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Abstract—Bug triage is a process where bugs are assigned to 
developers. In large open source projects such as Mozilla and 
Eclipse, bug triage is time-consuming because numerous bugs are 
submitted everyday. To improve bug triage, many studies have 
proposed automatic approaches to recommend proper developers 
for resolving bugs. These approaches are based on machine 
learning algorithms, which treat bug triage like text classification. 
Although they are effective, the accuracy of them can be further 
improved. Our goal is to propose a method not only has good 
performance but also is simple. We propose a method based on 
relevant search technique to recommend developers for the given 
bugs. First, we construct an index for bugs to make them 
searchable. Then, for a given bug to be assigned, we utilize the 
index to search for the bugs related to it. Finally, we analyze these 
related bugs and recommend developers based on them. We 
conduct experiments on bugs of Mozilla and Eclipse to evaluate 
our method. The results indicate that our method has a good 
performance and outperforms machine learning algorithms like 
Naïve Bayes and SVM. 

Keywords—bug triage; bug report assignment; issue tracking; 
problem tracking 

I.  INTRODUCTION 

In software maintenance, bug resolution plays an important 
role. To effectively manage bugs and coordinate efforts, large 
open source projects often incorporate bug tracking systems. 
Bugzilla is a typical example of bug tracking systems, which 
proposed by Mozilla and adopted by many famous open source 
projects like Eclipse. Bugs in bug tracking systems are 
represented by bug reports, which are documents with many 
fields to record information about the corresponding bugs. The 
developers in projects depend on the bug reports to manage bugs 
and exchange opinions. 

Figure 1 shows an Eclipse bug report. It has freeform text 
such as summary and description, which demonstrate what the 
bug is about and the steps to reproduce the bug. It has some 
category fields such as product and component. This bug 
belongs to product JDT and component UI. If a bug has been 
assigned to a developer like this one, the field named assigned 
to would refer to the developer. In this case, the developer is 
Claude Knaus. Besides, status field indicates the stage of the bug 
in the life-cycle of bug reports. When a bug report is submitted, 
its status is UNCONFIRMED. The status changes to NEW after 
a developer verify it. The same developer is often responsible 
for finding an appropriate developer to fix the bug. After that, 

the status changes to ASSIGNED. If the bug has been fixed and 
been verified, its status changes to RESOLVED and VERIFIED 
or CLOSED respectively. The resolution of a bug in status field 
could be any among FIXED, DUPLICATE, WORKFORME, 
WONTFIX, INVALID. For example, the status in Figure 1 is 
VERIFIED FIXED. 

The process where a developer determine which developer 
is most appropriate to a bug and assigned it to the developer is 
called bug triage. If a bug is assigned to an improper developer, 
it leads to the bug re-assignment. The probability of a bug been 
fixed decreases as the number of re-assignment increases [3]. As 
the open source projects become more complicated, the number 
of bug reports submitted everyday constantly increase. It is 
inefficient that all bug reports are manually assigned. The 
software development is delayed by the inefficacy. Besides, it 
gives users an impression that developers are unresponsive and 
disregard the users’ bug reports. This terrible impression will 
destroy the project’s community [1]. To improve the efficiency 
of bug triage, several studies have proposed automatic methods 
to recommend appropriate developers for any given bug [1] [2]. 
These methods are based on machine learning algorithms. They 
treat bug triage as text classification. Although the methods are 
effective, the accuracy of them can be further improved. 

In this paper, we propose a method utilizing relevant search 
technique. Our method essentially builds a search application for 
bug reports. With this search application, we can find relevant 
bug reports for a given bug then analyze them to get the 
corresponding developers. To make the bug reports searchable, 
we first construct an index for them. Given a new bug, we build 
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a query based on its summary and description and narrow the 
search scope with its product and component. Based on the 
search results, we use their relevance scores to rank developers 
corresponded to the search results of bug reports. The developers 
in top rank are recommended for the given bug. Lucene is used 
to implement the search application. 

This paper makes two contributions: 

1.It proposes a new relevant search based method to 
recommend developers for bug triage. 

2.It conducts experiments to evaluate the approach on two 
datasets: Eclipse and Mozilla. 

The remainder of the paper is organized as follows. Section 
2 demonstrates our approach. Section 3 presents the experiment 
results. Section 4 discusses our method. Section 5 describes 
related work. Section 6 concludes this paper. 

