
DOI reference number: 10.18293/SEKE2017-038

D3TraceView: A Traceability Visualization Tool

Gilberto A. de A. Cysneiros Filho

Department of Statistics and Informatics

Federal Rural University of Pernambuco

Recife, Brazil

g.cysneiros@gmail.com

Andrea Zisman

Centre for Research in Computing

The Open University

Milton Keynes, UK

andrea.zisman@open.ac.uk

Abstract— Software traceability is the ability to relate artefacts

created during the life cycle of software development.

Traceability is fundamental to support several activities of the

software development process such as impact analysis, software

maintenance and evolution, verification and validation. Despite

the importance and advances in the software traceability area,

traceability practice is still a challenge. One of these challenges

is concerned with the visualization of traceability information.

In this paper, we present D3TraceView, a traceability

visualization tool that allows displaying traceability

information in different formats depending on the purpose of

use of traceability information. The tool supports different

types of queries related to the use of traceability information.

We use an Air Traffic Control Environment multi-agent system

to demonstrate the use of the tool.

Software Traceability; Information Visualization; D3.js

1. INTRODUCTION

Requirements traceability has been defined as the “ability
to describe and follow the life of a requirement, in both a
forward and backward direction (i.e. from its origins,
through its development and specification, to its subsequent
deployment and use, and through periods of ongoing
refinement and iteration in any of these phases)” [6][1]. This
definition has been extended to incorporate the notion of
software traceability [7] that encompasses and interrelates
any uniquely identifiable software engineering artifact to any
other1.

The importance of traceability in the software
development life-cycle has been endorsed by several
standards for quality management and process improvement
(CMMI, SPICE). Traceability is fundamental to support
various activities of software development such as impact
analysis, reuse, verification and validation; program
comprehension; maintenance; and software evolution.
Despite its importance, there are still several significant
challenges associated with traceability, as described in [7]. In
addition, in [3] the authors present several compelling areas
of research that need to be addressed in order to support the
challenges. One of these areas is concerned with the
visualization of trace data. At the moment traceability
information can be difficult to use since little attention has

1 Unless necessary to make a distinction, in this paper, we will use

the term “traceability” to refer to both requirements and software

traceability.

been given to the issue of presenting and visualizing
traceability information.

As outlined in [12], the most common way to show
traceability information in practice remains the use of matrix.
Other ways to show traceability relations are tree browser
explorer, lists, and hyperlinks views. As presented in the
empirical study in [12], matrices and graphs are good to
support management tasks; hyperlinks were preferred to
support implementation and testing tasks. Matrices are
adequate to provide an overview of the traces, and graphs
could facilitate navigation through the traces. However, these
forms of individually used visualizations have limitations to
present traceability relations and assist with their use. The
appropriate view of traceability information should be related
to the task to be performed with the relations [22]. However,
users are not always able to decide the forms of visualization
that are most appropriate for the information they have, and
for the tasks they need to use traceability information.

In this paper, we describe D3TraceView, a traceability
visualization tool that provides different types of
visualizations to users depending on the data to be visualized,
the role of the user, and the task to which the user needs to
perform with the relations. The tool is based on requirements
identified on a previous work from one of the authors [5], and
requirements defined in [16].

The main goal of the tool is to provide several types of
visualization formats for specific trace data. The tool receives
as input software artifacts (software models) and their
respective traceability relations, and produces different views
of the relations in various formats such as tables, matrices,
radials, trees, sunbursts, etc. The tool also contains a
repository of predefined queries related to the use of
traceability relations. These queries are created to help users
to execute several software activities, namely (i) software
inspection (verification), (ii) maintenance and evolution
(program comprehension), (iii) consistency checking of the
models, and (iv) impact analysis. The tool was developed
with Data-Driven Document (D3) JavaScript library (D3.js)
[1].

The remaining of this paper is structured as follows.
Section 2 provides a description of the D3TraceView tool.
Section 3 explains the implementation aspects of the tool.

Section 4 discusses related work. Finally, Section 5 presents
some conclusions and directions for future work.

2. D3TRACEVIEW TOOL

The goal of the D3TraceView is to be a visualization tool
that provides interactive and context-specific traceability
usage. In order to illustrate the tool and describe its main
functionalities, we use examples of artefacts created during
the development of a multi-agent system implementing an
Air Traffic Control Environment (ATCE). The ATCE system
was developed using i* framework [23] to model the
organizational environment; Prometheus methodology [19]
to model system specification, architectural design, and
detailed design phases; and JACK programming language
[11] to implement the code. The traceability relations were
generated using the rule-based traceability tool called
RETRATOS [4], proposed by the authors of this paper.

