
Automatic Classification of Review Comments in
Pull-based Development Model

Zhixing Li, Yue Yu∗ , Gang Yin, Tao Wang, Qiang Fan, Huaimin Wang
College of Computer, National University of Defense Technology, Changsha, 410073, China

{lizhixing15, yuyue, yingang, taowang2005, fanqiang09, hmwang}@nudt.edu.cn

Abstract—The pull-based model, widely used in distributed
software development, allows any contributor to fork a public
repository, package contributions as a pull-request, and then
merge back to the original repository. Code review is one of
the most significant stages in pull-based development. It ensures
that only high-quality pull-requests are accepted, based on
the in-depth discussion among reviewers. Thus, automatically
identifying what reviewers are talking about in the discussions
is benificial to better understand the code review process.

In this paper, we conduct a case study on three popular open-
source software projects hosted on GitHub and construct a fine-
grained taxonomy including 11 sub-categories for review com-
ments. We then manually label over 5,600 review comments, and
propose a Two-Stage Hybrid Classification (TSHC) algorithm to
classify review comments automatically by combining rule-based
and machine-learning techniques. Comparative experiments with
a text-based method achieve a reasonable improvement on each
project (9.2% in Rails, 5.3% in Elasticsearch, and 7.2% in
Angular.js respectively) in terms of the weighted average F-
measure.

Index Terms—Pull-request; code review; review comment;

I. INTRODUCTION

The pull-based development model is becoming increas-
ingly popular in distributed collaboration for open-source soft-
ware (OSS) development [4], [8], [10]. On GitHub 1 alone, the
largest social-coding community, nearly half of collaborative
projects (already over 1 million [9] in January 2016) have
adopted this model. In pull-based development, any contributor
can freely fork (i.e., clone) an interesting public project and
modify the forked repository locally (e.g., fixing bugs and
adding new features) without asking for the access to the
central repository. When the changes are ready to merge back
to the master branch, the contributors submit a pull-request,
and then a rigorous code review process is performed before
the pull-request get accepted.

Code review is a communication channel where integrators,
who are core members of a project, can express their concern
for the contribution [10], [20], [22]. If they doubt the quality
of a submitted pull-request, integrators make comments that
ask the contributors to provide several use cases or improve
the implementation. With pull-requests becoming increasingly
popular, most large OSS projects allow for crowd sourcing
of pull-request reviews to a large number of external de-
velopers [23], [24] concerned about the development of the

∗ Corresponding author.
DOI: 10.18293/SEKE2017-039
1https://github.com/

corresponding project to reduce the workload of integrators.
After receiving the review comments, the contributor usually
responds positively and updates the pull-request for another
round of review. Thereafter, the responsible integrator makes
a decision to accept the pull-request or reject it by taking all
judgments and changes into consideration.

Previous research has shown that code review, as a well-
established software quality practice, is one of the most
significant stages in pull-based development [17], [18], [23].
It ensures that only high-quality codes are accepted. Several
approaches have been proposed to study on how the code
review process influences pull-request acceptance [19], [25]
and latency [22], and software release quality [17]. However,
a few studies have systematically investigated the automatic
identification of what reviewers are talking about in the review
discussions which is benificial to better understand the code
review process.

In this paper, we conduct a case study on three popular
OSS projects hosted on GitHub to comprehensively understand
the categories of review comments from various stakeholders.
First, we construct a fine-grained taxonomy covering the
typical motivations of reviewers in joining the review process.
Second, we manually label a large set of review comments
according to the defined categories. With this dataset, we
propose TSHC, a two-stage hybrid classification algorithm
that is able to automatically classify review comments by
combining rule-based and machine-learning (ML) techniques.
The key contributions of this study include the following:

• A fine-grained and multi-level taxonomy for review com-
ments in the pull-based development model is provided
in relation to technical, management, and social aspects.

• A high-quality manually labeled dataset of review com-
ments, which contains more than 5,600 items, can be
accessed via a web page 2 and used in further studies.

• A high-performance automatic classification approach for
review comments is proposed. The approach leads to a
significant improvement in terms of the weighted average
F-measure, namely 9.2% in Rails, 5.3% in Elasticsearch,
and 7.2% in Angular.js, compared with the text-based
method.