II. APPROACH 

Figure 2 shows our overall framework of bug triage. The 
framework consists of five steps. It first extracts necessary 
information such as summary, description, product and 
component from the original bug reports in step 1. Then it 
indexes the extracted information in step 2. When we need to 
recommend developers for a new bug report, it first executes the 
same information extraction and indexing steps like step 1 and 
step 2 but just for the given report in step 3 and step 4. Then it 
searches for the similar bug reports in step 5. Last it uses the 
searching results to rank the developers and generates a list of 
them as the recommendation in step 6.  

A. Data Preprocessing 

The original bug reports have much information that our 
method does not need. We extracted the necessary information 
for our method: summary, description, product, component, 
fixer. Because summary and description are unstructured text, to 
eliminate data noise, we remove stop words and pure numbers, 
which do not contain useful information representing the bug 
reports, then stem them by using Porter stemmer. We join the 
summary and the description together as content after all. 

B. Indexing 

To make the searching process possible, we first indexing 
bug reports. In the process of indexing bug reports, they are 
treated as documents consisting of fields. Specifically, a bug 
report is a document having fields like content, product, 
component. Moreover, the original texts of bug reports are 
tokenized to terms and transformed to a data structure called 
inverted index. An inverted index is a sorted list of terms. Each 
term is associated with pointers linked to documents containing 
the term. Because the inverted index is sorted and have the 
pointers for each term, it is efficient for locating a term in the 
inverted index and finding which documents have the term. It 
likes the index of books. If we are interested in a subject of a 
book, we can directly look for the terms about the subject in the 
index, and go to the related pages without scan through the entire 
book. 

C. Searching 

Given a bug to be assigned, we first index it, then construct 
a query based on its content. Besides, we use its component and 
product to narrow the searching scope for reducing the noise. At 
first, we only consider bugs have same component and product 
as the current bug. If the bug is the first one in its component and 
product, there are no search results. In this situation, we consider 
bugs only have the same product. If the bug even is the first one 
in its product, there are still no search results. Finally, to ensure 
results exist, we search for related bugs no matter what their 
component and product are. 

The searching results are returned with scores, which 
represent the relevance between the current bug and others. For 
consistent with the relevant search context, we use query � and 
document �� denote the current bug and one bug of the results 
respectively. The formula below is used to compute these scores.  

�����(�, ��) = �����(�, ��)×���������(�)×

� ���(� �� ��)×���(�)�×�. ��������×����(�, ��)�

� �� �

(1) 

In the Equation 1, ��(� �� ��)  stands for the term’s 
frequency, defined as the number of times term t appears in the 
current document �� . ���(�)  stands for inverse document 
frequency. This value correlates to the inverse of �������(the 
number of documents in which the term t appears). 

�����(�, ��) is a score factor based on how many of the 
query terms are found in the specified document. 

���������(�)  is computed as Equation 2, which is a 
normalizing factor used to make scores between queries 
comparable. However, this factor does not affect document 
ranking, since all ranked documents returned by one query are 
multiplied by the same factor. 

���������(�) =
1

���. ���������× ∑ (���(�)×�. ��������)�
� �� � �

(2)
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Figure 2.  Framework of Our Method 



In the Equation 1 and 2, �. �������� is the weight of term � 
which is specified in the query. It can be changed to make some 
term more important than others. However, we treat all terms 
equal and did not change the weight. �. �������� is the weight 
of query �, which is used to control the importance of queries 
and we did not change it too. 

����(�, ��) = �����ℎ����× � �. �����

����� � �� � ����� �� �

(3) 

����(�, ��)  is computed as Equation 3. �. �����  is the 
weight of the field �, which play the same role as the two boost 
before. We did not change it neither. �����ℎ���� is a factor 
in accordance with the number of tokens in a field, shorter fields 
contribute more to the score. 

D. Ranking 

After searching, a bunch of related bugs ranked by the scores 
is returned. Assuming the �����(�, ��) and �������� represent 
the score of �th bug and the max score of all results respectively, 
we normalize the scores according to the Equation 4, which 
results in normalized scores within the range of [0, 1].  

���������(�, ��) = �����(�, ��) ÷ �������� (4) 

Because each bug in the results corresponds to a developer 
who fixed it. After analyzing searching results, we can get a set 
of developers. Assuming �  denotes the set, ����  denotes the 
score of the �th developer in � and �� denotes the set of bugs in 
searching results which are assigned to the �th developer, we 
computed the ����  as in the Equation 5. 

���� = � ���������(�, ��)

�� �� ��

(5) 

After computing the scores of the developers in �, we rank 
them by their scores. The top developers in the rank are 
recommended for the bug to be assigned. 