D3TraceView was developed based on the challenge

described in [13], in which traceability tools should be
developed having user-friendly ways of formulating
predefined and ad-hoc traceability queries, involving traces,
artifacts, and all their relationships. Based on this concept,
we developed D3TraceView to support a set of queries to
help users to execute activities as proposed by OpenUP
process [18]. Examples of these activities are: (i) assess
results, (ii) software inspection, (iii) consistency checking,
and (iv) change impact analysis.

The queries shown in this paper are concerned with
artifacts of a multi-agent system, given the ATCE application
we used to illustrate the tool. Examples of these queries are:
(a) What are the i* actor elements that originate Prometheus
goal elements? (b) What JACK agent elements are affected
by changes in SD goal elements? However, other types of
queries related to different activities, stakeholder’s roles, and
types of software artifacts could be specified and easily
incorporated in the tool.

Apart from predefined queries, users can also analyze
artifacts and trace relations browsing various visualization
formats provided by the tool. This is possible by the use of
mechanisms to zoom into some other data, as well as filtering
retrieved data, and expanding and collapsing elements (e.g.,
matrix, table, radial, tree, sunburst).

A. Roles and Activities

Based on OpenUP process [18], we have defined several
roles and activities to be supported by the tool. The OpenUP
is an agile process for the development of software systems.
We decided to base D3TraceView tool on OpenUP process
due to: support for the whole system process development;
being freely available; support for several roles that define the
behavior and responsibilities of an individual, or a set of
individuals in a development team; and (iv) support for
development tasks.

The stakeholder’s roles adopted by the tool are: (i)
user/customer; (ii) business analyst; (iii) architect; (iv)
designer; (v) project manager, and (vi) developer. The
different activities currently implemented in the tool are: (a)

assess results, (b) software inspection (verification), (c)
maintenance and evolution (program comprehension), (d)
consistency checking, and (e) change impact analysis. Table
1 shows a mapping of these activities and roles.

TABLE 1. MAPPING OF ACTIVITIES AND ROLES

Activities Stakeholder’s Role

Assess Results Project Manager

Software Inspection Business Analyst

Maintenance and Evolution Architect, Designer, Developer

Consistency Checking Architect, Designer, Developer

Change Impact Analysis Business Analyst

B. Files, Queries and Visualization Formats

The screen in Figure 1 shows the main menu of options
of D3TraceView. As shown in Figure 1, the user can (i)
provide inputs about the software artifacts and traceability
relation files to be used by the tool (option Files), (ii) choose
pre-defined queries and visualize trace data in different
formats that are associated with the queries (option Queries),
and (iii) visualize traceability data in various different
formats (option All Views). Figure 2 shows part of the screen
to upload software artifacts to be used.

When a user chooses option “Queries” from the screen in
Figure 1, the screen shown in Figure 3 is presented to the user
displaying the activities supported by the tool. After selecting
one of these activities the tool presents a set of pre-defined
queries for the respective activity. Figures 4 to 8 show the
screens with some of the queries for each of the various
activities. For each activity, the user can select one or more
queries. In addition, for some queries, the user can decide on
a relevant artifact from a menu option. For example, as shown
in Figure 6, in the case of the query “Who are the i* actors
that originates Prometheus goals”, the parts concerned with
i* actors and Prometheus goals can vary depending on the
artifacts being considered.

For each query, the tool presents its results as different
graphs that are more appropriate to display the results of the
query. However, it is possible to choose from a different type
of visualization format (e.g., a visualization format to which
the user is more familiar), by following the “All Views”
option in Figure 1.

Figure 1. Main Menu

Figure 2. Upload of software artifact files

Figure 2. Menu of Activities

Figure 4. Assess Results

Figure 5. Software Inspection

Figure 6. Maintenance and Evolution

Figure 7. Consistency Checking

Table 2 shows, for each pre-defined query, the types of
visualization formats that the tool suggests. In Table 2, the
identifiers of the queries follow the order in which the queries
appear in the respective Figures 4 to 8. The types of
visualization formats associated with the various queries
were defined based on a comparative study presented in [12]
and [17], and the available formats in D3 [1] that are adequate
to present relations.

Figure 8. Impact Analysis

In the following we discuss the different types of queries
associated with each activity and their respective
visualization formats used to present the results of these
queries.