The rest of this paper is organized as follows. Section II
introduces the pull-based development model. Section III
elucidates the approach of our study. Section IV elaborates

2https://www.trustie.net/projects/2455

the research result. Section V presents related work, and
Section VI provides the conclusion and future work.

II. PRELIMINARY

On GitHub, a growing number of developers contribute
to the open source projects by using the pull-request mech-
anism [8]. As illustrated in Figure1, a typical contribution
process based on pull-based development model on GitHub
involves the following steps.

Fig. 1: Pull-based workflow on GitHub

Fork: Before contributing to an interesting project, the
contributor has to fork the original project.

Edit: After forking, the contributor can edit locally without
disturbing the main stream branch. He is free to do whatever
he wants, such as implementing a new feature or fixing bugs
according to the cloned repository.

Pull Request: When his work is finished, the contributor
submits the changed codes from the forked repository to its
source by a pull-request. Except for commits, the submitter
needs to provide a title and description to explain the objective
of his pull-request.

Test: Several reviewers play the role of testers to ensure
that the pull-request does not break the current runnable state.
They check the submitted changes by manually running the
patches locally or through an automated manner with the help
of continuous integration (CI) services.

Review: All developers in the community have the chance to
review that pull-request in the issue tracker, with the existence
of its description, changed files and codes, and test results.
After receiving the feedback from reviewers, the contributor
updates his pull-request by attaching new commits for another
round review.

Decide: A responsible manager of the core team considers
all the opinions of reviewers and merges or rejects the pull-
request.

III. APPROACH

The goals of our work are to build a taxonomy for review
comments in the pull-based development model and automate
the comment classification according to the defined taxonomy.

A. Taxonomy Definition

Previous work has studied the challenges faced by pull-
request reviewers and the issues introduced by pull-request
submitters [10], [20]. Inspired by their work, we decide to
comprehensively observe what reviewers are talking about in
code reviews rather than merely focusing on technical and
nontechnical perspectives.

We conducted a case study to determine the taxonomy
scheme, which is developed manually through an iterative
process of reading and analyzing review comments randomly
collected from three projects hosted on GitHub. This process
employs the following phases.

1) Preparation phase: The second author selects three
projects (i.e., Rails, Elasticsearch, and Angular.js) hosted
on GitHub according to project popularity (e.g., #star,
#fork, and #contributor) and maturity (e.g., project age,
and pull-request usage). Table I shows the key statistics
of the three projects in our dataset. Afterward, the first
author randomly selects review comments from the three
projects and labels each comment with a descriptive
message.

2) Execution phase: The first author divides the previously
labeled comments into different groups according to their
descriptive messages. Unlike the aggregation process in
card sorting [2], we initially set all comments to be in the
same group and iteratively divide the group. Each com-
ment is placed in the corresponding group(s). Through
a rigorous analysis of existing literature and our own
experience with working and analyzing the pull-based
model in the last two years, we first identify the first level
categories, which in turn are divided into other specific
groups.

3) Analysis phase: By referring to the recognition result in
the preceding phase, the second author abstracts taxon-
omy hierarchies and deduces general categories, which
forms a two-level taxonomy scheme. The first and second
authors, together with 10 other participants, verify the
correctness and completeness of this scheme and make a
final decision.

B. Two-Stage Hybrid Classification

To train the automatic classifier, we first manually labeled
a set of review comments according to the defined taxonomy.
For each project, we randomly sample 200 pull-requests (the
comment count of which is greater than 0 and less than 30)
per year from 2013 to 2015. Overall, 1,800 distinct pull-
requests and 5,645 review comments are sampled. Based on
this data set, we built TSHC which is illustrated by Figure 2.
TSHC consists of two stages that utilize comments text and
other information extracted from comments and pull-requests
respectively.