III. EXPERIMENTS AND RESULTS 

A. Dataset 

We evaluated our methods on two datasets from two open 
source software: Eclipse and Mozilla. All data were collected 
from the websites of their bug tracking systems. For Eclipse, we 
collected bug reports from 2001-10-11 to 2007-12-14. We drop 
bug reports before the bug whose id is 4354 because their 
descriptions are discussions among developers, which are not 
actual descriptions added when the bug reports are created. 
Besides, these bug reports were submitted in a very short time, 
which indicates they were migrated from other bug tracking 
system. For Mozilla, we collected bug reports from 1998-04-07 
to 2008-08-11. We retained bug reports with status CLOSED 
and FIXED as prior studies did [2], [3], [6], [9].  

We extracted bug fixers by checking the “assigned to” fields 
in the bug reports following previous studies. However, the 
“assigned to” fields in many bug reports are set to generic names 
which do not correspond to real people [19]. In Eclipse, bug 
reports are assigned to generic names like “JDT-UI-Inbox”, 
“JDT-Text-Inbox”, “JDT-Core-Inbox”. In Mozilla, bug reports 
are assigned to “nobody”. Because these generic names do not 

represent real developers, we do not recommend them and 
exclude bug reports whose fixers are among them from the data. 
Then to reduce noise, bug reports whose fixers appear less than 
ten times are excluded [19].  

After above steps, 91251 bug reports, 650 fixers, 72 products 
and 450 components are left in Eclipse dataset, while 100964 
bug reports, 777 fixers, 59 products and 492 components are left 
in Mozilla dataset. 

To make our experiments are more like the situation in 
practice, we adopt the longitudinal data setup in [9] [19]. We 
perform a 10-round incremental analysis on the two project 
datasets. The bug reports extracted from the two projects are first 
sorted in chronological order of creation time and then divided 
into 11 equally-size folds. We form 10 rounds evaluation with 
the 11 folds. First, in round 0, we create an index using bug 
reports in fold 0, and we update the index and evaluate our 
method using the first bug, and then update the index and 
evaluate our method using the second bug report, and so on for 
all bug reports in fold 1. Then, in round 1, we proceed in a similar 
way like fold 1 to test using bug reports in fold 2, and so on. 
After round 10, we compute the average evaluation metric 
among all rounds. 

  To make our results comparable, we choose a metric called 
Recall@K used in many prior studies [5] [19]. Recall@K is the 
proportion of bugs whose associated developers is ranked in the 
top k (k = 1, 3, 5) of the returned results. Given a bug report, if 
the top k results contain the developer who fixed the bug, we 
consider the developer is located. So Recall@K of all test bugs 
equal to the proportion of how many recommendations contain 
the actual fixer. 

B. Research Questions 

In this paper, we are interested in the following research 
questions: 

RQ1: How is our method effective compared with other 
baselines? 

 To answer the question, we compare our method with the 
existing machine learning based developer recommendation 
methods, such as those based on Naïve Bayes and SVM [1], [2], 
[12]. We use the scikit-learn package to implementation Naïve 
Bayes and SVM respectively. 

RQ2: How does the performance of our method change 
with the recommendation list increase? 

  To answer this question, we evaluated our method varying 
different recommendation list size from 1 to 10. We can see the 
trends after drawing the evaluated results. 

  Meanwhile, we used coverage rate to measure the best 
score our method can reach. The coverage rate is computed like 
Recall@K, but it considers all developers instead of Top K 
developers. So it gives the upper bound for our method. Because 
only if there exist the actual fixers in the search results, our 
method has the chance to pick them out, which means Recall@K 
is always smaller than or equal to the coverage rate. 

RQ3: How does product and component information 
influence the effectiveness of our method? 



  To figure out the influence of the product and component 
combinations over our method, we compare the results between 
our method with and without narrowing the search scope using 
the product and component information.  

C. Results 

RQ1: How is our method effective compared with other 
baselines? 

  Table I compares the performance of our method with 
baselines in terms of Recall@1, Recall@3, and Recall@5. For 
Eclipse, our method achieves average Recall@1 value 0.438, 
which means that for 43.8% bugs, it successfully recommends 
their associated developers as top 1. The Recall@5 value is 
0.841, which means that for 73.85% bugs, their developers can 

be found in the top 5 return results. For Mozilla, our method 
achieves Recall@1 and Recall@5 values 0.333 and 0.634, 
respectively. It obtains better results than the conventional 
machine learning based recommendation methods. Comparing 
with Naïve Bayes, the results of our method are 116% ~ 194% 
better. Comparing with SVM, the results of our method are 22% 
~ 49% better. 