TABLE 3. TYPES OF VISUALIZATION FORMATS BY QUERIES

Query Type of Visualizations

Assess Results

Q1 Bar graph, Gauge

Software Inspection (Verification)

Q1 Table, Tree, Radial, Sunburst

Q2 Table, Tree, Radial, Sunburst, Matrix

Maintenance and Evolution (Program Comprehension)

Q1 to Q11 Table, Tree, Radial, Sunburst, Matrix

Consistency Checking

Q1 Table, Tree, Radial, Sunburst, Matrix

Impact Analysis

Q1 Tree, Radial, Sunburst

Assess Results. In the OpenUP process [18], this activity
is concerned with assessing the results of an iteration in the
development process, and determining the success or failure
of this iteration in order to plan a subsequent iteration. For
this activity, the queries are concerned with the percentage of
implemented artifacts. In this case, the tool presents the
results as bar graphs or as gauge display.

Bar graphs are used to display and compare the number
or frequency for discrete categories of data. Therefore, bar
graphs are useful to present the percentage of certain element
types. For example, in the case of a query concerned with the
percentage of SD goals that has been implemented in the
ATCE system, the SD goals, SD tasks, and system goals are
the discrete categories of data. The results of this query can
be shown as the number of total elements implemented with
respect to the number of total elements, as shown in Figure 9.

Figure 9. Bar graph view

Gauge displays are used to show a single discrete number
representing the percentage. It is a progress bar with a
circular, flat design. The gauge marker changes position
within this range. Figure 10, shows the single discrete number
representing the percentage in a gauge display type of graph.

Figure 10. Liquid fill gauge display

Software inspection (verification). Software
verification is the collection of methods used to determine if
a software system is correctly built. For this activity,

http://en.wikipedia.org/wiki/Software_verification
http://en.wikipedia.org/wiki/Software_verification

D3TraceView provides queries that compare artifacts of the
system in terms of different relation types (e.g., implemented
by, overlaps, achieves).

As shown in Figure 5, one of the queries is concerned
with artifacts that are related to a certain type of element (in
this case a certain type of actor). Another question is
concerned with the case that verifies if a certain artifact is
implemented in the system. The types of artifacts can vary
depending on the documents (models) used for representing
the system (e.g., i*, Prometheus, or JACK elements,); or
other elements depending on the system. In these types of
queries, the visualization technique shows traceability
information involving specific artifacts.

As shown in Table 2, D3TraceView provides four
visualization types for the first query namely table, tree,
sunburst, and radial views. Tables are typical visualization
formats to present simple lists of data (e.g. list of Prometheus
goals). The disadvantage of using tables is that they do not
show an overview of the dataset and the hierarchical
information of traceability relations. Tables should also not
be used to display large amount of data. Figure 11 shows a
table with elements related to actor Aircraft.

Figure 11. Table view

Tree views are graphical representations to support
hierarchical information display, as shown in Figure 12. In
this case, each element can have a number of sub-elements.
An element can be expanded to show sub-elements, if any
exist, and collapsed to hide sub-elements. Tree views are
very intuitive, largely used by software development tools,
and allow elements to be shown without the need for scrolling
the screen.

Sunburst is another type of graphical representation
where nodes are drawn on adjacent rings representing a tree
structure, as shown in Figure 13. In this representation, each
child of a node with depth n is represented in the ring n + 1
on the same radian space as its parent(s). Sunburst performs
better on large amounts of nodes than traditional tree view
representations. Tree view representation grows rapidly in
the vertical direction if many branches are expanded. In the
case of sunburst, the nodes are distributed uniformly in all
directions. In sunburst, the color of each item corresponds to
an attribute of the item. In D3TraceView, the color in a
sunburst view represents an element type (e.g. Prometheus
goal), while the width of the representation of each element
shows the importance of the element (i.e. number of sub-
elements associated with the element). In addition, in the tool,
sunburst view is dynamic, in which it is possible to click on
an element and zoom information about this element, and it
supports a large amount of data.

Figure 12. Tree view

Figure 13. Sunburst view

Radial representation like Reingold-Tilford is a mixture
of sunburst and tree views that do not use information of
colors and spaces, as shown in Figure 14. For the second type
of query, D3TraceView provides five visualization formats,
namely list, matrix, sunburst, radial, and tree view. Figure 15
shows the matrix format, while all the other formats have
been shown above.

Maintenance and evolution (Program
comprehension). As shown in Figure 6, the pre-defined
queries to support this activity are concerned with gathering
a better understanding of the software. More specifically, the
queries identify the artifacts in a certain software
development phase that are related to artifacts in subsequent
phases in the software development process. For example, i*
actors (requirements phase) that are related to Prometheus
goals (design phase). For these queries D3TraceView
suggests five visualization types (see Table 2). The graphs for
these visualization types are similar to the ones shown above.