TABLE I: Dataset of our experiments

Projects Language Application Area Hosted at #Star #Fork #Contributor #Pull-request #Comment
Rails Ruby Web Framework May. 20 2009 33906 13789 3194 14648 75102

Elasticsearch Java Search Server Feb. 8 2010 20008 6871 753 6315 38930
Angular.js JavaScript Front-end Framework Jan. 6 2010 54231 26930 1557 6376 33335

Fig. 2: Overview of TSHC

Stage One: The classification in this stage mainly utilizes
the text part of each review comment and produces a vector
of possibility (VP), in which each item is the possibility of
whether a review comment will be labeled with the corre-
sponding category.

Preprocessing is necessary before formal comment classifi-
cation. Reviewers tend to reference the source code, hyperlink,
or statement of others in a review comment to clearly express
their opinion, prove their point, or reply to other people.
These behaviors promote the review process but cause a
great challenge to comment classification. Words in these
reference texts contribute minimally to the classification and
even introduce interference. Hence, we transform them into
single-word indicators to reduce vocabulary interference and
reserve reference information. Specifically, the source code,
hyperlink, and statement of others are replaced with ‘cmm-
code’, ‘cmmlink’ and ‘cmmtalk’ respectively.

After preprocessing, a review comment is classified by a
rule-based technique, which uses inspection rules to match
the comment text for each category. Several phrases often
appear in the comments of a specific category. For instance,
“lgtm” (abbreviation of “looks good to me”) is usually
used by reviewers to express their satisfaction with a pull-
request. This type of phrases are discriminating and helpful in
recognizing the category of a review comment. Therefore, we
establish an inspection rule for each category, which is a set
of regular expressions abstracted from discriminating phrases.
A category label is assigned to a review comment, and the
corresponding item in VP is set to 1 if its inspection rule
matches the comment text. The following shows examples
of some regular expressions and the corresponding matched
comments.

• Example 1
– (blank|extra) (line|space)s?
– “Please add a new blank line after the include”

• Example 2
– (looks|seem)s? (good|great|useful|awesome)
– “Looks good to me, the grammar is definitely better.”

• Example 3
– (cc:?|wdyt|defer to|\br\?) (@\w+ *)+
– “/cc @fxn can you take a look please?”

• Example 4
– thanks?|thxs?|:(\w+)?heart:
– “@xxx looks good. Thank you for your contribution :yel-

low heart:”
The review comment is then processed by the ML-based

technique. ML-based classification is performed with scikit-
learn3, particularly the support vector machine (SVM) algo-
rithm. The comment text is tokenized and stemmed to a root
form [14]. We filter out punctuations from word tokens and
reserve English stop words because we assume that common
words play an important role in short texts, such as review
comments. We adopt the TF-IDF (term frequencyinverse doc-
ument frequency) model [3] to extract a set of features from
the comment text and apply the ML algorithm to text clas-
sification. A single review comment often addresses multiple
topics. Hence, one of the goals of TSHC is to perform multi-
label classification. To this end, we construct text classifiers
(TCs) for each category with a one-versus-all strategy. For
a review comment which has been matched by inspection
rule Ri (supposing that n categories of C1, C2, . . . , Cn exist),
each TC (TC1, TC2, . . . , TCn), except for TCi, is applied
and predict the possibility of this review comment belonging
to the corresponding category

Finally, the VP determined by inspection rules and text
classifiers are passed on to stage 2.

Stage Two: The classification in this stage is performed
on composed features. Review comments are usually short
texts. Our statistics indicates that the minimum, maximum, and

3http://scikit-learn.org/

average numbers of words contained in a review comment are
1, 1527, and 32, respectively. The text information contained
in a review comment is limited to be used to determine its
category. Therefore, in addition to the VP generated in stage
one, we also consider the following other features related to
review comments.
Comment_length: This feature refers to the total number

of characters contained in a comment text after preprocessing.
Long comments are likely to argue about pull-request appro-
priateness and code correctness.
Comment_type: This binary feature indicates whether a

review comment is inline comment or issue comment. An
inline comment tends to talk about the solution detail, whereas
an issue comment is likely to talk about other “high-level”
issues, such as pull-request decision and project management.
Core_team: This binary feature refers to whether the

comment author is a core member of a project or an external
contributor. Core members are more likely to pay attention to
pull-request appropriateness and project management
Link_inclusion: This binary feature identifies if a com-

