACM Transactions
on Software Engineering and Methodology (TOSEM). 2011 Aug
1;20(3):10.

[13] Xuan J, Jiang H, Ren Z, Yan J, Luo Z. Automatic Bug Triage using Semi-
Supervised Text Classification. InSEKE 2010 Jul (pp. 209-214).

[14] Xia X, Lo D, Wang X, Zhou B. Accurate developer recommendation for
bug resolution. InReverse engineering (WCRE), 2013 20th working
conference on 2013 Oct 14 (pp. 72-81). IEEE.

[15] Ahsan SN, Ferzund J, Wotawa F. Automatic software bug triage system
(bts) based on latent semantic indexing and support vector machine.
InSoftware Engineering Advances, 2009. ICSEA'09. Fourth International
Conference on 2009 Sep 20 (pp. 216-221). IEEE.

[16] Hofmann T. Probabilistic latent semantic indexing. InProceedings of the
22nd annual international ACM SIGIR conference on Research and
development in information retrieval 1999 Aug 1 (pp. 50-57). ACM.

[17] Friedman N, Nachman I, Peér D. Learning bayesian network structure
from massive datasets: the «sparse candidate «algorithm. InProceedings
of the Fifteenth conference on Uncertainty in artificial intelligence 1999
Jul 30 (pp. 206-215). Morgan Kaufmann Publishers Inc..

[18] Zou W, Hu Y, Xuan J, Jiang H. Towards training set reduction for bug
triage. InComputer Software and Applications Conference (COMPSAC),
2011 IEEE 35th Annual 2011 Jul 18 (pp. 576-581). IEEE.

[19] Xin Xia, David Lo, Ying Ding, Jafar M. Al-Kofahi, Tien N. Nguyen, and
Xinyu Wang. Improving Automated Bug Triaging with Specialized Topic
Model. IEEE Transactions on Software Engineering (TSE), IEEE CS,
2016. in press

[20] Zhou P, Liu J, Yang Z, Zhou G. Scalable Tag Recommendation for
Software Information Sites. InThe 24th IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER) 2017 Feb 20.

[21] Xu, Z., Liu, Y., Mei, L., Hu, C. and Chen, L., 2015. Semantic based
representing and organizing surveillance big data using video structural
description technology. Journal of Systems and Software, 102, pp.217-
225.

[22] Liu, J., Yu, X., Xu, Z., Choo, K.K.R., Hong, L. and Cui, X., 2016. A
cloud‐based taxi trace mining framework for smart city. Software:
Practice and Experience.