RQ2: How does the performance of our method change 
with the recommendation list increase? 

  Figures 3, 4 present the values from Recall@1 to 
Recall@10 of our method with coverage rate for Eclipse and 
Mozilla respectively. We notice that Recall@K values increase 
along with K values increasing and tend to be stable finally. The 
Recall@K values are close to the coverage rate from Recall@8, 
which means the actual fixers are in the Top 8 list already and 
increasing size of recommendation list is almost useless. 

RQ3: How does product and component information 
influence the effectiveness of our method? 

TABLE I.  EVALUATION RESULTS OF TWO PROJECTS 

Project Rank SVM Naïve Bayes Our Method 

Eclipse 
Top1 0.307 0.186 0.438 
Top3 0.518 0.258 0.725 
Top5 0.613 0.286 0.841 

Mozilla 
Top1 0.223 0.147 0.333 
Top3 0.426 0.227 0.551 
Top5 0.518 0.293 0.634 

 

 
Figure 3.  Recall@K and Coverage Rate of Mozilla 
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Figure 4.  Recall@K and Coverage Rate of Eclipse 
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Figure 5.  Recall@K with and without Feature of Mozilla 
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Figure 6.  Recall@K with and without Feature of Eclipse 
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TABLE II.  COVERAGE RATE OF TWO PROJECTS 

Project metric without feature with feature 
Eclipse Coverage rate 0.907 0.953 
Mozilla Coverage rate 0.821 0.795 



  Table Ⅱ presents the coverage rate of our method with and 
without product and component information for Eclipse and 
Mozilla. Note that the coverage rates are similar for both projects, 
which indicates our method has similar chance to pick out the 
actual fixer despite with or without narrowing the search scope. 

  Figures 5, 6 presents the values of Recall@1 to Recall@10 
of our method with and without features. By narrowing the 
search scope with product and component information, the 
Recall@K values increase for both Eclipse and Mozilla. The 
relative improvements range from 41% to 80% for Mozilla and 
from 38% to 84% for Eclipse. 

IV. DISCUSSION 

A. Advantages 

In essence, our method is based on relevant search technique, 
while the machine learning based methods treat bug triage like a 
text classification task. 

Machine learning based methods regard each developer as a 
class and each bug report as a document. If the number of classes 
is small, these methods are effective enough. However, when the 
number of classes increases to hundreds or even thousands, it is 
hard to design an accurate and efficient classifier [5]. 

Our method adopts relevant search technique to construct a 
search engine for bug reports. It utilizes the search results with 
the relevance scores to get a ranked recommendation list. 
Besides, to reduce the noise, it uses the component and product 
information of bug reports to narrow the search scope, which 
significantly improves the performance. Because our method 
only need add new bug reports to index for updating, and 
searching in the index is fast. It is easily extensible and able to 
deal with large-scale data using our method.  

B. Limitations 

Our method essentially has some limitations. In some cases, 
it will fail to recommend the actual developer due to the practice 
in bug triage. 

First, if a bug is fixed by a new developer within its search 
scope, our method cannot recommend the right developer. 
Because the fixer does not correspond to any bug in the search 
scope, our method only recommends developers who have fixed 
at least one bug before. Besides, some developers may have 
fixed many bugs relevant to a bug. However, at the time of bug 
triage, they are not free for some reasons, so the bug is assigned 
to another less relevant developer [5]. 

C. Threats to Validity 

Internal validity is an estimate of the degree to which a causal 
conclusion based on a study can be made. To improve the 
internal validity, we preprocess our datasets following previous 
studies [9] [19]. We only collected bug reports with status 
CLOSED and FIXED to ensure the bug reports are related to 
bugs and have been fixed. To determine the fixer of a bug, we 
examine the “assigned to” field of the bug report. However, 
other studies chose another way to determine fixers. They 
proposed a heuristic approach to extracted the fixers [1] [2]. We 
do not adopt their heuristics because recent studies do not follow 

them. Besides, we exclude the bug reports whose “assigned to” 
fields are generic names or appear less than 10 times to reduce 
the noise. 

  External validity is an estimate of the degree to which our 
experiment results can be generalized. Although we have 
analyzed 91251 and 100964 bug reports from Eclipse and 
Mozilla, our method may not appropriate to other projects. To 
improve external validity, we plan to experiment our method on 
more new bug reports from more projects in the future. 