ment includes hyperlinks. Hyperlinks are usually used to
provide evidence when someone insists on a point of view or
to offer guidelines when someone wants to help other people.
Ping_inclusion: This binary feature refers to if a com-

ment includes ping activity (occurring by the form of “@
username”).
Code_inclusion: This binary feature denotes if a com-

ment includes the source code. Comments related to the
solution detail tend to contain source codes.
Ref_inclusion: This binary feature indicates if a com-

ment includes a reference on the statement of others. Such a
reference indicates a reply to someone, which probably reflects
further suggestion to or disagreement with a person.
Sim_pr_title: This feature refers to the similarity be-

tween the text of the comment and the text of the pull-request
title (measured by the number of common words divided by
the number of union words).
Sim_pr_desc: This binary feature denotes the similarity

between the text of the comment and the text of the pull re-
quest description (measured similarly as how sim_pr_title

is computed). Comments with high similarity to the title or
description of a pull-request are likely to discuss the solution
detail or the value of the pull request.

Together with the VP passed from stage 1, these features
are composed to form a new feature vector to be processed by
prediction models. Similar to stage 1, stage 2 provides binary
prediction models for each category. In the prediction models,
a new VP is generated to represent how likely a comment will
fall into a specific category. After iterating the VP, a comment
is labeled with class Ci if the ith vector item is greater than
0.5. If all the items of the VP are less than 0.5, the class
label corresponding to the largest possibility will be assigned
to the comment. Finally, each comment processed by TSHC
is marked with at least one class label.

IV. RESULT

A. Taxonomy

In the case study, we identified a fined-grained two-level
taxonomy which is illustrated by Table II. There are four
categories in the first level taxonomy, which are divided into
more specific sub-categories respectively. The first category
(Correctness) includes review comments which correct or
imporve the quality of changed codes, while the second
category (Decision) includes those that show reviewers’ di-
cision of whether or not permitting the pull-request to merge
back. In addition, reviewers are responsible to manage the
review process (Management) and intertact with contributors
(Interaction).

TABLE II: Complete taxonomy

Level-1 Level-2 Description

Correctness
Style points out extra blank line, etc.
Functionality figures out functionality defect, etc.
Test demands submitter to provide test case, etc.

Decision
Approval approves of the pull-request.
Disagreeing rejects to merge the pull-requestetc.
Questioning ask for more use cases .

Management
Roadmap states the development roadmap , etc.
Diversion assigns other reviewers.
Convention ask for formulating commit messages, etc.

Interaction Response thanks for what other people do, etc.
Encouragement agrees with others’ opinion, etc.

Although the first level taxonomy is more detailed than
previous work, we refined it further in the second level
taxonomy whose description can be seen in Table II. Moreover,
Table III shows some of the example comments.

TABLE III: Example comments

Category Example comments
Style “scissors: this blank line”
Functionality “let’s extract this into a constant. No need to initial-

ize it on every call”
Test “this PR will need a unit test, I’m afraid, before it

can be merged”
Approval “PR looks good to me. Can you ...”
Disagreeing “I do not think this is a feature we’d like to accept.”
Questioning “Can you provide a use case for this change?”
Roadmap “Closing as 3-2-stable is security fixes only now”
Diversion “/cc @fxn can you take a look please?”
Convention “Can you squash the two commits into one and also

put [ci skip] in the commit message”
Response “Thank you. This feature was already proposed and

it was rejected.”
Encouragement “:+1: nice one @cristianbica”

B. Evaluation of TSHC

In the evaluation, we design a text-based classifier (TBC)
as a comparison baseline. TBC uses the same preprocessing
techniques and SVM models as used in TSHC. Classification
performance is evaluated through a 10-fold cross validation,
namely, splitting review comments into 10 sets, of which nine
sets are used to train the classifiers and the remaining set is
for the performance test. The process is repeated 10 times.

TABLE IV: Classification performance on Level-2 subcategories

Rails Elasticsearch Angular.js
TBC TSHC TBC TSHC TBC TSHCCat.