Consistency Checking. Based on Figure 7, the queries to
support this activity are concerned with the visualization of
different types of relationships between various types of
artifacts. Examples of these relationship types are: overlaps,

depends, contributes, uses, achieves, creates, and composes.
Similar to the above activities and queries, the results of these
queries can also be visualized in the five different
visualization types shown above.

Figure 14. Reingold-Tilford tree view

Figure 15. Matrix view

Impact Analysis. In this activity the queries are
concerned with identifying the consequences of a change in
the software, or identifying the artifacts that need to be
changed. The tool suggests four visualization types, as
described in Table 2.

3. IMPLEMENTATION

D3TraceView has been implemented as a web tool using
D3.js library [1]. Figure 16 shows an overview of the main
components of the tool. As shown in Figure 16, CASE tools
represent the various tools that could be used to develop the
software models. For our ATCE system, the case tools are

Prometheus Design Tool (PDT), TAOM4E (for i* models),
and JACK Intelligent Agent. The Traceability Generator
represents tools that assist with generation of traceability
relations (e.g., RETRATOS [4]). Both the software models
and the traceability links are inputs to D3TraceView. The tool
requires the links and the models to be represented in XML
format, or in JSON format. The Generator component of
D3TraceView generates the results associated with the
various queries in the different visualization formats
available in the D3 library.

Figure 16. D3TraceView Component Diagram

4. RELATED WORK

Information visualization has been recognized as an
important area of research that focuses on the use of
visualization techniques to help people understand and
analyze data [9]. It applies design principles, human
perception, and color theory to present data. For several
years, traceability information used to be visualized in terms
of matrices and tables. However, a matrix is a two-
dimensional view of a multidimensional information space
(several software artifacts, with different levels of
granularity, and various traceability relations connecting the
artifacts). Moreover, when using a matrix it is difficult to
navigate through the relationships. Another significant
limitation is the lack of scalability [12]. In certain projects
where the number of relationships is large, it becomes more
difficult to visualize specific relationships. More recently,
some other works have been developed to support
information visualization of traceability information [16]
[21] [10][20][2] [14] [15].

Marcus et al. [16] developed a prototype tool called
TraceViz that is integrated with Eclipse IDE. TraceViz has
three main areas to display: elements (source and target) in a
hierarchical way; traceability relationships for a chosen
element; and information of the properties and browsing
history of a particular traceability relationship. It does not
support traditional visualizations techniques such as matrix,
tree, and radial. The technique in [21] is based on a graph-
based representation with rings showing project artifacts and
nodes representing relationships. The various types of
relationships are indicated by the use of specific colors.

Similarly, Heim et al. [10] proposed an approach based on
graphs representing requirements as nodes and relationships
as vertices. However, the use of graph-based approaches to
visualize traceability information are less intuitive to display
relationships and do not scale well. In the case of large
amounts of data it is difficult to understand the view as
graphs, in which only a limited set of elements can be
displayed. Merten et. al [17] use sunburst and netmap
visualization techniques to show traceability relationships.
These techniques were implemented as plugins for the
Redmine project management tool. Thommazo et al. [20]
present an approach to automated generation of requirement
traceability matrix. In this work, traceability relationships can
also be shown though a graph-based visualization. Chen et al.
[2] present an approach that combines treemap and
hierarchical tree visualization techniques to provide a global
structure of traces and a detailed overview of each trace.

The above approaches are limited to support one or two
types of visualization formats. D3TraceView supports
several visualization formats and it has been developed in a
way that it can easily accept other types of visualization
formats. Moreover, our tool also allows for querying
traceability data for different activities.

Several works have been suggested to support trace
queries. A visual trace modeling language (VTML) was
proposed in [14] that allows users to create queries using
UML class diagrams and constraints. Maletic and Collard
[15] propose a Trace Query Language (TQL) which can be
used to write trace queries as XPath expressions for artifacts
represented in XML format. The creation of queries by users
is not an easy task. D3TraceView provides pre-defined
questions, which can be extended in the tool.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a traceability visualization tool
called D3TraceView that supports various visualization
formats such as matrix, list, tree, radial, gauge, sunburst,
table, and bar view. The tool is built using D3.js library and
applies information visualization principles to present
traceability relations. Currently, we are extending the tool
with an editor to support the specification of queries. We are
also evaluating the tool in terms of its usability and support
for the various software development activities in the tool.

REFERENCES

[1] Bostock, M., Ogievetsky, V. and Heer, J. 2011. D3: Data-Driven
Documents. In Proceedings of the IEEE Trans. Visualization &

Comp. Graphics.