  Construct validity is an estimate of the degree to which 
metrics can be trusted. To determine the effectiveness of our 
method, we need check the actual fixer is whether in the 
recommendation list or not. Recall@K is a proper metric for this 
purpose. It also has been adopted by many prior bug triage 
studies [5] [19]. 

V. RELATED WORK 

According to the different techniques used to automatic bug 
triage, Tao Zhang et al. [4] classify the prior studies into five 
categories: machine learning-based approach, expertise model-
based approach, tossing graph-based approach, social network-
based approach and topic model-based approach. 

  As a pioneering study, Cubranic et al. [1] regard bug triage 
as a text categorization problem. In their work, each assignee 
was considered to be a single class, and each bug report was 
assigned to only one class. Anvik et al. [2][12] experimented 
several different machine-learning algorithms including Naïve 
Bayes, SVM, C4.5 to recommend a list of appropriate 
developers for fixing a new bug. The experiment results show 
SVM performed better than others on their datasets. Ahsan et al. 
[15] use feature selection and Latent Sematic Indexing [16] to 
reduce the dimensionality of the term-to-document matrix. Their 
results showed the bug triage system combined LSI and SVM 
has the best performance. Xuan et al. [13] proposed a semi-
supervised text classification method, which utilizing 
expectation-maximization based on both labeled and unlabeled 
data to enhance Naïve Bayes classifier. To remove the noisy data, 
Zou et al. [18] adopted feature selection. Their results showed 
that feature selection could improve the performance using 
Naïve Bayes by up to 5%. Xia et al. [14] proposed a method 
using a composite model called DevRec, which combined bug 
reports-based and developers-based analysis. 

  Jeong et al. [3] proposed a tossing graph model to capture 
bug tossing history and use this model to improve bug triaging 
prediction accuracy. Their experiments demonstrated the tossing 
graph model could improve the accuracy of automatic bug triage 
using machine-learning algorithms such as Naïve Bayes and 
Bayesian Network [17] only. Bhattacharya et al. [6][7] improved 
the accuracy of bug triage by utilizing a multi-feature tossing 
graph and increment learning.  

Matter et al.[8] modeled developers’ expertise using the 
vocabularies found in their source code files and compare them 
to the terms appearing in corresponding bug reports. Tamrawi et 
al. [9] proposed Bugzie, an automatic bug triaging tool based on 
fuzzy set and cache-based modeling of the bug-fixing expertise 
of developers.  Xuan et al. [10] achieved developer prioritization 
via social network analysis to improve the performance of 



automatic bug triage using SVM or Naïve Bayes only. Hao Hu 
et al. [5] utilized the historical bug-fix information to constructed 
a network to captures the knowledge of “who fixed what, where”. 
They use the network to recommend suitable developers. 

  Naguib et al. [11] adopted LDA to cluster the bug reports 
into topics. Then they created the activity profile for each 
developer of the bug tracking repository by mining history logs 
and bug report topic models. An activity profile consists of two 
parts, including developer’s role and developer’s topic 
associations. By utilizing activity profile and a new bug’s topic 
model., they proposed a ranking algorithm to find the most 
appropriate developer to fix the given bug. Xin Xia et al. [19] 
proposed a specialized topic modeling named MTM which 
extends LDA by considering product and component of 
information of bug reports. They used MTM to get the topic 
distribution of a new bug report to assign an appropriate fixer 
based on the affinity of the fixer to the topics. 

Regarding relevant search, Zhou et al. [20] utilized indexing 
and searching to recommend tags for software information sites. 

VI. CONCLUSION 

Bug triage is a time-consuming process if all bugs are 
manually assigned to developers in large open source projects. 
In this paper, we proposed a method based on relevant search 
technique. To improve efficiency and effectiveness of bug triage, 
our method recommends developers for bugs to be assigned. 
Besides, we utilized component and product information of bug 
reports to improve the performance of our method further. We 
have evaluated our method on bug reports of Eclipse and Mozilla.  
For Eclipse, our method achieved 43.8% and 84.1% accuracies 
when recommending 1 and 5 developers. For Mozilla, the 
accuracies are 33.3% and 63.4% for recommending 1 and 5 
developers. All of the results of our method outperforms the 
SVM and Naïve Bayes method. 

With the advent of big data era [21][22], in future work, we 
plan to incorporate bug tossing graphs into our method to 
introduce more relevant developers in the top of 
recommendation. Also, we plan to utilize more features of bug 
reports to improve the performance further. 
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