Prec. Rec. F-M Prec. Rec. F-M Prec. Rec. F-M Prec. Rec. F-M Prec. Rec. F-M Prec. Rec. F-M
Style 0.75 0.57 0.66 0.88 0.67 0.78 0.75 0.46 0.61 0.85 0.58 0.72 0.54 0.26 0.40 0.76 0.78 0.77
Functionality 0.63 0.84 0.74 0.71 0.86 0.79 0.67 0.92 0.80 0.77 0.82 0.80 0.65 0.71 0.68 0.69 0.71 0.70
Test 0.59 0.46 0.53 0.74 0.78 0.76 0.66 0.55 0.61 0.60 0.52 0.56 0.64 0.63 0.64 0.75 0.77 0.76
Approval 0.56 0.35 0.46 0.73 0.58 0.66 0.92 0.84 0.88 0.91 0.88 0.90 0.83 0.72 0.78 0.84 0.79 0.82
Disagreeing 0.50 0.26 0.38 0.63 0.43 0.53 0.65 0.36 0.51 0.80 0.67 0.74 0.63 0.48 0.56 0.61 0.51 0.56
Questioning 0.47 0.21 0.34 0.60 0.36 0.48 0.33 0.11 0.22 0.38 0.26 0.32 0.45 0.51 0.48 0.47 0.49 0.48
Roadmap 0.79 0.66 0.73 0.79 0.72 0.76 0.75 0.39 0.57 0.75 0.68 0.72 0.49 0.31 0.40 0.83 0.64 0.74
Diversion 0.83 0.77 0.80 0.98 0.78 0.88 0.57 0.35 0.46 0.88 0.90 0.89 0.35 0.16 0.26 0.96 0.67 0.82
Convention 0.83 0.76 0.80 0.90 0.81 0.86 0.94 0.57 0.76 0.96 0.76 0.86 0.85 0.76 0.81 0.83 0.82 0.83
Response 0.98 0.93 0.96 0.99 0.98 0.99 0.91 0.84 0.88 0.93 0.95 0.94 0.90 0.80 0.85 0.94 0.93 0.94
Encouragement 0.80 0.66 0.73 0.89 0.87 0.88 0.87 0.67 0.77 0.92 0.91 0.92 0.93 0.62 0.78 0.98 0.92 0.95
AVG 0.71 0.67 0.69 0.80 0.76 0.78 0.79 0.75 0.77 0.83 0.81 0.82 0.71 0.64 0.67 0.76 0.73 0.75

Table IV shows the precision, recall, and F-measure provided
by different approaches for Level-2 categories. Our approach
achieves the highest precision, recall, and F-measure scores in
all categories with only a few exceptions.

To provide an overall performance evaluation, we use the
weighted average value of F-measure [26] of all categories
by the proportions of instances in that category. Equation 1
describes the formula to derive the average F-measure. In the
equation, the average F-measure is denoted as Favg , the F-
measure of the ith category as fi, and the number of instances
of the ith category as ni.

Favg =

∑11
i=1 ni ∗ fi∑11

i=1 ni

(1)

The table indicates that our approach consistently outper-
forms the baseline across the three projects. Compared with
that in the baseline, the improvement in TSHC running on each
project in terms of the weighted average F-measure is 9.2%
(from 0.688 to 0.780) in Rails, 5.3% (from 0.767 to 0.820) in
Elasticsearch, and 7.2% (from 0.675 to 0.747) in Angular.js.
These results indicate that our approach is highly applicable
in practice.

We further study the review comments miscategorized by
TSHC. An example is that “While karma does globally install
with a bunch of plugins, we do need the npm install because
without that you dont get the karma-ng-scenario karma plu-
gin.”. TSHC classifies it as belonging to Functionality, but it is
actually a Disagreeing comment. The reason for this incorrect
predication is twofold, namely, the lack of explicit discrim-
inating terms and the too specific expression for rejection.
Inspection rule of Disagreeing is unable to matched because
of the lack of corresponding mathcing patterns. ML classifiers
tend to categorize it into Functionality because the too specific
expression of opinion makes it more like a low-level comment
about code correctness instead of a high-level one about the
pull-request decision.