[2] Chen, X., Hosking, J. and Grundy, J. 2012. Visualizing traceability

links between source code and documentation. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric

Computing.

[3] Cleland-Huang, J., Gotel, O., Hayes, J., Mäder, P. and Zisman, A.
Software traceability: trends and future directions. Proc. Future of

Software Engineering, 2014.

[4] Cysneiros, G. and Zisman, A. 2008. Traceability and completeness
checking for agent-oriented systems. In Proceedings of the 23rd

Annual ACM Symposium on Applied Computing.

[5] Cysneiros, G. and Lencastre, M.. Towards a Traceability Visualisation
Tool. 2012. In Proceedings of the 2012 Eighth International

Conference on the Quality of Information and Communications

Technology (QUATIC '12).

[6] Gotel, O. and Finkelstein, A. 1994. An Analysis of the Requirements
Traceability Problem. 1994. In Proceedings of the First IEEE

International Conference on Requirements Engineering (ICRE’94).

[7] Gotel, O., Cleland-Huang, J., Zisman, A., Hayes, J., Dekhtyar, A.,
Mäder, P., Egyed, A., Grünbacher, P., Antoniol, G. and Maletic, J.

2012. Glossary of Traceability Terms (1.0). In Cleland-Huang, J.,

Gotel, O. and Zisman, A. editors, Software and Systems Traceability,
Springer.

[8] Gotel, O., Cleland-Huang, J., Hayes, J., Zisman, A., Egyed, A.,

Grünbacher, P., Antoniol. G. 2012. The quest for Ubiquity: A
roadmap for software and systems traceability research. In

Proceedings of the 2012 20th IEEE International Requirements

Engineering Conference (RE).

[9] Heer, J., Bostock, M., and Ogievetsky, V. A tour through the
visualization zoo. Commun. ACM 53, 6 (June 2010), 59-67.

[10] Heim, P., Lohmann, S., Lauenroth, K. and Ziegler, J. 2008. Graph

based visualization of requirements relationships. In Proceedings of
the 2008 Requirements Engineering Visualization.

[11] Howden, N., Rönnquist, R., Hodgson, A. and Lucas, A. 2001. JACK

intelligent agents - Summary of an agent infrastructure. In
Proceedings of the 5th International Conference on Autonomous

Agents.

[12] Li, Y. and Maalej, W. 2012. Which traceability visualization is
suitable in this context? a comparative study. In Proceedings of the

18th International Conference on Requirements Engineering

Foundation for Software Quality.

[13] Mäder, P. 2013. Interactive Traceability Querying and Visualiation
for Coping with Development Complexity. In CoRR.

[14] Mäder, P. and Cleland-Huang, J. 2013. A visual language for

modeling and executing traceability queries. Softw. Syst. Model. 12, 3
(July 2013), 537-553.

[15] Maletic, J. and M. Collard, L. 2009. Tql: A query language to support

traceability. In Proceedings of the 5th Workshop on Traceability in
Emerging Forms of Software Engineering.

[16] Marcus, A., Xie, X. and Poshyvanyk, D. 2005. When and how to

visualize traceability links? In Proceedings of the 3rd international
workshop on Traceability in emerging forms of software engineering.

[17] Merten, T., Jueppner, D. and Delater, A. 2011. Improved

Representation of Traceability Links in Requirements Engineering

Knowledge using Sunburst and Netmap Visualizations. In
Proceedings of the 4th International Workshop on Managing

Requirements Knowledge.

[18] OpenUP. http://epf.eclipse.org/wikis/openup/

[19] Padgham, L. and Winikoff, W. 2004. Developing Intelligent Agent
Systems–A Practical Guide, John Wiley & Sons.

[20] Thommazo, A., Malimpensa, G., Oliveira, T., Olivatto, G. and Fabbri,
S. 2012. Requirements Traceability Matrix: Automatic Generation

and Visualization. In Proceedings of the 26th Brazilian Symposium on

Software Engineering.

[21] Voytek, J and Núnez, J. 2011. Visualizing Non-Functional Traces in
Student Projects in Information System and Service Design. In

Proceedings of the Intl. Conf. Human Factors in Comp. Systems.

[22] Winkler, S. 2008 On Usability in Requirements Trace Visualizations,
In Proceedings of the 2008 Requirements Engineering Visualization.

[23] Yu, E. 1995. Modelling Strategic Relationships for Process

Reengineering. PhD thesis, University of Toronto, Department of
Computer Science, 1995.