We attempt to solve this problem by adding factors (e.g.,
Comment_type and Code_inclusion) in stage 2 of TSHC,
which can help reveal whether a review comment is talking
about the pull-request as a whole or the solution detail. Al-

though the additional information improves the classification
performance to some extent, it is not sufficient to differentiate
the two types of comments. We plan to address the issue
by extending the manually labeled data set and introducing
a sentiment analysis.

V. RELATED WORK

A. Code Review

Code review is employed by many software projects to
examine the change made by others in source codes, find
potential defects, and ensure software quality before they are
merged [5], [12]. Traditional code review, which is also well
known as the code inspection proposed by Fagan [7], has
been performed since the 1970s. However, its cumbersome
and synchronous characteristics have hampered its universal
application in practice [2]. With the occurrence and devel-
opment of VCS and collaboration tools, Modern Code Re-
view (MCR) [16] is adopted by many software companies
and teams. Different from formal code inspections, MCR is
a lightweight mechanism that is less time consuming and
supported by various tools. While the main motivation for code
review was believed to be finding defects to control software
quality, recent research has revealed that defect elimination is
not the sole motivation. Bacchelli et al. [2] reported additional
expectations, including knowledge transfer, increased team
awareness, and creation of alternative solutions to problems.

B. Pull-request

Although research on pull-requests is in its early stages,
several relevant studies have been conducted. Gousios et
al. [8], [15] conducted a statistical analysis of millions of
pull-requests from GitHub and analyzed the popularity of pull-
requests, the factors affecting the decision to merge or reject
a pull-request, and the time to merge a pull-request. Tsay
et al. [19] examined how social and technical information
are used to evaluate pull-requests. Yu et al. [25] conducted
a quantitative study on pull-request evaluation in the context
of CI. Moreover, Yue et al. [24] proposed an approach that
combines information retrieval and social network analysis
to recommend potential reviewers. Veen et al. [21] presented
PRioritizer, a prototype pull-request prioritization tool, which

works to recommend the top pull-requests the project owner
should focus on.

C. Classification on Free Text

Several studies have been performed to analyze free text
generated in the software development process. Antoniol et
al. [1] conducted a survey on 1,800 issues from the BTS
of three large open-source systems and concluded that the
linguistic information contained in these issues is sufficient
to distinguish “bug” issues from “non-bug” ones. Later on,
Pingclasai et al. [13] used topic modeling to classify bug re-
ports. Herzig et al. [11] conducted a fine-grained classification
on 7,000 issue reports and analyzed the classification results
of early research. Zhou et al. [26] proposed a hybrid approach
by combining text-mining and data-mining techniques to au-
tomatically classify bug reports. Ciurumelea et al. [6] studied
reviews on mobile apps, proposed an approach to automati-
cally organize reviews according to predefined tasks (battery,
performance, memory, privacy, etc.), and recommended the
related source code that should be modified.

VI. CONCLUSION&FUTURE WORK

In this paper, we conduct a case study on three popular
OSS projects hosted on GitHub, and construct a fine-grained
taxonomy including 11 sub-categories for review comments.
According to the defined taxonomy we manually label over
5,600 review comments and propose a two-stage hybrid classi-
fication algorithm to automatically classify review comments.
The comparative experiment results show that our approach
can return reasonably good results for most categories.

Nevertheless, TSHC performs poorly on a few Level-2 sub-
categories. More work could be done in the future to improve
it. we plan to address the shortcomings of our approach by
extending the manually labeled data set and introducing a
sentiment analysis. Moreover, we will try to improve reviewer
recommendation and pull-request prioritization based on the
result in this paper.

ACKNOWLEDGMENT

The research is supported by the National Grand R&D
Plan (Grant No. 2016-YFB1000805) and National Natural
Science Foundation of China (Grant No.61502512, 61432020,
61472430, 61532004).

REFERENCES

[1] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh,
and Yann Ga Neuc. Is it a bug or an enhancement?: a text-based
approach to classify change requests. In Conference of the Centre
for Advanced Studies on Collaborative Research, October 27-30, 2008,
Richmond Hill, Ontario, Canada, page 23, 2008.

[2] A Bacchelli and C Bird. Expectations, outcomes, and challenges
of modern code review. In International Conference on Software
Engineering, pages 712–721, 2013.

[3] Ricardo A Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. China Machine Press, 2004.

[4] Earl T Barr, Christian Bird, Peter C Rigby, Abram Hindle, Daniel M
German, and Premkumar Devanbu. Cohesive and isolated development
with branches. In International Conference on Fundamental Approaches
To Software Engineering, pages 316–331, 2012.

[5] Olga Baysal, Oleksii Kononenko, and Reid Holmes. Investigating
technical and non-technical factors influencing modern code review.
Empirical Software Engineering, 21(3):1–28, 2016.

[6] Adelina Ciurumelea, Andreas Schaufelbhl, Sebastiano Panichella, and
Harald Gall. Analyzing reviews and code of mobile apps for better
release planning. In IEEE International Conference on Software Engi-
neering, 2016.

[7] Michael E Fagan. Design and code inspections to reduce errors in
program development. In Pioneers and Their Contributions to Software
Engineering, pages 301–334. Springer, 2001.

[8] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. An ex-
ploratory study of the pull-based software development model. In
International Conference Software Engineering, pages 345–355, 2014.

[9] Georgios Gousios, Margaret Anne Storey, and Alberto Bacchelli. Work
practices and challenges in pull-based development: the contributor’s
perspective. In International Conference Software Engineering, pages
285–296, 2016.

[10] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie
Van Deursen. Work practices and challenges in pull-based development:
the integrator’s perspective. In Proceedings of the 37th International
Conference on Software Engineering, pages 358–368. IEEE, 2015.

[11] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a Bug, it’s a
Feature: How Misclassification Impacts Bug Prediction. 2013.

[12] Shane Mcintosh, Yasutaka Kamei, and Bram Adams. An empirical
study of the impact of modern code review practices on software quality.
Empirical Software Engineering, 21(5):1–44, 2016.

[13] N. Pingclasai, H. Hata, and K. I. Matsumoto. Classifying bug reports to
bugs and other requests using topic modeling. In Asia-Pacific Software
Engineering Conference, pages 13 – 18, 2013.

[14] M. F Porter. An algorithm for suffix stripping. Morgan Kaufmann
Publishers Inc., 1997.

[15] Peter C Rigby, Alberto Bacchelli, Georgios Gousios, and Murtuza
Mukadam. A Mixed Methods Approach to Mining Code Review Data:
Examples and a study of multi-commit reviews and pull requests. 2014.

[16] Peter C. Rigby and Margaret Anne Storey. Understanding broadcast
based peer review on open source software projects. In International
Conference on Software Engineering, pages 541–550, 2011.

[17] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and
Hajimu Iida. Investigating code review practices in defective files: an
empirical study of the qt system. In Proceedings of the 12th Working
Conference on Mining Software Repositories, pages 168–179. IEEE
Press, 2015.

[18] Patanamon Thongtanunam, Shane Mcintosh, Ahmed E. Hassan, and
Hajimu Iida. Review participation in modern code review. Empirical
Software Engineering, pages 1–50, 2016.

[19] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and
technical factors for evaluating contribution in github. In ICSE, pages
356–366, 2014.

[20] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it:
evaluating contributions through discussion in github. In The ACM
Sigsoft International Symposium, pages 144–154, 2014.

[21] Erik Van Der Veen, Georgios Gousios, and Andy Zaidman. Automat-
ically prioritizing pull requests. In Proceedings of the 12th Working
Conference on Mining Software Repositories, pages 357–361. IEEE
Press, 2015.

[22] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and
Bogdan Vasilescu. Wait for it: Determinants of pull request evaluation
latency on github. In MSR, 2015.

[23] Yue Yu, Huaimin Wang, Gang Yin, and Charles X Ling. Reviewer
recommender of pull-requests in github. In 2014 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
609–612. IEEE, 2014.

[24] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer recommen-
dation for pull-requests in github: What can we learn from code review
and bug assignment? Information and Software Technology, 74:204–218,
2016.

[25] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang.
Determinants of pull-based development in the context of continuous
integration. Science China Information Sciences, 59(8):1–14, 2016.

[26] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. Combining
text mining and data mining for bug report classification. Journal of
Software: Evolution and Process, 2016.

